Oracle Berkeley DB

Berkeley DB
API Reference
for C

11g Release 2
Library Version 11.2.5.3

ORACLE
BERKELEY DB

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at: http://
www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html

Oracle, Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks are reserved. No
third-party use is permitted without the express prior written consent of Oracle.

Other names may be trademarks of their respective owners.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology Network forum at:
http://forums.oracle.com/forums/forum.jspa?forum|D=271

Published 9/9/2013

http://www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html
http://forums.oracle.com/forums/forum.jspa?forumID=271

Table of Contents

o] 1= = Lo xiii
Conventions Used in this BOOKccvireietiiiieiriiiriitiiiaereraeereneereneerenneennes xiv
FOr More Informationeeeeeiiie ittt r et ee e e eeeeesennreeannesannnanes XV

1. Introduction to Berkeley DB APISuueeiiiiiiittiiieiiieteeereiieeeeeeeenrneseeeessnnneeeseanns 1

2 2 TS 02 T = T = 2
Database and Related Methodsccceiiiieiiiiiiiiiiiiiii e e e ereeeaaees 3
DB->aSSOCTATE() +eveeennueeeerernueeeeeesernueeeeesennnaseesessnsnseseessnnasessesssnnnsessessnnnneess 6
DB->asS0CIate_fOr€IGN() veveeeerrureeeereiieeeeererrneeeeeessaeeeeesessnseseesessnssssessnnnnes 10
D] R of (o Y=) PPt 13
(DS ole] 1] Y- et o) HT P PP 16
(o[elo] o) A PP 20
(a0 T ol /= U 21
5 R 1= 23
D] R =T o o P PP 26
DB->EXISTS() eveererennuneeeeeenrueeeeeesesaneeeeeennaseeeesennnssssesesnnnssssesssnnsesssessnnnnnes 28
35 R a0 30
DB->GOT() teurueeeeeeenuueeeeeeeenueeeeeessnnnseceesennnsesessssnnasssssssnnnnsssesessnnsssessennnnes 31
DB->get Dt MINKEY () teverreetiiiiiiittieeeiiieeeeeeeiieeeeeesesneeeeesesnsesseesosnnssseeanns 36
DB->get_DyteSWaPPEA() cuvveeeereeriiueeeeerenieeeeeeeesaeeeeeeessnseeeesessnnsnessesennnssaeees 37
DB->get_CaAChESIZE() vivveirntetiiieiiitttteeaiieteereeaineeeeeeesnneeessessnnnsessessnnnneaeens 38
DB->get_Create_dilr() vuveeeereeeieeeeeerenueeeerernueeeereseneneeeessnnnessssssnnasessesannnnes 39
DB->get_ADNAME() teveinetttiieiiiitttieeiiieeeeeeeairaeeeeeesnnneseeeessnnnsessessnnnsessesannnns 40
DB->get_enCrypt_flags() veeeeeeerrueeeereriiueeeeeeenineeeeesersnseeeeressnseseesessnnsssssasnnnnns 41
DB->Et_ @ITTIlE() veveeriitiiiiiiiiittteeeiiieeeeeeenieeeeeeaesnneeeeesesnnsseesessnnsseecsannnnes 42
DB->GEt_ EITPTX() vvtttereiineeeeeeeiineeeeeeseueeeeeeesnnseeeeeessnsssessessnnssssssssnnnnssssenns 43
D] Rl { - T= 1] PPN 44
[D]S R T<) o T i - Tt o] o I P P PP 45
DB->get_ N _NELEMI() tiiieiiiiiiiiiii ittt ieeeitteeeeeeinaeeeeeeennsasessessnnnnessasannnes 46
DB->8Et_NEAPSIZE() vvverrrerinueeeereerineeeeeeeerneeeeeessnaseseesessssessesssnnnseseessnnaneess 47
DB->get_heap_regiONSIZE() cuvveeeeteeeiireeeereeiieeeeeeeernneeeesesesanessesssnnsssssesannnnes 48
DB->et_LK_EXCLUSIVE() tevurrereeieiiiieteeeeeeiieteeeesenueeeeesesnnnseeeesennnssesesennnnnneens 49
DRyl Vo] e [T () I P PPN 50
DB->8et_MSGIILE() uvreerreriineteereeiieteeeeeerneeeeeeesrnueeeesessnnsnessessnnaseesessnnnneseees 51
DB->get._ MULLIPLE() teveeinetetieiiiittteeiiieeeeeeennneeeeeesenneeesessnnnesessessnnnssssesanns 52
DB->get_OPEN_flags() veeeeerruereereriiieeeeeeeerueeeeeeesnnaseeeessnnseseesensssessesennnnaesens 53
DB->get_partition_Callback() «veeeeeeriirerieiiiiiieeiiiiiireeeeenieeeeerennnneeeeseennneneens 54
DB->get_partitioN_dirS() «eveeeeeeeeerreeeeeeeeiiueeeeeeerreeeeeesesnnneseesessnnessessesnnnsaseens 55
DB->get_partitioN_KEYS() teeeueeeteeeriieeeeierniereeeeserueeeeeeessnneeeseessnnesessessnnnneess 56
DB->8Et_PAZESIZE() vvvverrrrrrrerreererrerresseeseeeeeesesesssssssssnssnsnsnnnnsnsnnssnnsnnnnnnnanes 57
(DS To)l o] o (o] 10/ (I PP 58
DB->get__@XEENESTZE() teveirrtrtiiieiieteeeeeiieeeeeeeenrneeeeesessneeeeesssnnansessessnnaneess 59
DB->get_re_delIM() veveereriietetieeiiieteeeeeeineeeeeesrnueeeeeessnnnnessessnnnsessessnnnnsssees 60
D]l T (=) 1 | PP 61
DB->Et_IE_PA() +eeeeerrureeeeeeiiueeeeeereneeeeeeeesaeesesessnssseseessssnsessessnnsssssesannnns 62
DB->GEt_IE_SOUIMCE() vuuveeeereeeuueeeeeeessuueeeeeessnnssesesssassssesessnsssessessnnnssssssnnnes 63
DB->GET TYPE() eveererennuneeeeeenueeeeeeeenneeecessesnasesssessnnsssseessnsnssssessnnnssssesannnes 64

9/9/2013

DB C API Page iii

DB->JOTN() teentintitiitiitiiti i e 65

DB->KEY_TANGE() +eerrteeneerenueeeenueeesneeeenneeeenseeesnseeesnseesnsssesnsssssnneesnnssesnseens 68
DB->0PEN() teuueeterrenanteeeeennneeesseesansesseessanneessesssansesssessannssssesssnnsessssnsnnns 70
DB->PUL() eveereeennnneeereennateeeeeesaneeeseesnanessssessansesssesssansesssessansasssesssannesss 75
DB->TEIMOVE() tuvvrrrnreetetteeteeeeeeeeeeeeeeeeeeeeeeeeseeseesessesessssssssssssnnsnnnnsnssnssnsnnes 79
D2 R T =13 1 1= O e 81
3] Yy M- 1{ (o Yo [TR PP 83
DB->Set_apPend_IECN0() ueeereueererueereneteenneeeeneeeeseeeesneeeennsessnseessnessonasessneens 85
DB->Set_Dt_COMPAIE() uveeernttieintiiiittientereiterereteeaneerereeeesneeeesneerenaeeesneesanns 87
DB->Set_Dt_COMPIESS() uveeennterereteeneteennteeenueeeseeeesneeeenaseesnseeesneeesnnseesnnaenns 89
DB->Set_Dt_MINKEY() uetirieiiiitiiiitiiiittieitereeeeerneerereeeesneeeenaeeesneeeesneeesnnees 92
DB->Set_ Dt _PrefiX() teveeereretiiiiiiiiiiiieitereieteereerenaeereneeeasneeeenneessneeesnneens 93
D] By Wl oF- Tl g 1T 4= [I PN 95
D] R Y i o (=T LT« o P 97
DB->Set_dUP_COMPAE() teuueererneererueeeeneeeenueeeeneeeesneesesaeesoneeeesassesnnesssnesesnnes 98
DB->SEt_ENCIYPL() evrttrreettetreerianteertenraneeesseesaneesseesansesssessanneessesssnnsesss 100
B3 Ry Y A =T o o | LY T PN 101
D] Yy M =T o o | U= T PPN 103
DB->SEE_EITPIX() vuverennteeeneteenneerenueerereeeesneeresaeeesneeeesneesesnseesnsssesnessennssennes 105
DB->Set_fEEADACK() terrrrttiiiiiit ittt it ettt teeaiteeeeeeeansaeeeeeeainsseseeennns 106
DB->SEE_flagS() veveeeeeneerenueereneeeenneerenueeesneeresneereraeeesneesesneesennseesnessenneeeones 108
DB->Set_N_COMPArE() «eeieretiriietiiittieieteeeeteeneeereneeeerneeeesaeessneeessneeesnneesnnes 114
(D] Yyl T - Ut o o T 116
DB->Set_ N _Nash() cevviiiiiiiiiiiiiiii i it et et e et aaas 117
D] Yyl o T = =T .o 1 T PPN 118
DB->SEt_NE@APSTZE() +eerernteernetieittrereteeareeeeaeeeenateeaeeeesneeeenneeesneesesneeeenneennn 119
DB->set_heap_regionNSiZE() tevueeeeretieritererteeeieeeeneeeenneeeeneeeesneeeesnseesnaesesneeens 121
DB->SEt_LK_EXCLUSTVE() tenrrrtetiieiiitetetieiiiitteeteeaiieeeeeteaainseeesesasnsseseeennnnseaeenn 122
B3 Yy Ml Vo] e [T o T PP 124
DB->SEt_MSZGCALL() tuuvteeeneereinteeeinteeieeeeaneeeeiaeeeaeeeesneeesnaeeesnneessneeesnnesesnnees 125
DB->SEt_MSGFIlE() tuverentireinteriietieitereieteeeieerennteeaneeeasneesesneeeennneesneesennneens 127
DB->SEt_PAZESTZE() tevernnneerreennnneererennaneeessessaneesssessansesssesssnssesssessansesssenss 128
DB->S@t_PArtitionN() ceeeeereeeeeernnneeererernnneeeeeenanneeesesesaneeessessnnseesssessansesssanns 129
DB->set_partitionN_dilrS() «eeeeeerereeerereererneereneeeeseeeenueerenaeeesneesesneeesnaseesneseanns 131
DB->SEt_PriOFTEY() evveeererrnnterrerennneeeeeesnneessesasnnsessesesnnnesssesssnnsessesssnnnesss 132
DB->Set_q_@XEENESIZE() teurunrterriiiiitetiieiiitetteeaianeeeereeranntesseeannnesssessnnsesses 133
DB->SEt_ € _AELIM() 4eittiiiiiiittt ittt iieeii et teeeiteeeeteeanraaeeeeeannseeseeennnnneens 134
3] R Y Ml T (=1 Y N 135
DB->SEt_I€_PAG() +everrterenetrenneerenueeenneeeenaeeeseeeesneeeesasessneesssnsessnnsessnesesnnes 136
D] B Ll Y010 o= (P 137
DB->SOrt_MULEIPLE() teuveerenntierntteeitereieteeaeeeenneeraneeeenneeeenneeesnneeesnessennaeennes 139
DB->STAL() vveerenueeenneerenneereneeeenneereraeeesneeeesueeeennsessneeeennesssnsesssnesssnnsesonnens 141
DB->Stat_PriNT() veeeeeeenreereeenineeerreeraneeeereesnaneeeseessansesssessannsessesssansassecnas 149
DB->SYNC() +eeennnnrereeeannneeeeeasnneessessnnnessessssnnesssesssnnsessesssnnsessesssansassssnes 150
D] R U g Vot Y =T P PPPP 152
DB->UPZGIadE() +eeeuueerenuteeaneeeenueeeenueeesneeeesneeeennseesnsesesnnsesnnseesnsssesnssesnnssnns 154
DB ->VEII Y () etrenetiennetieneeeraeeeenneereneeeeaneeresaeeeonneeesneesosasessnseessnnessnassennees 156
DB_HEAP_RID .ieuttiiittieittieieteeeeeeaaneeeenaeeeaneesesneesenaseesneesesnsssonaseesnnesanns 159
T I o TR 02 Tl Yo gl - T Ve | (N 160

9/9/2013 DB C API Page iv

Database Cursors and Related Methodsvvuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiieees 161

B> CUISOI () veeeeteitetteeeteeieeeeeeeeeeeeeeeseeeeeeesessnnnnnnnnssssssssssssssssssssssssssssaees 162
DBCUISOr=>ClOSE() teuuuureeeteneineeeeeeeniueeeeeeeesaseeeeeessnsseseeessnssseeesensnnsesesennnns 164
DBCUISOr=>CIMP() eeereteeeennnneesseeennneesseeesnnnesssesssnnsessesssnnsassssassnnasssssssnnsessss 165
DBCUISOr=->COUNT() uuuureuuueeeneeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeseesssssssssssssssannnnns 166
B3 Tl [Yo e 1= U T PPN 167
DBCUISOT=>AUP() veeennueeenneerenueeeaneeeenneesenaeeesnseeesneesesaseesnsssesnssssnnseesnnssannes 169
DBCUISOr=>GEE() veernnunreereennneeereennneeeeeeasanneessessnnnsessesssnnnesssesssnnsessessnnnnes 171
DBCUIrSOr=->get_PriOrity () ceeeeeeeeeeeesrneeereeesneeeeeeensaneeessessnaneessssssansesssassnnnaes 179
DBCUISOr=>PUL() uueeerreennnnteereenaneeeseenanneessessanneessesssansessesssansasssessannasssenss 180
D] (8] o] C =] il o] (o] 1 Y/ { PPN 184
4. The DBT Handle .uviiiiuiiiitiiiiitiiiteeitteeeeeeeaneeeenaeeesneeeesneeesnneeesnnssssnesesnnees 185
DBT and Bulk Operationsccueeieieterrieeiereereneeeenneereraeeseneeeesneeeonaeessneeeennees 189
DB _MULT IPLE _INIT 1etetiiietiiitteereteeeeerenaeeeanaeeenneeeenaeessnesesnneessnnsessneesennens 190
DB _MULT I PLE _NEXT \ttiittteeinteeeueeenneeeenneeeenaeeesneesssnneesaesesnassssneeessnesesnnees 191
DB_MULTIPLE_KEY _NEXT tttiuttteeuteeeiuteeaeeeeaneeeenneeesnnesesnessssnseesnnesesnnesannaens 192
DB_MULTIPLE_RECNO _NEXT +tiuuttieuteanneeeenneeraneeeeaneerenneeessseeesnessesnsessnaesanns 194
DB_MULTIPLE _WRITE _INIT uttiiittiiitteiieteeeeeeennteeaneeeenneeeesneeeenneeesneesanneeenns 195
DB_MULTIPLE _WRITE _NEXT ttuuttiiittianueeeeneeeenneerenaeeeaneesesneesennssesnsesesneesannes 196
DB_MULTIPLE _RESERVE _NEXT 1tuuutieittteeneeeenneeeenueeeseeeesneeesnneeesnnssesneeesnneens 197
DB_MULTIPLE_KEY _WRITE _NEXT 1.ttiittiitiiitiitiiiteiitetiteeneeeneeenaeneesneeeaeanaenns 198
DB_MULTIPLE_KEY _RESERVE _NEXT ..iiuttiittiiteiitirieeaiteniteneeneeaseresesnsesnaeenaenns 199
DB_MULTIPLE_RECNO _WRITE _INIT uttiitiiitiiitiiiteiteniteniteeieeeieeaeeaneeaneenseennenn 200
DB_MULTIPLE_RECNO _WRITE _NEXT .tiutiiitiiitenteaiteateanteaseenseeaserssesnseenaeanaens 201
DB_MULTIPLE_RECNO _RESERVE _NEXT .iiutiiitiiiteiiteiitenitenieeeneeeneeenaesieesneeeneennas 202
5. The DB_ENV Handle ..iiiniiiiiiiiiitieiiiiiiteeitteeeneeeenneeeanaeeesneesesnseesnnssennneens 203
Database Environments and Related Methodsc.eviiiiiiiiiiiiiiiiiiiiiiiiiiieeeenn, 204
DB_ENV->add_data_dilr() «eveeeeeneererueernieeeeneereneeeeeeeeesneerenaeessneesesnessonneeennes 206
DB_ENV->DaCKUP() “eteeuueeranuteeaneeeenneeeenueeeaeeeesneeeesaseesaeessnseeesnssesnsssenneeens 208
DB_ENV->ClOSE() teuurrtetteeeiiuteeteeenaeeeeteeesiuseeeeeessnseseseessnnssssesesssssssesennnnnees 211
oo = 0 A ol (=T L - R PP PRSP 213
DB_ENV->dbbaCKUP() teeuuteeenttinitteeiutieeieteeiieeeenneeeeneeeesneeessneeessnseesneseanneens 214
DB_ENV->ADIreMOVE() teunrtettiieiiitteieieiiteeteeetieeeeeeenannseeseesssseseesessnsesseeanns 216
DB_ENV->AbreNameE() veeeeieeiinetttieiiiietetieeaiieeeteeeaieeeeeesesseeeseesssnsesssesennnnes 218
D N =y o PPN 220
DB_ENV->failChK() tuueeeeinteeretienieteeiteeeieeeeaieeeenneeesiaeeesneeessneeessaseesnassesnnens 222
DB_ENV->fil@id_rESET() veeeeerirntetieiiiietiiieiiieeeetteeiieeeeteeasinseseeeensnnseeeeennnnnes 224
oo 3 (V| LY =151 o] o H PP PPN 226
DB_ENV->get_Create_dir() «eeeeeeeereeeerieeeeneeeeiueeesieeeeseeesnneeeonaeessneeessnesesnnees 227
DB_ENV->get_data_dirS() «eeveeeeeeererutereneeeeneeeenneeesneeeesneeeesnseesnaesesnssesnneeens 228
DB_ENV->get_data_leN() eeeeereererneieneeeeneeeeiueeesieeeeseeeesneeesnaesesnaeessnesesnnees 229
DB_ENV->get_encrypt_flags() «eeeeeeeerereeienieeieieeernneeienueereneeeesneeeenaeesoneeesnneens 230
DB->GOt BNV() teteiinitttteieiineeteeeraneeeeeeannneesssessnnnessssessnnsesssassnnnssssessnanes 231
DB_ENV->8et_ITIle() teevutierttinitteeitieeieteeaieeeeineeeenaeeesneeessnecesnaeeesneeennnees 232
DB_ENV->GEt_EITPIX() +eeeeueerenueeraneeeenueerenueeesneeeesneesesaseesnsesesneesennseesnsssannes 233
DB_ENV->get_backup_CallDacks() «ueeeeeerereereieeernietiereerereeersneeeesneesenaeeennees 234
DB_ENV->get_backup_CONfig() ueeeerrttreiutierieiieieereieteeneereneeerenaeeesneerennseennes 235
DB_ENV->8Et_flagS() veeeeueererueereneteenneereneeereneeessneereraeessneeeesnessonassssnesesnnees 236
DB_ENV->8Et_NOME() +eieruttiiintirietientereneeeeneeeeraeeeeeeeesneseerneessneeeenneseonnens 237

9/9/2013 DB C API Page v

DB_ENV->get_intermediate_dir_mode()eeeeeierieiriieeiriieererneereneeeeneerenaeeennes 238

DB_ENV->get_memory_init() .eeeeeererinreeirieiineeerreinnaneeeeeennaneeessessnneesseannanes 239
DB_ENV->get_MemOry_MaX() «eeeeeeueeeereeannnneeereensnneeesseesaneesssessansesssessnnnassss 241
DB_ENV->get_metadata_dir() «ceceeeeeereneeienieeieieeeenneereneeeeereeeesneeesnaeesoneeeennees 242
DB_ENV->8et_MSGFIlE() vererrttrerntiiiietiniittieiteeiieeeeneerenaeeesneeresneerenneeesneesanns 243
DB_ENV->get_Open_flagS() ueeeeeeeerereteerieerenueereneeeeseerenaeeesaeeesneeeesnseesnsseanns 244
DB_ENV->8et_ShIM_KEY() cuueerrnttiiitiiiitiniietieitereneteeneereneeeesneeessneesonaseannees 245
DB_ENV->get_thread_count() «.ooveeieieiiriieiiiitiieitieeieeeeieeeeneeeeeneeeenneeeenneenns 246
DB_ENV->8et_tiMEOUL() teverrurrierreiritteereiiianeeereearnneesreessannesseessanneessessnnnnes 247
DB_ENV->get_tMP_dir() cueeeeueeeeueieiuteeeiueeeeieeeenneeesieeeesneesesneeessneeesnnseesnnens 248
DB_ENV->GEt_VEIDOSE() tuveereretrenneererueereneeeesueeeereeeesneeeesneeeonasessneeesnnsseonaees 249
DB_ENV->10Z_VEIIfY() veeeruttrenutineietieneereneeeeaeeeesaeesenaeeesnesessasssoneessnnesesnnens 251
B I o N AT Y o T (Y= PN 254
DB_ENV->0PEN() teuuuurtttreenneterrennnareeeseessanneessessannsessesssansesssessannsassessnnnnes 256
DB _ENV->TmMOVE() teetettiiiitiittietieeteeeeeeeeeeeeeeeeeeeeseeesessssssnssssssssssssssssssenes 262
B I o N AT - | { Vo o T 264
DB_ENV->set_app_diSPatCh() «eeeeueeereeiiriutiriitieitteeieteerneeresneeeenneeesnaeeanneeees 266
DB_ENV->set_backup_CallDacks() .ueeeeueeiereeiereeereieteeneerereeeeseceenaeeeoneeeanneens 268
DB_ENV->set_backup_CONfig() ..eeeeertiieietienietriieereieteeneerenneeesneeeesneerenneeennes 271
DB_ENV->Set_data_dir() «veeeeeeeiietetieiiiiietiieeiiieetieeeiieeeeeeessnsseeeeeessnseseeeanns 273
DB_ENV->Set_data_lEN() teveeirrtttiiiiiiietiiiiiiieeteeiiieeeeeeenineeeeeenensseseennnnnes 275
DB_ENV->Set_Create_dir() voveeeeeeiereiieeteeeeiiiteeeteeeiieeeeeeeessseeeeeensnsseesesnnnnes 276
DB_ENV->S@t_@NCIYPL() ceuueterreerintterienianeeerreenaneeessesssnnsesseessnnsesssessannaassenns 278
DB_ENV->set_eVent_NOTITY() coeeierrtireietiriieiiiiteriietieneereneeeanneeeesaeesonaeesnneens 280
DB_ENV->Set_@ITCaLl() turveetieeiiitttiiiiiiitteiiiieteteeeaieeeeeeenaiaeeeseeennnsseeeeenns 285
B I o N N =Y o o 1 =T PP 287
DB_ENV->SEt_ITPIX() +eeeruterenutereneteenueereneeeesneeeesneerenaeeesnsesesnsssonnseesnsesannes 289
DB_ENV->Set_feeADACK() tvetrrrttttiiiiiitetiiiiiieeteeeiiieeeeteeaiieeeeeeenssnsessseennnnees 290
DB_ENV->SEt_flagS() veeerueererueerereeeerueerereeerereeeesneeronaeeesneeessasesonasessneseonaees 292
DB_ENV->set_intermediate_dir_mode() ...cceeiiiiiiiiiiiiiiiiiiiiiiiiiiiieieiiieeeeeeanns 299
DB_ENV->SEt_iSAlIVE() uvvettreniinetetiiieiiteeteeanieeeeeeeeiineeeeeeessnssseseesnnssssseeanns 301
DB_ENV->set_memory_init() .veeeeeerireeireiiiietieiiiitetreeannnneesseesnneessesannnnenss 303
DB_ENV->Set_MemOry_MaX() «eeeeeeereereeennneereeesanneessesesnnnessesssnnesssessannsessenns 305
DB_ENV->set_metadata_dir() «coveeeeeeeeiiieeiiieiiiieeeteieaiieeeeerennineeeeeeeesnsseeeeenns 307
DB_ENV->S€t_MSZGCALL() “vveeretrenneereruteereerenneeeenneeesneeeesneeeenneeesnseeesnneesnneenns 308
DB_ENV->Set_MSGFIlE() veeerrttiiintiriitiiiittieiteeeieteereereneeeesneerenneerenneeesneesanns 310
DB_ENV->Set_ShIM_KEY() cuveereetiiitiiiitiniitiaiteeaneteeneereneeeesnecessneeeonneeannees 311
DB_ENV->set_thread_COUNT() «iveeiieettiiiiiiiiiiiiietieiaiieeeteeananeeeeeennnnseseeenns 313
DB_ENV->set_thread_id() «eeeeeeriieetiiiiiietieieiiieetteeiiieeeeteeeisseeeeeensnseseeeanns 315
DB_ENV->set_thread_id_String() «.ceeeeeerreeieiietieitiriietieiieereneeeenneeeenneerenaeeennes 317
DB_ENV->Set_tiMEOUL() 1uuuururruuneeeeeeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeseeesssssssssesaennns 319
DB_ENV->Set_TMP_dir() veeeeerueeerneeeenneieenueeeaieeeenneeesnueeesneesssneeesnneeessaeesonaees 321
DB_ENV->SEE_VEIDOSE() +ettereinteettteniieeeeteeaiiseeeteesessseeeeeessnsesesesesnssesseennns 323
DB_ENV->STat_Print() «ueeeeeereennneetrreernneeeerenraneeesrensnaneesssessaneeessessnnsessecnes 326
(oo T W =T o] A PP PO 327
oo =] 551 o] o H P PO PP PPN 328
6. The DB_LOCK Handleciiieiiiiiiiiiiitiiiiitiiitieitereneteerneerenneerenaeessneesennneeanes 329
Locking Subsystem and Related Methodsccceiiiieiiiiiiiiiiiiiiiiiiiiiiieiieenaneens 330
DB_ENV->get_K_CONTUCES() tevereererntiriietieiietiiieeeaieeeenneereneeeesneeeenaeeeonaeennnees 331

9/9/2013 DB C API Page vi

DB_ENV->get_IK_dELECL() tevrrrrerntiraintienietteneeeenuteenneeeesneeesnneeesnseeesnesesnnneans 332

DB_ENV->get_[K_mMaX_LOCKEIS() «eeeueteerutireietieiieeeaieereineeenreeeenneeesnaeeesneeennnees 333
DB_ENV->get_[K_MaX_LOCKS() «veeerrreernueeereeeeieeeenueeesreeeesneeesnneeesnaeeesneeesnneens 334
DB_ENV->get_K_mMaX_0DbJeCES() «vererrtireretieiitiieitireietienieerenneeeeneeeesneerennseennes 335
DB_ENV->get_K_PartitionS() «.eeeveeeeeeeeerueeeeieeeenneeeenneeesneeeesneeeesnseesnaesenneeens 336
DB_ENV->get_IK_Priority() «eeeueeeerueeerneeeeneeeeiueeesieeeesneeessneeessneessnaeessneeesnnees 337
DB_ENV->get_K_tableSiZe() «uveeetiertiriiiiiiitieiieieeiteeeieeeenneeeenaeeeseeeennneenns 338
DB_ENV->Set_LK_CONTUICES() tvveeinnteeiiiiiiiiiiiiiiieeeieiiieeeetenaieeeeeeennnseeeeanns 339
DB_ENV->Set_LK_AELECE() vurreeerieniiieteieieiiieeeteeiiieeeeeeeaieeeeeeessnsseeeeensnnnaeens 341
DB_ENV->set_LK_MaX_LOCKEIS() veetirriiinetetieiiiieeeeieeaiieeeeeeanineeeeeeeesssseeseennnnns 343
DB_ENV->Set_LK_MaX_LOCKS() +veetererinneeetiiiiieeeetieiieeeeeenaineeeeeeessnseeeesenannnaes 345
DB_ENV->set_K_MaX_0DbJeCES() «veeerrtirretirittieitereieeeeneerenneeesneeeenneerenaeeennes 347
DB_ENV->set_K_PartitionS() «eeeeueeeeeneeeereeeeereeeeseeeerueeeeneeeesneeeennseesnsssennneenns 349
DB_ENV->Set_IK_PriOrity() «eeeueeeeneeeeeieeeenneeeenueeeereeeesneeesnneeesnaseesnseessnesesnnees 351
DB_ENV->set_LK_tableSiZE() vevvveiiiiiiiiiiiiiiiiiiiiiit ettt teeiieeeeeeeniaaeaennn 352
DB_ENV->10CK_AELECE() vurrrreeieniiietttiieaiiteeeieaiieeeeeeeainseeseesasnsseeeeensnseeeeenns 354
DB_ENV->10CK _GET() tuvetreintiriietiiittiereterenetrenneereneeeesneeeesneessnaeessneeesnnsennnes 356
DB_ENV->L0CK _Td() vuveeenteeautenneeeeiteeaieeeenneeeesneeesnueeesneesesneeessnesessasssanaees 359
DB_ENV->10CK_id_fIrEE() turreetitiiiiittiiiiiiitetteeiiieeteteaaineeeeeeesinsseeeeennnssaeeenn 360
DB_ENV->L0CK _PUL() weereneerernetreneteraetrenneetereeeesneeeesaeeseneeessnesessasessnnsesnneens 361
DB_ENV->10CK_STAL() veeurrreetieeninetetieiiiiteeteeaiieeeeeeenineeeeeesesnseeseesesnnseseeennns 362
DB_ENV->10CK_Stat_Print() cueeeeeueeeerneeerrueeesreerenneeeenueeeseeeesneeeesneeesnsesennneenns 367
DB_ENV->10CK_VEC() teunrteetieaniueeetteeaiieeetteeaiieeeseeeesssseseesssnssessesessnseseeennns 369
7. The DB_LSN Handle ..ciuiiiiiiiiiitieiitieiteeeinteeeeeeeaneeeenneeesnsesesneeeennesesnnesns 373
Logging Subsystem and Related Methodsccceiiiiiiiiiiiiiiiiiiiiiiiiii e e, 374
DB_ENV->8et_ G DSIZE() teeurtirrnttieiutinnetientereneteeaeerenaeereraeeesneesenneeesnaesannes 375
DB_ENV->8Et G diN() veverutereieeieinetiereeeeaeeiereeereneeeesneeeenaeessnasessneseonassesneens 376
DB_ENV->get_[g_filemOde() .veeeereirriiiriietieiieeeiieeeeieeeeaneeeenneeeenaeeesneeennneens 377
DB_ENV->8Et_[Q MaAX() teuvtrenterenueeerneeeenneeeenueeesreeessnneesnnesesnaesssneeessnesesnness 378
DB_ENV->get_[g regionmMaX() «eueeeeeeeeeereeeereerenneereneeeesneesesneeesnsssesneesennaeennes 379
DB_ENV->10Z_arChiVe() uueeeereteeiuteriiutieeneeeeneeeenueeesneeeesneesennseessaesssnneesnneens 380
DB_ENV->10Z_CUISOI() +ereuuterenuerenneerenueeeaneeeesaeeesnaeessneseesasessnassssnssssnnssennees 383
DB_ENV->108_filE() tevuetrenntererutieneerenneeraneeeesneerenaeeesnaeeesneesesnseesnsssssnessanns 384
DB_ENV->108_flUSN() teeuuteeiittieittiiitieeiteeeieeeenuteeaneeeeaneeesnneeesnneeesnseeennneens 385
DB_ENV->10g_et_CONFIG() veereruterruutrenueerereeeeneererneeeeseeeesneeeesneesonaseesnessannes 386
DB_ENV->108_ PriNtf() teeeueeeeiuteenieeieiutieeieeeesieeeesneeesnaeeeseeessneeessaeeesnnssennnens 388
DB_ENV->10Z _PUL() +eveuuteenneerenneeeeneeeesneeeenneeeenaeeesneeeesnseesnsesesnsesesnssssnsssenns 389
DB_ENV->10g_SEt_CONTIG() +eererueerruetrerueereneeeenneeeenueereseeeesneerenneeesnseeesneesannes 391
DB_ENV->10Z_STAT() vveeenuteerneerenueeeenueeesneeeesneeesnneeesnaeeenneeessnseesnnssssneesennees 394
DB_ENV->10g_Stat_Print() «eeeeeeeerereterreerenneereneeeenneeeenaeeeeneeeesneesonasessneesannees 398
DB_ENV->SEt_Q _DSIZE() teeurtrrinttraintieneerenneteeneeeeaneeresaeeeesaeeesneesennseesnnsennnes 399
DB_ENV->SEt_IQ_ diN() vevereterereeieieiienetenaeereneeeeaneeeesneeeesaseeoneeeesneesonnesenneens 401
DB_ENV->set_[g_filemMOde() ..veeeerrirrietieiietieiteeaieteeeieeeenneeeeneeeesneeessneeeanneenns 403
DB_ENV->SEt_[Q MaAX() teuvteennteeenueeerneeeenueeeenueeeseeessneeesnaesesasessnneessnesesnnees 404
DB_ENV->Set_[g_regionmMaX() «eueeeereeerereeeerneerereeeeseeeesaeeeeneeessneeessasessnneesnnes 406
The DB_LOGC Handle ...cciieiiiiiiiiiiiiii i aieeeeieeeeeneeeanneeeenaeesaneeeennees 408
DB_LOGEC->ClOSE() +eeeennnrreeerennineeeeteraieeeeeesessseseeeesnssesesesssnssessesssnsseseeennns 409
DB_LOGC->ZEE() vvverenueeenneerenueeeenaeeesneesenaeeeenseeesnsesesaseesnsssssnsssesnseesnnsssnnes 410
Co)e B ele]10] -1 I PP 412

9/9/2013

DB C API Page vii

8. The DB_MPOOLFILE Handlecccviiiiiiiiiiiiiiiiiiiiiiiiiiinnnn e 413

Memory Pools and Related Methodscc.veeeiiiriiiiiiiiiiiiiiiieiiieiieeeieeenneeenns 414
D) e (Ll 1010 { PP 416
DB_ENV->get_CaCh@_MaX() veeeereteerueerenneerenueeesneeeenneeesnaeeesnaeessnneesnnssesnasenns 417
DB_ENV->8et_CACNESIZE() tvvererutrennttrennterereteeneerenneereneeeesneerennseeonseeesneesannes 418
DB_ENV->get_mp_maX_0Penfd() .eeeeeeeeeereeeerieerenneeeeneeeeseeeenneeesnasessnsesenneeens 419
DB_ENV->get_mMp_MaX_WIITE() teeeruurttrriirianreerienianeeerrersanneesseessansesssessanneesses 420
DB_ENV->get_MpP_MMAaPSIZE() +eeeruureerrerrnnterreennneeerressanneessesssansesssessannaesses 421
DB_ENV->get_mp_MEXCOUNT() nuueeiirririitiiiieiiatterieeraneeeerennnneeesseesnaneesseannas 422
DB_ENV->get_MP_PABESIZE() «vveerrerrnurterreennneeeseeeranneesseeesnnesssessannsessessnnnnes 423
DB_ENV->get_mp_tableSiZE() «veeeertterintireietteiieeeeieeerieeeeeeeesnneeesnaeeesnesesnneens 424
DB_ENV->mMempP_fCreate() vueeeeeeierreereretirnietieneereneeeesneeeerasesseeessneeeonaseannees 425
DB_ENV->mMempP_re@ISTEI() «eveeenunrtetrrennneeerreesnaneeeseessaneeessessassesssessansasssanss 426
DB_ENV->MeMP_STAT() tevuureerrrerinteirreiiitteteeanianeeesreasaneeessessnaneesssennannaases 428
DB_ENV->memp_stat_pPrint() «.ceeeeereireiiiiiiietiiiiintetreeananeeesseessnneessesannnnenss 434
DB_ENV->MEMP_SYNC() +eeeennnretereannnureeeeeaananeesssessaneasssesssansesssessansasssessnnnaes 435
DB_ENV->MemMP_triCKIE() uveeerneeierntiriieterietreneteeaneeeesneerenaeeesneesesneesennseennes 436
DB_ENV->Set_CaCh@_IMAX() +tettreeiinneetieiiiiteeeteeaiieeeeteenernseeeresannsseeeeenssnneaeenn 437
DB_ENV->Set_CaChESIZE() vetvreiiitttitieiiiitetieiiiieeteeeiieeeeetenaseeeesensnsssseennnns 439
DB_ENV->set_mp_maX_0PeNnfd() ...eeeereeeereteereerenneeeeneeeeseeeesneeeenaeeesnseesnneeens 441
DB_ENV->Set_MpP_MaX_WIIEE() teeeruurterrerrinteerierineeerreesnneeesseesnansesseensannaesses 442
DB_ENV->Set_MpP_MMAPSIZE() +euvrererrrrenaneerreannnneeeseeessareesseessanessssossansasssanes 444
DB_ENV->set_mp_MEXCOUNT() uuureerrreriietereiiiiateeteeanraneeeeresaneeessessnnnessseannns 446
DB_ENV->Set_MP_PABESIZE() «vvterrerunrrerreerinreersearanneesseessansesssessanneesseassnnnes 447
DB_ENV->set_mMpP_tableSiZE() «veeeerrerriutierieeeeneeeeiueeesieeeeseeeesneeesnaeessnesesnneens 448
DB_MPOOLFILE->CLOSE() +eeeuuteeenueeenueeeanueeeaneeeesneeeesneeesaesesnseeesnssesnassasnnaenns 449
DB_MPOOLFILE->GEE() vveeenuteranueeenueerenueeeaneeeesneeeesneeesssseesnseessnsessnsssesnaeenns 450
DB_MPOOLFILE->0PEN() +tteuutttenueeeanueeeaneeeesueeesnaseesneeeesnseesssseesnsssssnseesnassans 453
DB_MPOOLFILE->PUL() +eeuuetrenueereueeenneereneeereneeeesneesenasessnseeesassssnnsessnessenaess 455
DB_MPOOLFILE->SYNC() +vteeenuteeanueeasueeeenneeesnaeeeseeessnneessassesnassssnesessnesesnnees 457
DB_MPOOLFILE->get_clear_Len() «ieeeeeiereeireietieieereneeeniieereiaeereneeessneeeonnsennnees 458
DB_MPOOLFILE->Zet_fileid() +evevreereretrerieererueeerneeeeneerereeeesneeeesneerenaseesneaeanns 459
DB_MPOOLFILE->ZET_flags() «eueeeereeeerueeeeeeeenueeeenueeesneeeeseeessneeesnasssonesesnnees 460
DB_MPOOLFILE->ZEEt_ftYPE() «vveeereteenueerenueeeeeeeenneeeesneeesneeeesneeeesnseesnassennseens 461
DB_MPOOLFILE->ZEt_LSN_OffSET() vuveeerrreerieeeerieerenueeesieeeesreeeenneeessaeeesnnesanneens 462
DB_MPOOLFILE->Zt_MAaXSIZE() +evrerernureererannnneeersesssaneesssessaneesssessansesseessnnns 463
DB_MPOOLFILE->Zet_PGCOOKIE() teuuterrnetrenneerereeeeareeeeneeeeeneeessneeeesasessnaeeennees 464
DB_MPOOLFILE->ZEt_PriOrity() eeeeeeereeesuneeereersaneeereeesanneessessanneesseessansesseennes 465
DB_MPOOLFILE->Set_Clear_leN() .veeeiieeiiietetiiiiiieeieiiiieeeeteeeiineeeeeeensnseeeeenns 466
DB_MPOOLFILE->Set_fileid() veverueerereteeneerereeeerneeeenneerenaeeeseeresneerenaseesneesanns 467
DB_MPOOLFILE->SET_flagS() «veeeerueeeenueeeeneeeenueeeenueeesnaeessneeesnneeesnasessnesesnneens 469
DB_MPOOLFILE->SEE_fLYPE() vveeeneeeenueerenueeeeneeeenneeeenueeesneesesneeeennseesnnssasneeens 471
DB_MPOOLFILE->Set_ISN_OffSEL() teeerireretiiiiiiiiiiiiiieiiiieeeeeeeiieeeeeeannnnees 472
DB_MPOOLFILE->SEt_MAXSIZE() uuuuruuruunuuneneeeeeeeeeeeeeeeseeeseeeeeeeeeseeeeeeeeeeeeeeeeens 473
DB_MPOOLFILE->Set_PGCOOKIE() teeuuetrrnetrenneerereeeenneeeenneereneeeesneeeesneessnaeeanness 474
DB_MPOOLFILE->SEt_Priority() eeeeeeeeeeraueeerreesnanneeseensaneeessessannsessesssansesseenas 475
9. MULEX MEENOAS .eiiitiiiit it ii e e e et eeieeeeeneeeanneeeanaesesneeeennneesnnnennn 477
MUEEX METNOMAS ..ueiiniiiii i e e e e ettt eeieeeesneerenneeeanaesenneesannsennnes 478
DB_ENV->MUEEX_AllOC() tenrrettiiiiiitttiiiiiiieeeteeaiiteeteeeaieeeeeeensnsseeesennnsseenns 479

9/9/2013 DB C API Page viii

DB_ENV->MUEEX _fIrEE() turertetieiiittettieiiiteteteaiieeeeeteraineseeeeessnseeeeeessnsseseeanns 481

DB_ENV->mutex_get_aligN() «cueeeereeirrreeieneeerereeeeneeeeneeeeoneeessneeessasessnesesnneens 482
DB_ENV->mutex_get_iNCrement() «..eeeeeereeeeirreriaeterreraneeeerseesnaneesssessannesssanss 483
DB_ENV->muteX_get_TNTT() teverrunrriirierinetirieiiirteereearaneeesreasanneesseessannesssenns 484
DB_ENV->MULEX_GET_MAX() vvveerrrennnureereearaneeessessnneeessesssansssssessansesssessnnnaes 485
DB_ENV->muteX_get_Tas_SPINS() «eeeeeeerreerinreereenrneeerreesanneesseessannesssessannaesses 486
DB_ENV->MULEX_LOCK() trretttiiiiittttiiiiiiitttteiiiiteeeeeanineeeeeeeainseeeeeeesnnseseeenns 487
DB_ENV->mMUEEX_SEt_aliGN() veueererrtrrretrenneerereeeeneeeeneeereneeeesneeeoseeessnneeenneens 488
DB_ENV->mutex_set_iNCrement() .ovveeeiiiiiiiiiiiiiieiieeieieiiieeieieeieeeeensiaeiansnnnnnns 489
DB_ENV->MUEEX_SET_TNTE() teeeriiiiiiiiiiiiiiiiiiiiiiiiiieneeeeereeeeeseeseeeeseseeeeeeeeeeees 491
DB_ENV->MULEX_SET_MAX() +ururrrrrnnreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseesesessssesesssnnnnnns 492
DB_ENV->muteX_Set_tas_SPINS() «eeueeeerreernurreereerrneeesressanneesseesnansesssessannaesses 494
D o N A 1 (U = G - Y o (PP 495
DB_ENV->muteX_stat_Print() «eooeeeeerrerriiieriiiiiiteriearaneeereeranneesseessansesseennes 497
DB_ENV->MUEEX_UNLOCK() +evveintetttiiiiiitteteteiiiteeeetetaiieeeeeeeassseeeeeesesnsseseeennns 498
10. Replication Methodsciiuiiiniiiiiiiii i et e et e ennaeanaens 499
Replication and Related Methodsceveueiiiiiiiiiiiiiiiii e e i eeenaeenas 500
The DB_SITE Handleciinuiiiiiiiiitiiiiieiieiteteieeeeeeeranneeeeneesesneerennseennes 502
DB_CHANNEL->CLOSE() teuvveeenuteeanueeenueeeenueeeeeeeesneeessneeesnassesnsssssnseessassesnnees 503
DB_CHANNEL->SENA_MSZ() +eeuuteenueeenneeeenueeeenaeeesnaeeesneeessaseesasessnseessnnsesnnses 504
DB_CHANNEL->SENd_reqUESE() +eeueeeenneeeenueeereeeenneeesnueeesneesesneeessnesesnasssanaees 506
DB_CHANNEL->SEt_tiMEOUL() +uuuuuerrrereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseesessssssessssnannnnns 508
DB _SITE->ClOSE() tevernnunreteeeaiiueeetteeaieeeeeeeanneeeesesansseseeeesnsesseesssnnsesseennns 509
DB_SITE->ZEt_CONTIG() veeeerrtrerueererueeenueeeenueereneeeesneerenaeessnneeesneeeesnseesnsesannes 510
DB_SITE->ZEt_addreSS() «eeveeeeeneeeerneerenueeraneeeenneeeenaeeesneeeesneessnnesssnessennsseanes 511
DB_SITE->ZEE_€10() “eeeerrteernuerenneerenuteeaneeeesueeeenneeesneeeesnseeessseesnsssesnseesnnneens 512
DB_SITE->TEMOVE() wevvrerreereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseessesssssssesssssssssnnnnnnnnnns 513
DB_SITE->SEt_CONTIG() veeeeueerenneerenueeenueeeerueeeeneeeesneesesaeeesneseesneesesnseesnnssannes 514
DB_ENV->1eP_€lECT() terrtrentirietieeteteieteeaieeeeaneeeenaeeeseesesnseesnnseesnsssennneens 516
DB_ENV->rep_get_ClOCKSKEW() «ueieuiiieiiieiiieiiiiiieiiteiiteinteenteenteenteenteenesenneans 519
DB_ENV->rep_get_CONTIG() «eevrrererutierieereneeeerueeeeieeeeseeessneeessaeessneeessneeesnnees 520
DB_ENV->rep_get_lMit() toueieeiireiiiiiiiiiiiiiiiieineiitiiteeatreatretineerneeaneennees 521
DB_ENV->rep_get_NSTTES() teveeennnnterreriintetrerannnneeeeeasanneessesssnnsessesosnnassssanes 522
DB_ENV->rep_get_Priority() «ooeeeeeiiieiiiiiiiiiiiiiiiiiieiiitiiiittiiiteiiieteinsesenas 523
DB_ENV->rep_get_reqUEST() ceuuureerreerrnneerreeanrneeeeeesanneeesesessaneeessessnnssssseannns 524
DB_ENV->rep_get_timeout() ..covveiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii it eeiaeeans 525
DB_ENV->rep_proCess_MESSAGE() «eveuurerenuteiruteriruteriuteiiuererntesesusesssesesasesnns 526
DB_ENV->rep_set_ClOCKSKEW() .uveierutiriietirieiiiiteriieteeieerenneeesneeeesneeeennseennes 529
DB_ENV->rep_Set_CONTIG() teevrrerernteeruerenneeeenueeesieeessneeessneeessaeessnaeessnesesnnees 531
DB_ENV->rep_sSet_liMit() weeeerueeeeruteerieeeeneeeeneeeesieeeeseeeenaeeessaeessneeessnecesnnees 534
DB_ENV->rep_SeT_NSTLES() tevreerunrterrerrinntetreennanreeeeeasnneessesssnnsessesssnnesssennns 536
DB_ENV->rep_Set_Priorify() ceeeeeeeeeeereeerateereerraneterreessnneeeseessnnnesssessanneessenns 538
DB_ENV->rep_Set_reqUESE() ceueereerreenaneetreennnnneeeeeesanneeeseeesanessssessnnsassseannas 540
DB_ENV->rep_set_tiMeOUL() «.uviieriiteiiiiiiietiieiiieetieeranntesreeannnessseasannaesses 542
DB_ENV->rep_set_transPOrt() c..ueeeeeeeeeraeeeeerenrneeeeeeassaneeesseesnnneesseessannesssenss 545
DB_ENV->T@P_STArt() «eeeeeeeerneeeereenineeeereeenaneeessessanneessesssansesssessannsessessnnnnes 548
DB_ENV->1eP_StAt() +eeeeeeruntetreennnnteeeeeennnneeeeeesnneessesesnnnessssossnnsesssasannnessss 550
DB_ENV->rep_stat_Print() teeeeeeeeeiieiiitetieiiniieteteanineeeeeeeesnneesssessnnseesseannas 557
DB_ENV->TE@P_SYNC() euvteererennuneeeseennaeeesseessaneeessessnnneesssessansssssesssnnsassesnas 558

9/9/2013

DB C API Page ix

DB_ENV->repmgr_Chann@l()oeeveeeieeineeiiieitieitientiiiieneineeineerieesneoeneecnnens 559

DB_ENV->repmgr_lOCal_STEE() +.ueveeeieerieerieeiiieiiteiiteiiteiitreiteentienteeeeeneraaennas 561
DB_ENV->repmgr_get_ack_POLICY() «euveerrerniriniriiiitiiiiiiiieiieiieenieenneeeneeennes 562
DB_ENV->repmgr_msg_diSPatCh() «.eoeeveerieiiieiinieiiiiiiiiiiiiiiiiiitiiiiiieineenneenneens 563
DB_ENV->repmgr_set_ack_POLICY() «euveeureeniritiniiiiiiiiiiiiiiiienneenieeineeeneeenees 565
DB_ENV->1rePmMGI_Sit() «eveeereerruteereeennaneeeeressaneeessessnneeessesssaneesssassansasssanns 567
DB_ENV->repmgr_site_by_@id() «eoeeveetiieiiieiiieiiiiiiieiitiiitiiiteinteintienteeeeaaennaes 569
DB_ENV->repmgr_site_LiST() «vuvevueernteiteiiirtietieitietiiniiieeineeineerieenneeeneeenees 570
DB_ENV->repmM@r_Start() «ueeeeeeeeerneeerreenianeeeeeessaneeessessanneessessansesseessannassses 572
DB_ENV->repmM@r_Stat() «eeeeeeeernneerreerrnnterreeasanneesseasnneessessnnsessesosnnassesanes 575
DB_ENV->repmgr_stat_print() «oooeeeerieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieeiieenens 577
DB_ENV->tXN_aPPlEA() tuutrentrentiitiiiiiiiitiitiietiieeiieetneeeneetieesneosnseensecnneens 578
DB_TXN->set_COMMIt_TOKEN() tuuueretieeiiintetieiaiieeeeteaiieeeeeeeniseeeeeeessnseeeeennns 580
11. The DB_SEQUENCE Handleuviiiiuiiiiiitieiitteiiteeaieeeeeeeeenneeesnaeeesnaeesnneeesnnees 581
Sequences and Related Methodscccveiiiiieiiiiiiiiiiiiiiiiiiiiiiieiiieeieereneeeanees 582
AD_SEQUENCE_CrEALE ..vviiieiiiiitt ittt iiiteeeittreiteeereeeeaneerenaeeeeneeeesneesannssennes 583
DB_SEQUENCE->CLOSE() teuveerenueeenneerenueereneeeesneeeesasessneeessnessonnssssnesesnnsssonnens 585
DB_SEQUENCE->ZEE() +eveuueerenueeenneerenueereneeeesneeeesaeessnseessneessnassssnseessasssonaees 586
DB_SEQUENCE->get_CaCh@SIZE() vveeerrerenneerenueeeeeeeenneeeenueeesneeeesneeesnneeesnaesnns 588
DB_SEQUENCE->ZEt_dDP() +eerterenteeniueeenneeeanueeeeieeeeseeeesneeessaeeesnasessneeesnnees 589
DB_SEQUENCE->ZEt_flagS() «eeeeereerenereerueerenueerereeeesneerenneeeoaeeesnessesnseesnsasanns 590
DB_SEQUENCE->ZEt_KEY() +uvverereeeenueerenueeraneeeesneerenaeessneeeesnsesesnsessnsssesnsseanns 591
DB_SEQUENCE->ZEt_TaNGE() +uvveeerueeernueeenneeeenueeessueeesnaeeesneeessassesnassssnesesnnees 592
DB_SEQUENCE->INTtial _ValU() teverrereiiiiiiieiiiiiiteieeiiieeeeteeaiiseeeeeennnnseeeean 593
DB_SEQUENCE->0PEN() teuuetreuteraneteenneerenaeeeaneeeesneesonasessnssessnssssnnsessnssssnnees 594
DB_SEQUENCE->IE€MOVE() wevvrrrrrrreeerereeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeseessesssesssssssennns 596
DB_SEQUENCE->S€t_CAChESTZE() tevrrrretiiiiiittiiiiiiieeiiieeeteeeiieeeeeeeananneaeenn 598
DB_SEQUENCE->SEt_flagS() «eeeeveeererueeenueerenueereneeeenneerenueeesnseeesneesennseesnnasanns 599
DB_SEQUENCE->SEt_FANGE() eveeeerreernuneeerreeraneeesseessaneesssessanseessessansesseesnnnns 600
DB_SEQUENCE->SEAT() +eveueererneerenueeenneerenueereneeeesneeesnaeesonesesnnesssnnssssnneesnnees 601
DB_SEQUENCE->Stat_PriNt() veeeueeeerueerereeeesneeeenneeeeneeeesneeeesaeersnaesesnessennsesanes 603
12. The DB_TXN Handle ..eciiiiiiiiiiiiiiiiiiiiii it eeieerenaeeeaeeeenneeeonneessneeeennees 604
Transaction Subsystem and Related Methodsccovviiiiiiiiiiiiiiiiiiiiiiiiiiiiieneas 605
DB->get_transactional() teeueeeereeeereeierueereneeeenneereneeereneeeesneerenneeesnnesesneesannes 606
DB_ENV->CASGroUpP_beZIN() «eeeeutereieteeneerenuterereteesneerenueerseeeesneesesnseesnsasanns 607
DB_ENV->8E_tX_MAX() +eeereennurterreennneeerrensnneeeseessansesssessanneessesssnnsassesssanns 608
DB_ENV->get_tX_timestamp() «oeeeeeeeriiiiiitiiiiiieetieeiannteereeannneesseasannaesses 609
DB_ENV->SET_EX_MAX() trriiiiiiiiiiieneneeeeeeeeesesseesesseseseseseeseeeeeeseeseeseanns 610
DB_ENV->set_tX_timestampP() «oeeeeeteriiiiiitetiieiiinterreeraneesreeesnnesseeasanneesses 612
DB _ENV-> XN FECOVEI() tettttitttieteeeteeeeeeeeeeeeeeeeeeeeeeeeeeeesssssssnssnsssssssssssnssnes 613
DB_ENV->tXN_DOGIN() teerttiiintiriittieiitteeiteeeieeeareeeenneeesraeeesnaeessneeesnneseonnens 615
DB_ENV->tXN_CheCKPOINT() tuvvereretiernteieiteerieteeeeeeeineeeaneeeesneeeesnneesnseeennneens 619
B3 3 S N A o) -1 (I PP 621
DB_ENV->tXN_Stat_Print() «eeeeeereieeetiiiiiietiiieiieereeeinnneesreersnneessesosnnnesssennes 625
DB_TXN->8DO0IE() vteernetteinteriieteenteraneteeaeeeeaneeresaeeesneesesneeeennseesnessenneesanas 626
DB _TXN->COMMIT() ttuiiiiiiiieeaeeeeeeeeeeeseeeeeeseeeeeeeeeeeeeeeeseesssesssssesaannnns 627
DB_TXN->iSCAIA() tevrnrreeteeenineeeeeeeeiieeeeeeeensneeeeeeeesssseseeeensnsssessesssnsssseeanns 629
DB_TXN->ZE_NAME() uuvrerrreerinnterreennnnneeeeeasanneeesesesaneesssessnnsessssessansasssanss 631
D1ST I\ B 1] il o] (o] 1 0 Y/ () PP 632

9/9/2013

DB C API Page x

DB_TXN->PrePare() teoeeereeteiietiiiuieiinetiiiieriruierineeeisasesesacessssesesasesesscesesss 034
DB _TXN->SET_NAME() teetetteeeeieeetteiiieieeeiieiieiisisssssssssssssssssssssssssssssssasssaeeess 036
DB_TXN->Set_Priority() teeeeeeeeerrreeraneeerrenrneeeereessaneeessessanseessecssansasssassannesss 037
DB_TXN->Set_timeEOUL() «evverrnreiirrenrirterrierraeeeesrenrneeesseessaneesseessansesssessansss 038
A. Berkeley DB Command Line ULIlitieSevveiiiiiiiiiiiiiiiiiiniiiiiiiiiiiieiinenieeeneeene... 640
L LS PP o Y-
Lo o T Yl 1177 PP < /A
db_checkpointvieiiiiiiii s e et reaeeeaeeee.. 044
a0 T [T Ve | o ol <GPPI o - 1o}
oo 3 L] Y- Tel (¥ o H PP PP PPPRRN . 1o VA
a0 T (o =V PP PRI < Jo 1o
oo T oo) YOO o 1 0
a0 o 13 o U o PPN ¢ 1 |
oo T =Tl 1Y RN <1 Yo
a0 T =0 ot = PP < 1o
a0 T e | W oo Ta [=TT o PP < 74 O
a0 T - | PN Y £ -
a0 T 1 1 PPN oY VA
a0 T o7 <] - Ua [PP o1 X |
a1 1 Y P PP PPN o 1161
£ L PR - 7 4
S o] o T Tl 0 =T o i VPP o 1
HiStOriC INTEIfaCes vuviiiiiiit ittt ettt eeeeieeeeeeeainsseseeennaneeees.. 089
T 1 o T PP o 1 |
C. Berkeley DB Application Space Static FUNCtionscccceviiiiiiiiiiiiiiiiiiiiniiennnnn... 696
1) =10 (ol 21U] [ot 4 (o] o 1 P U PP T TSP -1 4
db_enV_set_fUNC_ClOSE .uuuiiiiiiiiiiiii ittt it ittt eeiiieeeeeeesinseeeeeannnnass.. 098
db_env_set_funC_dirfree ...oiiiiiiiiiii i ittt ittt eeeenieeeeee.. 099
db_env_set_func_dirlistiieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiiiirieeeiireeeeeenanneeeeee.. 700
db_env_set_fUNC_eXiStS .uvveiiiiiiiietiiiiiiieiiiiiieeeeeeeiineeeeeeessnsseseenennnseeeeess 701
db_env_set_func_file_mMap ...cieeiiiiieiiiiiiiiiiiiiiiiiiiiiieieeenieeeeneeeenaneanneeeees 102
db_env_set_fUNC_free ..viiiiiiiiii ittt ittt ieeeiiie e eeeennneeeeeeennss 104
db_env_set_funC_fSYNC ...uiiiiriiiiiiiiiiiiiiii it ieiieeiteeeneeeenneeeeneseesneesanneess 70D
db_env_set_funC_ftruncateiiviiiiiiiiiiiiiiiiiiiiiiiii it it eeiiieeeeeeenneeee.. 106
db_env_set_funC_ioiNfO ..iciieeiiiiiiiiiiii ittt it ieieiireeeeeniineeeeeennnness. 107
db_env_set_func_mMalloCcciiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiieieeeeiieeeerenainsseeeeaen. 708
db_env_set_fUnNC_OPEN ...iiiiiiiiiiiiiiiiiieiiteeieteeaneereneeeeseeeesnsesennssesneasaes 709
db_env_set_func_preadccceiiiiiiiiiiiiiiiiiiiiiiieiieeieeeeieeeeneeesneesesneeeanneess 710
db_env_set_fUunNC_PWIIte .ivvviiiiiiiiiiiiiii it ieiiieeieeeeieeeeneeeesneeesnneeesnneeaes 711
db_env_set_fUuNC_readioviiiiiiiiiiiiii ittt iieeiiiieieeeiireeeeeenninseeeeenanness 112
db_env_set_funC_realloCivviiiiiiiiiiiiiiii ittt iiiiiiieeeeeiiieeeeeeneinneeseeees 113
db_env_set_func_region_Map ..ccveeeeereeeeiiieerieeeeeneeeenneeesneeeesneeeesneeesnneeanneeees 714
db_env_set_fUNC_IrENAMEciiiiiiiiiiiiiiiiiieiiiiieeeeeeiiiseeeeeeesinsesseeennnnneess 116
db_env_set_fUNC_SEEK ..iviiiiiiiiiiiiiiii ittt ieeiiiieeeeeeninneeeeeennnneess 117
db_env_set_func_Unlinkcoiiiiiiiiiiiiiiiiiii ittt ieiiiiieeieeeiiieeeeeeeenneeee.. 718

9/9/2013 DB C API Page xi

db_env_set_fUuNC_WIIte ..iiiiiiiiiiiiiiiiii i i ieieeeenneeesneeeenneeecnnseenneeeaes 119
db_env_set_func_yieldcoeiiiiiiiiiiiiiiiiiiiiii i e eeieeesineeeeneeeanneeeens 120
D. DB_CONFIG Parameter REferenCeceeviieieiiiiiiniieiienieeeenneeesneeeeseeecnnseenneeees 721
DB_CONFIG Parametersciieeeiieretreeananneerreensnneesseessanneessesssnnsessesssnsasseees 122
o [a e F= 1 - W« | | O PP PO 472
MUEEX_SET_aliGN tereiiiitiiii i e eiireieeeeneeeenneerenaeeesneeesnnessanaeenes 12D
MUEEX_SET_INCIreMENT ..oiiiiiiiitiiiiiiiiiierieiiiatetreeeranreesseasnnnsessecssnnsessseaneans 120
MUEEX_SET_IMAX etetitirieiineterreernneeeeeenraneeessessnnneesseessannesssessannsessasssannassee 127
MUEEX_SET_taS_SPINS tunnrriitiiiiiit it teeeiieeeereeannreesseasnneessecssnnsesseeees 128
FEP_SET_CLOCKSKEW .uviiiitiiiitiiiiiiii et eiieereneeeeneeeanneesesasessnesesnneseanaees 129
FEP_SEL_CONTIG wiiiiiiiiiiiii it ii et eeteeeneeeesneerennsesaneesenneesannssesneeeaes 130
o I =L Al 11111 | S P PP PP PP 42 X
=] o T W 0] = PR 4 /2
(<] o =] il o] (o] 1 1Y PR 4 X]
=] o T W (=Ta (U< PP 4.2 |
(=] o T W 0 0 =0T | PR 4¢ 1
repmgr_set_aCk_POLICY ..uiiiiuiiiiiiiiiiiiiii it ieiieeieeeeneerenaeeaeeeesnneeecnneenes 136
=] 0] 4= S 1 = PP 4 7 4
Y]l of- Lol 111 7= PP OPP PP 4 1.
SEE_CACNE_MAX tiiiiitiiiitiieiittieiteeeieteeeeeeenneeeenneeesneesasnseesnnesessssasnseesnaeees 739
Y i o (=T L =« || PP PPN £-(0)
Yl =Y - T U= o O PP PP L. §
Y =Y<L PP PP PPPRRY -7
set_intermediate_dir_modec.cciiiiiiiiiiiiiiiiiiiiiiiiriiiieiiieeieeieeeaeneeennneea. 144
Y Vo 1 4 - PO PP PRPPPNY £- 5]
LY A Ve | O PP PP PPORY L%
Y VI 1 (=100 Lo o [PP PP £-Y
Y V1 =) P OO PP PP L%t
SEt_lQ reZIONMAX .uvirieiiiittiiitieeieteeneeeennteeaneeeesneeeesnseesnsesesnseessnseesneeeaes 149
Y e (=] =T ot A PP PP PPPPPRORNY 410
Set_LK_MaX_LOCKEIS ..ueiiiiiiiiiiiii i et eeieeeeneeeenaeeeaneeesnnesssnaeennnees [D1
SEt_ LK _MaX_LOCKS wennneiiiintieiitieii et eeiteeeteeenneeeaneeeaaneeeesnseesnnssannesesnnees 1D2
Set_LK_MaX_0bDJeCES tivnreiiiiiiii it ieer et e eene e e raeeeeneeeaaneeeans D3
SEt_LK_Partitions tieueieiietieiietiiiiieiieeiiteeeiieeeeineeeeieeeesneeessaecesnessasneseanness 104
(o= BY=) il olo) 1) i - S PP OPPPPY fo1s
Set_MP_MaX_OPENTA .uiieneiiiitiiiiieiitieiiteeereteeeneeeesneeesneeeesnsesssnsessnsssasneaes 700
= o I 1 4 = D Y L P PP 4o¥ 4
= 0] 0 0 F= 0 1) = PP 451
SEE_OPEN_flags wuieeneiiiiitiiiiiiiii ittt eeit et eeeraeeaeeeeenneeesnaeeanneeees 1D9
L 11 0 T) VA O PP PPN 410
set_thread_Countcooieiiiiiiiiii it ei et eieereneeeenaeenanasennneesss 101
L3 o 1= 0T U PP 4 Y2
Y 100 ¢ | | PP PPPPPPRY 4 X |
L1 W G 1 = DGR 4 o Y
Y] 1 o 1o - P PP PP PP PPPPPPPPY 41

9/9/2013 DB C API Page xii

Preface

Welcome to Berkeley DB 11g Release 2 (DB). This document describes the C API for DB library
version 11.2.5.3. It is intended to describe the DB API, including all classes, methods, and
functions. As such, this document is intended for C developers who are actively writing or
maintaining applications that make use of DB databases.

9/9/2013 DB C API Page xiii

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Structure names are represented in monospaced font, as are method names. For example:
"DB->open() is a method on a DB handle.”

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL
directory.”

Program examples are displayed in a monospaced font on a shaded background. For example:

/* File: gettingstarted_common.h */

typedef struct stock dbs {
DB *inventory_dbp; /* Database containing inventory information */
DB *vendor_dbp; /* Database containing vendor information */

char *db_home_dir; /* Directory containing the database files */
char *inventory_db_name; /* Name of the inventory database */

char *vendor_db_name; /* Name of the vendor database */
} STOCK_DBS;

Note

Finally, notes of interest are represented using a note block such as this.

9/9/2013

DB C API Page xiv

For More Information

Beyond this manual, you may also find the following sources of information useful when
building a DB application:

o Getting Started with Berkeley DB for C

» Getting Started with Transaction Processing for C

» Berkeley DB Getting Started with Replicated Applications for C
» Berkeley DB C++ API Reference Guide

» Berkeley DB STL API Reference Guide

» Berkeley DB TCL API Reference Guide

» Berkeley DB Installation and Build Guide

» Berkeley DB Programmer's Reference Guide

» Berkeley DB Getting Started with the SQL APIs

To download the latest Berkeley DB documentation along with white papers and other
collateral, visit http://www.oracle.com/technetwork/indexes/documentation/index.html.

For the latest version of the Oracle Berkeley DB downloads, visit http://www.oracle.com/
technetwork/database/berkeleydb/downloads/index.html.

Contact Us

You can post your comments and questions at the Oracle Technology (OTN) forum for Oracle
Berkeley DB at: http://forums.oracle.com/forums/forum.jspa?forumID=271, or for Oracle
Berkeley DB High Availability at: http://forums.oracle.com/forums/forum.jspa?forumiD=272.

For sales or support information, email to: berkeleydb-info_us@oracle.com You can subscribe
to a low-volume email announcement list for the Berkeley DB product family by sending email
to: bdb-join@oss.oracle.com

9/9/2013 DB C API Page xv

http://download.oracle.com/docs/cd/E17076_02/html/gsg/C/BerkeleyDB-Core-C-GSG.pdf
http://download.oracle.com/docs/cd/E17076_02/html/gsg_txn/C/BerkeleyDB-Core-C-Txn.pdf
http://download.oracle.com/docs/cd/E17076_02/html/gsg_db_rep/C/Replication_C_GSG.pdf
http://download.oracle.com/docs/cd/E17076_02/html/api_reference/CXX/BDB-CXX_APIReference.pdf
http://download.oracle.com/docs/cd/E17076_02/html/api_reference/STL/BDB-STL_APIReference.pdf
http://download.oracle.com/docs/cd/E17076_02/html/api_reference/TCL/BDB-TCL_APIReference.pdf
http://download.oracle.com/docs/cd/E17076_02/html/installation/BDB_Installation.pdf
http://download.oracle.com/docs/cd/E17076_02/html/programmer_reference/BDB_Prog_Reference.pdf
http://download.oracle.com/docs/cd/E17076_02/html/bdb-sql/BDB-SQL-Guide.pdf
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://forums.oracle.com/forums/forum.jspa?forumID=271
http://forums.oracle.com/forums/forum.jspa?forumID=272
mailto:berkeleydb-info_us@oracle.com
mailto:bdb-join@oss.oracle.com

Chapter 1. Introduction to Berkeley DB APIs

Welcome to the Berkeley DB API Reference Manual for C.

DB is a general-purpose embedded database engine that is capable of providing a wealth of
data management services. It is designed from the ground up for high-throughput applications
requiring in-process, bullet-proof management of mission-critical data. DB can gracefully scale
from managing a few bytes to terabytes of data. For the most part, DB is limited only by your
system’s available physical resources.

This manual describes the various APls and command line utilities available for use in the DB
library.

For a general description of using DB beyond the reference material available in this manual,
see the Getting Started Guides which are identified in this manual's preface.

This manual is broken into chapters, each one of which describes a series of APIs designed
to work with one particular aspect of the DB library. In many cases, each such chapter is
organized around a "handle", or class, which provides an interface to DB structures such as
databases, environments or locks. However, in some cases, methods for multiple handles
are combined together when they are used to control or interface with some isolated DB
functionality. See, for example, the The DB_LSN Handle (page 373) chapter.

Within each chapter, methods, functions and command line utilities are organized
alphabetically.

9/9/2013

DB C API Page 1

Chapter 2. The DB Handle

The DB is the handle for a single Berkeley DB database. A Berkeley DB database provides

a mechanism for organizing key-data pairs of information. From the perspective of some
database systems, a Berkeley DB database could be thought of as a single table within a larger
database.

You create a DB handle using the db_create (page 21) function. For most database
activities, you must then open the handle using the DB->open() (page 70) method. When
you are done with them, handles must be closed using the DB->close() (page 13) method.

Alternatively, you can create a DB and then rename, remove or verify the database without
performing an open. See DB->rename() (page 81), DB->remove() (page 79) or DB-
>verify() (page 156) for information on these activities.

It is possible to create databases such that they are organized within a database environment.
Environments are optional for simple Berkeley DB applications that do not use transactions,
recovery, replication or any other advanced features. For simple Berkeley DB applications,
environments still offer some advantages. For example, they provide some organizational
benefits on-disk (all databases are located on disk relative to the environment). Also, if you
are using multiple databases, then environments allow your databases to share a common in-
memory cache, which makes for more efficient usage of your hardware's resources.

See DB_ENYV for information on using database environments.

You specify the underlying organization of the data in the database (e.g. BTree, Hash, Queue,
and Recno) when you open the database. When you create a database, you are free to specify
any of the available database types. On subsequent opens, you must either specify the

access method used when you first opened the database, or you can specify DB_UNKNOWN in
order to have this information retrieved for you. See the DB->open() (page 70) method for
information on specifying database types.

9/9/2013

DB C API Page 2

Library Version 11.2.5.3

The DB Handle

Database and Related Methods

Database Operations

Description

DB->associate()

Associate a secondary index

DB->associate_foreign()

Associate a foreign index

DB->close()

Close a database

DB->compact()

Compact a database

db_create Create a database handle

DB->del() Delete items from a database

DB->err() Error message

DB->exists() Return if an item appears in a database
DB->fd() Return a file descriptor from a database
DB->get() Get items from a database

DB->get_byteswapped()

Return if the underlying database is in host
order

DB->get_dbname()

Return the file and database name

DB->get_multiple()

Return if the database handle references
multiple databases

DB->get_open_flags()

Returns the flags specified to DB->open

DB->get_type()

Return the database type

DB->join()

Perform a database join on cursors

DB->key_range()

Return estimate of key location

DB->open()

Open a database

DB->put()

Store items into a database

DB->remove()

Remove a database

DB->rename()

Rename a database

DB->set_priority(), DB->get_priority()

Set/get cache page priority

DB->stat()

Database statistics

DB->stat_print()

Display database statistics

DB->sync()

Flush a database to stable storage

DB->truncate()

Empty a database

DB->upgrade()

Upgrade a database

DB->verify()

Verify/salvage a database

DB->cursor()

Create a cursor handle

Database Configuration

DB->set_alloc()

Set local space allocation functions

DB C API

Page 3

Library Version 11.2.5.3

The DB Handle

Database Operations

Description

DB->set_cachesize(), DB->get_cachesize()

Set/get the database cache size

DB->set_create_dir(), DB->get_create_dir()

Set/get the directory in which a database is
placed

DB->set_dup_compare()

Set a duplicate comparison function

DB->set_encrypt(), DB->get_encrypt_flags()

Set/get the database cryptographic key

DB->set_errcall()

Set error message callback

DB->set_errfile(), DB->get_errfile()

Set/get error message FILE

DB->set_errpfx(), DB->get_errpfx()

Set/get error message prefix

DB->set_feedback()

Set feedback callback

DB->set_flags(), DB->get_flags()

Set/get general database configuration

DB->set_lk_exclusive(), DB-
>get_lk_exclusive()

Set/get exclusive database locking

DB->set_lorder(), DB->get_lorder()

Set/get the database byte order

DB->set_msgcall()

Set informational message callback

DB->set_msgfile(), DB->get_msgfile()

Set/get informational message FILE

DB->set_pagesize(), DB->get_pagesize()

Set/get the underlying database page size

DB->set_partition()

Set database partitioning

DB->set_partition_dirs(), DB-
>get_partition_dirs()

Set/get the directories used for database
partitions

Btree/Recno Configuration

DB->set_append_recno()

Set record append callback

DB->set_bt_compare()

Set a Btree comparison function

DB->set_bt_compress()

Set Btree compression functions

DB->set_bt_minkey(), DB->get_bt_minkey()

Set/get the minimum number of keys per
Btree page

DB->set_bt_prefix()

Set a Btree prefix comparison function

DB->set_re_delim(), DB->get_re_delim()

Set/get the variable-length record delimiter

DB->set_re_len(), DB->get_re_len()

Set/get the fixed-length record length

DB->set_re_pad(), DB->get_re_pad()

Set/get the fixed-length record pad byte

DB->set_re_source(), DB->get_re_source()

Set/get the backing Recno text file

Hash Configuration

DB->set_h_compare()

Set a Hash comparison function

DB->set_h_ffactor(), DB->get_h_ffactor()

Set/get the Hash table density

DB->set_h_hash()

Set a hashing function

DB->set_h_nelem(), DB->get_h_nelem()

Set/get the Hash table size

DB C API

Page 4

Library Version 11.2.5.3

The DB Handle

Database Operations

Description

Queue Configuration

DB->set_q_extentsize(), DB-
>get_q_extentsize()

Set/get Queue database extent size

Heap

DB->set_heapsize(), DB->get_heapsize()

Set/get the database heap size

DB->set_heap_regionsize(), DB-
>get_heap_regionsize()

Set/get the database region size

DB_HEAP_RID

Database Utilities

db_copy

Copy a named database to a target directory

9/9/2013

DB C API

Page 5

Library Version 11.2.5.3 The DB Handle

DB->associate()
#include <db.h>

int
DB->associate(DB *primary, DB_TXN *txnid, DB *secondary,
int (*callback) (DB *secondary,
const DBT *key, const DBT *data, DBT *result), u_int32_t flags);

The DB->associate() function is used to declare one database a secondary index for a
primary database. The DB handle that you call the associate() method from is the primary
database.

After a secondary database has been "associated” with a primary database, all updates to the
primary will be automatically reflected in the secondary and all reads from the secondary

will return corresponding data from the primary. Note that as primary keys must be unique

for secondary indices to work, the primary database must be configured without support for
duplicate data items. See Secondary Indices in the Berkeley DB Programmer's Reference Guide
for more information.

The DB->associate() method returns a non-zero error value on failure and 0 on success.

Parameters
primary

The primary parameter should be a database handle for the primary database that is to be
indexed.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DB_ENV->txn_begin() (page 615); if the operation is part
of a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned
from DB_ENV->cdsgroup_begin() (page 607); otherwise NULL. If no transaction handle

is specified, but the operation occurs in a transactional database, the operation will be
implicitly transaction protected.

secondary

The secondary parameter should be an open database handle of either a newly created and
empty database that is to be used to store a secondary index, or of a database that was
previously associated with the same primary and contains a secondary index. Note that it is
not safe to associate as a secondary database a handle that is in use by another thread of
control or has open cursors. If the handle was opened with the DB_THREAD flag it is safe to
use it in multiple threads of control after the DB->associate() method has returned. Note
also that either secondary keys must be unique or the secondary database must be configured
with support for duplicate data items.

callback

The callback parameter is a callback function that creates the set of secondary keys
corresponding to a given primary key and data pair.

9/9/2013 DB C API Page 6

../../programmer_reference/am_second.html

Library Version 11.2.5.3 The DB Handle

The callback parameter may be NULL if both the primary and secondary database handles
were opened with the DB_RDONLY flag.

The callback takes four arguments:
¢ secondary
The secondary parameter is the database handle for the secondary.
* key
The key parameter is a DBT referencing the primary key.
» data
The data parameter is a DBT referencing the primary data item.
e result

The result parameter is a zeroed DBT in which the callback function should fill in data and
size fields that describe the secondary key or keys.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

The result DBT can have the following flags set in its flags field:
e DB_DBT_APPMALLOC

If the callback function needs to allocate memory for the result data field (rather than
simply pointing into the primary key or datum), DB_DBT_APPMALLOC should be set in the
flags field of the result DBT, which indicates that Berkeley DB should free the memory when
it is done with it.

e DB_DBT_MULTIPLE

To return multiple secondary keys, DB_DBT_MULTIPLE should be set in the flags field of

the result DBT, which indicates Berkeley DB should treat the size field as the number of
secondary keys (zero or more), and the data field as a pointer to an array of that number of
DBTs describing the set of secondary keys.

When multiple secondary keys are returned, keys may not be repeated. In other words,
there must be no repeated record numbers in the array for Recno and Queue databases,
and keys must not compare equally using the secondary database's comparison function for
Btree and Hash databases. If keys are repeated, operations may fail and the secondary may
become inconsistent with the primary.

The DB_DBT_APPMALLOC flag may be set for any DBT in the array of returned DBT's to
indicate that Berkeley DB should free the memory referenced by that particular DBT's data
field when it is done with it.

9/9/2013

DB C API Page 7

Library Version 11.2.5.3 The DB Handle

The DB_DBT_APPMALLOC flag may be combined with DB_DBT_MULTIPLE in the result DBT's
flag field to indicate that Berkeley DB should free the array once it is done with all of the
returned keys.

In addition, the callback can optionally return the following special value:

e DB_DONOTINDEX

If any key/data pair in the primary yields a null secondary key and should be left out of the
secondary index, the callback function may optionally return DB_DONOTINDEX. Otherwise,
the callback function should return 0 in case of success or an error outside of the Berkeley
DB name space in case of failure; the error code will be returned from the Berkeley DB call
that initiated the callback.

If the callback function returns DB_DONOTINDEX for any key/data pairs in the primary
database, the secondary index will not contain any reference to those key/data pairs, and
such operations as cursor iterations and range queries will reflect only the corresponding
subset of the database. If this is not desirable, the application should ensure that the
callback function is well-defined for all possible values and never returns DB_DONOTINDEX.

Returning DB_DONOTINDEX is equivalent to setting DB_DBT_MULTIPLE on the result DBT and
setting the size field to zero.

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

e DB_CREATE

If the secondary database is empty, walk through the primary and create an index to it in
the empty secondary. This operation is potentially very expensive.

If the secondary database has been opened in an environment configured with transactions,
the entire secondary index creation is performed in the context of a single transaction.

Care should be taken not to use a newly-populated secondary database in another thread of
control until the DB->associate() call has returned successfully in the first thread.

If transactions are not being used, care should be taken not to modify a primary database
being used to populate a secondary database, in another thread of control, until the DB-
>associate() call has returned successfully in the first thread. If transactions are being
used, Berkeley DB will perform appropriate locking and the application need not do any
special operation ordering.

e DB_IMMUTABLE_KEY
Specifies the secondary key is immutable.

This flag can be used to optimize updates when the secondary key in a primary record will
never be changed after the primary record is inserted. For immutable secondary keys, a

9/9/2013

DB C API Page 8

Library Version 11.2.5.3 The DB Handle

best effort is made to avoid calling the secondary callback function when primary records
are updated. This optimization may reduce the overhead of update operations significantly
if the callback function is expensive.

Be sure to specify this flag only if the secondary key in the primary record is never changed.
If this rule is violated, the secondary index will become corrupted, that is, it will become
out of sync with the primary.

Errors

The DB->associate() method may fail and return one of the following non-zero errors:
DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.
EINVAL

If the secondary database handle has already been associated with this or another database
handle; the secondary database handle is not open; the primary database has been configured
to allow duplicates; or if an invalid flag value or parameter was specified.

Class
DB

See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 9

Library Version 11.2.5.3 The DB Handle

DB->associate_foreign()
#include <db.h>

int

DB->associate_foreign(DB *foreign, DB *secondary,,
int (*callback) (DB *secondary,
const DBT *key, DBT *data, const DBT *foreignkey, int *changed),
u_int32 t flags);

The DB->associate_foreign() function is used to declare one database a foreign constraint
for a secondary database. The DB handle that you call the associate_foreign() method
from is the foreignh database.

After a foreign database has been "associated” with a secondary database, all keys inserted
into the secondary must exist in the foreign database. Attempting to add a record with a
foreign key that does not exist in the foreign database will cause the put method to fail and
return DB_FOREIGN_CONFLICT.

Deletions in the foreign database affect the secondary in a manner defined by the flags
parameter. See Foreign Indices in the Berkeley DB Programmer’s Reference Guide for more
information.

The DB->associate_foreign() method returns a non-zero error value on failure and 0 on
success.

Parameters
foreign
The foreign parameter should be a database handle for the foreign database.

secondary

The secondary parameter should be an open database handle of a database that contains a
secondary index who's keys also exist in the foreign database.

callback

The callback parameter is a callback function that nullifies the foreign key portion of a data
DBT.

The callback parameter must be NULL if either DB_FOREIGN_ABORT or DB_FOREIGN_CASCADE
is set.

The callback takes four arguments:
¢ secondary
The secondary parameter is the database handle for the secondary.

e key

9/9/2013 DB C API Page 10

../../programmer_reference/am_foreign.html

Library Version 11.2.5.3 The DB Handle

The key parameter is a DBT referencing the primary key.
» data

The data parameter is a DBT referencing the primary data item to be updated.
o foreignkey

The foreignkey parameter is a DBT referencing the foreign key which is being deleted.
e changed

The changed parameter is a pointer to a boolean value, indicated whether data has
changed.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

flags
The flags parameter must be set to one of the following values:
e DB_FOREIGN_ABORT

Abort the deletion of a key in the foreign database and return DB_FOREIGN_CONFLICT
if that key exists in the secondary database. The deletion should be protected by a
transaction to ensure database integrity after the aborted delete.

e DB_FOREIGN_CASCADE

The deletion of a key in the foreign database will also delete that key from the secondary
database (and the corresponding entry in the secondary’'s primary database.)

e DB_FOREIGN_NULLIFY

The deletion of a key in the foreign database will call the nullification function passed to
associate_foreign and update the secondary database with the changed data.

Errors

The DB->associate_foreign() method may fail and return one of the following non-zero
errors:

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions
to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return

9/9/2013 DB C API Page 11

Library Version 11.2.5.3 The DB Handle

DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.
EINVAL

If the foreign database handle is a secondary index; the foreign database handle has been
configured to allow duplicates; the foreign database handle is a renumbering recno database;
callback is configured and DB_FOREIGN_NULLIFY is not; DB_FOREIGN_NULLIFY is configured
and callback is not.

Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 12

Library Version 11.2.5.3 The DB Handle

DB->close()

#include <db.h>

int
DB->close(DB *db, u_int32 t flags);

The DB->close() method flushes cached database information to disk, closes any open
cursors, frees allocated resources, and closes underlying files. When the close operation for a
cursor fails, the method returns a non-zero error value for the first instance of such an error,
and continues to close the rest of the cursors and database handles.

Although closing a database handle will close any open cursors, it is recommended that
applications explicitly close all their DBcursor handles before closing the database. The reason
why is that when the cursor is explicitly closed, the memory allocated for it is reclaimed;
however, this will not happen if you close a database while cursors are still opened.

The same rule, for the same reasons, hold true for DB_TXN handles. Simply make sure you
close all your transaction handles before closing your database handle.

Because key/data pairs are cached in memory, applications should make a point to always
either close database handles or sync their data to disk (using the DB->sync() (page 150)
method) before exiting, to ensure that any data cached in main memory are reflected in the
underlying file system.

When called on a database that is the primary database for a secondary index, the primary
database should be closed only after all secondary indices referencing it have been closed.

When multiple threads are using the DB concurrently, only a single thread may call the DB-
>close() method.

The DB handle may not be accessed again after DB->close() is called, regardless of its
return.

If you do not close the DB handle explicitly, it will be closed when the environment handle
that owns the DB handle is closed.

The DB->close() method returns a non-zero error value on failure and 0 on success. The
error values that DB->close() method returns include the error values of DBcursor-
>close() and the following:

DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See DB->set_lk_exclusive() (page
122) for more information.

9/9/2013

DB C API Page 13

Library Version 11.2.5.3 The DB Handle

EINVAL

If the cursor is already closed; or if an invalid flag value or parameter was specified.

Parameters

flags
The flags parameter must be set to 0 or be set to the following value:
e DB_NOSYNC

Do not flush cached information to disk. This flag is a dangerous option. It should be set only
if the application is doing logging (with transactions) so that the database is recoverable
after a system or application crash, or if the database is always generated from scratch
after any system or application crash.

It is important to understand that flushing cached information to disk only minimizes the
window of opportunity for corrupted data. Although unlikely, it is possible for database
corruption to happen if a system or application crash occurs while writing data to the
database. To ensure that database corruption never occurs, applications must either: use
transactions and logging with automatic recovery; use logging and application-specific
recovery; or edit a copy of the database, and once all applications using the database have
successfully called DB->close(), atomically replace the original database with the updated

copy.

Note that this flag only works when the database has been opened using an environment.

Errors

The DB->close() method may fail and return one of the following non-zero errors:
EINVAL
An invalid flag value or parameter was specified.

The error messages returned for the first error encountered when DB->close() method closes
any open cursors include:

DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See DB->set_lk_exclusive() (page
122) for more information.

9/9/2013

DB C API Page 14

Library Version 11.2.5.3 The DB Handle

EINVAL

If the cursor is already closed; or if an invalid flag value or parameter was specified.
Class

DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 15

Library Version 11.2.5.3 The DB Handle

DB->compact()

#include <db.h>
int
DB->compact(DB *db, DB_TXN *txnid,
DBT *start, DBT *stop, DB_COMPACT *c_data, u_int32_t flags, DBT *end);

The DB->compact () method compacts Btree, Hash, and Recno access method databases, and
optionally returns unused Btree, Hash or Recno database pages to the underlying filesystem.

The DB->compact () method returns a non-zero error value on failure and 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DB_ENV->txn_begin() (page 615); if the operation is part

of a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DB_ENV->cdsgroup_begin() (page 607); otherwise NULL.

If a transaction handle is supplied to this method, then the operation is performed using that
transaction. In this event, large sections of the tree may be locked during the course of the
transaction.

If no transaction handle is specified, but the operation occurs in a transactional database,
the operation will be implicitly transaction protected using multiple transactions. These
transactions will be periodically committed to avoid locking large sections of the tree. Any
deadlocks encountered cause the compaction operation to be retried from the point of the
last transaction commit.

start

If non-NULL, the start parameter is the starting point for compaction. For a Btree or Recno
database, compaction will start at the smallest key greater than or equal to the specified key.
For a Hash database, the compaction will start in the bucket specified by the integer stored in
the key. If NULL, compaction will start at the beginning of the database.

stop

If non-NULL, the stop parameter is the stopping point for compaction. For a Btree or Recno
database, compaction will stop at the page with the smallest key greater than the specified
key. For a Hash database, compaction will stop in the bucket specified by the integer stored in
the key. If NULL, compaction will stop at the end of the database.

c_data

If non-NULL, the c_data parameter contains additional compaction configuration parameters,
and returns compaction operation statistics, in a structure of type DB_COMPACT.

9/9/2013

DB C API Page 16

Library Version 11.2.5.3 The DB Handle

The following input configuration fields are available from the DB_COMPACT structure:

int compact_fillpercent;

If non-zero, this provides the goal for filling pages, specified as a percentage between 1 and
100. Any page in the database not at or above this percentage full will be considered for
compaction. The default behavior is to consider every page for compaction, regardless of its
page fill percentage.

int compact_pages;

If non-zero, the call will return after the specified number of pages have been freed, or no
more pages can be freed.

db_timeout_t compact_timeout;

If non-zero, and no txnid parameter was specified, this parameter identifies the lock
timeout used for implicit transactions, in microseconds.

The following output statistics fields are available from the DB_COMPACT structure:

u_int32_t compact_deadlock;

An output statistics parameter: if no txnid parameter was specified, the number of
deadlocks which occurred.

u_int32_t compact_pages_examine;

An output statistics parameter: the number of database pages reviewed during the
compaction phase.

u_int32_t compact_empty_ buckets;

An output statistics parameter: the number of empty hash buckets that were found the
compaction phase.

u_int32_t compact_pages_free;

An output statistics parameter: the number of database pages freed during the compaction
phase.

u_int32_t compact_levels;

An output statistics parameter: the number of levels removed from the Btree or Recno
database during the compaction phase.

u_int32_t compact_pages_truncated;

An output statistics parameter: the number of database pages returned to the filesystem.

flags

The flags parameter must be set to 0 or one of the following values:

9/9/2013

DB C API Page 17

Library Version 11.2.5.3 The DB Handle

+ DB_FREELIST_ONLY

Do no page compaction, only returning pages to the filesystem that are already free and at
the end of the file.

« DB_FREE_SPACE

Return pages to the filesystem when possible. If this flag is not specified, pages emptied as
a result of compaction will be placed on the free list for re-use, but never returned to the
filesystem.

Note that only pages at the end of a file can be returned to the filesystem. Because of the
one-pass nature of the compaction algorithm, any unemptied page near the end of the file
inhibits returning pages to the file system. A repeated call to the DB->compact() method

with a low compact_fillpercent may be used to return pages in this case.

end

If non-NULL, the end parameter will be filled with the database key marking the end of the
compaction operation in a Btree or Recno database. This is generally the first key of the
page where the operation stopped. For a Hash database, this will hold the integer value
representing which bucket the compaction stopped in.

Errors

The DB->compact() method may fail and return one of the following non-zero errors:
DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See DB->set_lk_exclusive() (page
122) for more information.

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

9/9/2013

DB C API Page 18

Library Version 11.2.5.3 The DB Handle

EACCES
An attempt was made to modify a read-only database.
EINVAL
An invalid flag value or parameter was specified.
Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 19

Library Version 11.2.5.3 The DB Handle

db_copy

#include <db.h>

int

db_copy(DB_ENV *dbenv, const char *dbfile, const char *target,

const char *password);
The db_copy () routine copies the named database file to the target directory. An optional
password can be specified for encrypted database files. This routine can be used on operating
systems that do not support atomic file system reads to create a hot backup of a database
file. If the specified database file is for a QUEUE database with extents, all extent files for
that database will be copied as well.
Parameters
dbenv
An open environment handle for the environment containing the database file.
dbfile
The path name to the file to be backed up. The file name is resolved using the usual BDB
library name resolution rules.
target
The directory to which you want the database copied. This is specified relative to the current
directory of the executing process or as an absolute path.
password
Specified only if the database file is encrypted. The resulting backup file will be encrypted as
well.
9/9/2013 DB C API Page 20

Library Version 11.2.5.3 The DB Handle

db_create
#tinclude <db.h>

int db_create(DB **dbp, DB_ENV *dbenv, u_int32_t flags);

The db_create() function creates a DB structure that is the handle for a Berkeley DB
database. This function allocates memory for the structure, returning a pointer to the
structure in the memory to which dbp refers. To release the allocated memory and discard the
handle, call the DB->close() (page 13), DB->remove() (page 79), DB->rename() (page 81),

or DB->verify() (page 156) methods.

DB handles are free-threaded if the DB_THREAD flag is specified to the DB->open() (page

70) method when the database is opened or if the database environment in which the
database is opened is free-threaded. The handle should not be closed while any other handle
that refers to the database is in use; for example, database handles must not be closed while
cursor handles into the database remain open, or transactions that include operations on

the database have not yet been committed or aborted. Once the DB->close() (page 13), DB-
>remove() (page 79), DB->rename() (page 81), or DB->verify() (page 156) methods are
called, the handle may not be accessed again, regardless of the method's return.

The DB handle contains a special field, app_private, which is declared as type void *. This
field is provided for the use of the application program. It is initialized to NULL and is not
further used by Berkeley DB in any way.

The db_create function returns a non-zero error value on failure and 0 on success.

Parameters
dbp

The dbp parameter references the memory into which the returned structure pointer is
stored.

dbenv

If the dbenv parameter is NULL, the database is standalone; that is, it is not part of any
Berkeley DB environment.

If the dbenv parameter is not NULL, the database is created within the specified Berkeley DB
environment. The database access methods automatically make calls to the other subsystems
in Berkeley DB, based on the enclosing environment. For example, if the environment has
been configured to use locking, the access methods will automatically acquire the correct
locks when reading and writing pages of the database.

flags
The flags parameter must be set to 0 or the following value:

« DB_XA_CREATE

9/9/2013 DB C API Page 21

Library Version 11.2.5.3 The DB Handle

Instead of creating a standalone database, create a database intended to be accessed via
applications running under an X/Open conformant Transaction Manager. The database will
be opened in the environment specified by the OPENINFO parameter of the GROUPS section
of the ubbconfig file. See the XA Introduction section in the Berkeley DB Reference Guide
for more information.

Errors
The db_create() function may fail and return one of the following non-zero errors:
EINVAL
An invalid flag value or parameter was specified.
Class
DB

See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 22

../../programmer_reference/xa_xa_intro.html

Library Version 11.2.5.3 The DB Handle

DB->del()

#include <db.h>

int

DB->del(DB *db, DB_TXN *txnid, DBT *key, u_int32_t flags);
The DB->del() method removes key/data pairs from the database. The key/data pair
associated with the specified key is discarded from the database. In the presence of duplicate
key values, all records associated with the designated key will be discarded.
When called on a database that has been made into a secondary index using the DB-
>associate() (page 6) method, the DB->del() method deletes the key/data pair from the
primary database and all secondary indices.
The DB->del() method will return DB_NOTFOUND if the specified key is not in the database.
The DB->del() method will return DB_KEYEMPTY if the database is a Queue or Recno
database and the specified key exists, but was never explicitly created by the application or
was later deleted. Unless otherwise specified, the DB->del () method returns a non-zero error
value on failure and 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DB_ENV->txn_begin() (page 615); if the operation is part
of a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned
from DB_ENV->cdsgroup_begin() (page 607); otherwise NULL. If no transaction handle

is specified, but the operation occurs in a transactional database, the operation will be
implicitly transaction protected.

key

The key DBT operated on.

flags

The flags parameter must be set to 0 or one of the following values:
« DB_CONSUME

If the database is of type DB_QUEUE then this flag may be set to force the head of the
queue to move to the first non-deleted item in the queue. Normally this is only done if the
deleted item is exactly at the head when deleted.

e DB_MULTIPLE
Delete multiple data items using keys from the buffer to which the key parameter refers.

To delete records in bulk by key with the btree or hash access methods, construct
a bulk buffer in the key DBT using DB_MULTIPLE_WRITE_INIT (page 195) and

9/9/2013

DB C API Page 23

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Library Version 11.2.5.3 The DB Handle

Errors

DB_MULTIPLE_WRITE_NEXT (page 196). To delete records in bulk by record number,
construct the key DBT using DB_MULTIPLE_RECNO_WRITE_INIT (page 200) and
DB_MULTIPLE_RECNO_WRITE_NEXT (page 201) with a data size of zero.

A successful bulk delete operation is logically equivalent to a loop through each key/data
pair, performing a DB->del() (page 23) for each one.

See the DBT and Bulk Operations (page 189) for more information on working with bulk
updates.

The DB_MULTIPLE flag may only be used alone.
DB_MULTIPLE_KEY

Delete multiple data items using keys and data from the buffer to which the key parameter
refers.

To delete records in bulk with the btree or hash access methods, construct a

bulk buffer in the key DBT using DB_MULTIPLE_WRITE_INIT (page 195) and
DB_MULTIPLE_KEY_WRITE_NEXT (page 198). To delete records in bulk with

the recno or hash access methods, construct a bulk buffer in the key DBT using
DB_MULTIPLE_RECNO_WRITE_INIT (page 200) and DB_MULTIPLE_RECNO_WRITE_NEXT (page
201).

See the DBT and Bulk Operations (page 189) for more information on working with bulk
updates.

The DB_MULTIPLE_KEY flag may only be used alone.

The DB->del() method may fail and return one of the following non-zero errors:

DB_FOREIGN_CONFLICT

A foreign key constraint violation has occurred. This can be caused by one of two things:

1.

An attempt was made to add a record to a constrained database, and the key used for
that record does not exist in the foreign key database.

DB_FOREIGN_ABORT (page 11) was declared for a foreign key database, and then
subsequently a record was deleted from the foreign key database without first removing
it from the constrained secondary database.

DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

9/9/2013

DB C API Page 24

Library Version 11.2.5.3 The DB Handle

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See DB->set_lk_exclusive() (page
122) for more information.

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.
DB_SECONDARY_BAD
A secondary index references a nonexistent primary key.
EACCES
An attempt was made to modify a read-only database.
EINVAL
An invalid flag value or parameter was specified.

Class

DB

See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 25

Library Version 11.2.5.3 The DB Handle

DB->err()

#tinclude <db.h>

void
DB->err(DB *db, int error, const char *fmt, ...);

void
DB->errx(DB *db, const char *fmt, ...);

The DB_ENV->err() (page 220), DB_ENV->errx(), DB->err() and DB->errx() methods
provide error-messaging functionality for applications written using the Berkeley DB library.

The DB->err() and DB_ENV->err() (page 220) methods construct an error message consisting
of the following elements:

An optional prefix string

If no error callback function has been set using the DB_ENV->set_errcall() (page 285)
method, any prefix string specified using the DB_ENV->set_errpfx() (page 289) method,
followed by two separating characters: a colon and a <space> character.

An optional printf-style message

The supplied message fmt, if non-NULL, in which the ANSI C X3.159-1989 (ANSI C) printf
function specifies how subsequent parameters are converted for output.

A separator
Two separating characters: a colon and a <space> character.
A standard error string

The standard system or Berkeley DB library error string associated with the error value, as
returned by the db_strerror (page 327) method.

The DB->errx() and DB_ENV->errx() methods are the same as the DB->err() and DB_ENV-
>err() (page 220) methods, except they do not append the final separator characters and
standard error string to the error message.

This constructed error message is then handled as follows:

If an error callback function has been set (see DB->set_errcall() (page 101) and DB_ENV-

>set_errcall() (page 285)), that function is called with two parameters: any prefix string

specified (see DB->set_errpfx() (page 105) and DB_ENV->set_errpfx() (page 289)) and the
error message.

If a C library FILE * has been set (see DB->set_errfile() (page 103) and DB_ENV-
>set_errfile() (page 287)), the error message is written to that output stream.

If none of these output options have been configured, the error message is written to stderr,
the standard error output stream.

9/9/2013

DB C API Page 26

Library Version 11.2.5.3 The DB Handle

Parameters

error

The error parameter is the error value for which the DB_ENV->err() (page 220) and DB-
>err() methods will display an explanatory string.

fmt

The fmt parameter is an optional printf-style message to display.
Class

DB

See Also
Database and Related Methods (page 3)

9/9/2013 DB C API Page 27

Library Version 11.2.5.3 The DB Handle

DB->eXxists()

#tinclude <db.h>

int
DB->exists(DB *db, DB_TXN *txnid, DBT *key, u_int32_t flags);

The DB->exists() method returns whether the specified key appears in the database.

The DB->exists() method will return DB_NOTFOUND if the specified key is not in the
database. The DB->exists() method will return DB_KEYEMPTY if the database is a Queue
or Recno database and the specified key exists, but was never explicitly created by the
application or was later deleted.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DB_ENV->txn_begin() (page 615); if the operation is part
of a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned
from DB_ENV->cdsgroup_begin() (page 607); otherwise NULL. If no transaction handle

is specified, but the operation occurs in a transactional database, the operation will be
implicitly transaction protected.

key
The key DBT operated on.
flags

The flags parameter must be set to zero or by bitwise inclusively OR'ing together one or more
of the following values:

e DB_READ_COMMITTED

Configure a transactional read operation to have degree 2 isolation (the read is not
repeatable).

e DB_READ_UNCOMMITTED

Configure a transactional read operation to have degree 1 isolation, reading modified
but not yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not
specified when the underlying database was opened.

« DB_RMW

Acquire write locks instead of read locks when doing the read, if locking is configured.
Setting this flag can eliminate deadlock during a read-modify-write cycle by acquiring the
write lock during the read part of the cycle so that another thread of control acquiring a
read lock for the same item, in its own read-modify-write cycle, will not result in deadlock.

9/9/2013 DB C API Page 28

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Library Version 11.2.5.3 The DB Handle

Because the DB->exists () method will not hold locks across Berkeley DB calls in non-
transactional operations, the DB_RMW flag to the DB->exists () call is meaningful only in
the presence of transactions.

Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 29

Library Version 11.2.5.3 The DB Handle

DB->fd()
#include <db.h>
int
DB->fd(DB *db, int *fdp);
The DB->fd () method provides access to a file descriptor representative of the underlying
database. A file descriptor referring to the same file will be returned to all processes that call
DB->open() (page 70) with the same file parameter.
This file descriptor may be safely used as a parameter to the fcntl(2) and flock(2) locking
functions.
The DB->fd() method only supports a coarse-grained form of locking. Applications should
instead use the Berkeley DB lock manager where possible.
The DB->fd() method returns a non-zero error value on failure and 0 on success.
Parameters
fdp
The fdp parameter references memory into which the current file descriptor is copied.
Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 30

Library Version 11.2.

5.3 The DB Handle

DB->get()

#include <db.h>

int
DB->get (DB *db,
DB_TXN *txnid, DBT *key, DBT *data, u_int32_t flags);

int
DB->pget (DB *db,
DB_TXN *txnid, DBT *key, DBT *pkey, DBT *data, u_int32_t flags);

The DB->get () method retrieves key/data pairs from the database. The address and length of
the data associated with the specified key are returned in the structure to which data refers.

In the presence of duplicate key values, DB->get () will return the first data item for the
designated key. Duplicates are sorted by:

« Their sort order, if a duplicate sort function was specified.
« Any explicit cursor designated insertion.
« By insert order. This is the default behavior.

Retrieval of duplicates requires the use of cursor operations. See DBcursor->get() (page
171) for details.

When called on a database that has been made into a secondary index using the DB-
>associate() (page 6) method, the DB->get() and DB->pget () methods return the key
from the secondary index and the data item from the primary database. In addition, the
DB->pget () method returns the key from the primary database. In databases that are not
secondary indices, the DB->pget () method will always fail.

The DB->get () method will return DB_NOTFOUND if the specified key is not in the database.
The DB->get () method will return DB_KEYEMPTY if the database is a Queue or Recno
database and the specified key exists, but was never explicitly created by the application or
was later deleted. Unless otherwise specified, the DB->get () method returns a non-zero error
value on failure and 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DB_ENV->txn_begin() (page 615); if the operation is part
of a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned
from DB_ENV->cdsgroup_begin() (page 607); otherwise NULL. If no transaction handle

is specified, but the operation occurs in a transactional database, the operation will be
implicitly transaction protected.

key
The key DBT operated on.

9/9/2013

DB C API Page 31

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Library Version 11.2.5.3 The DB Handle

If DB_DBT_PARTIAL is set for the DBT used for this parameter, and if the flags parameter is
not set to DB_CONSUME DB_CONSUME_WAIT, or DB_SET_RECNO, then this method will fail and
return EINVAL.

pkey

The pkey parameter is the return key from the primary database. If DB_DBT_PARTIAL is set for
the DBT used for this parameter, then this method will fail and return EINVAL.

data

The data DBT operated on.

flags

The flags parameter must be set to 0 or one of the following values:

e DB_CONSUME
Return the record number and data from the available record closest to the head of the
queue, and delete the record. The record number will be returned in key, as described
in DBT. The data will be returned in the data parameter. A record is available if it is not
deleted and is not currently locked. The underlying database must be of type Queue for
DB_CONSUME to be specified.

e DB_CONSUME_WAIT

The DB_CONSUME_WAIT flag is the same as the DB_CONSUME flag, except that if the Queue
database is empty, the thread of control will wait until there is data in the queue before
returning. The underlying database must be of type Queue for DB_CONSUME_WAIT to be
specified.

If lock or transaction timeouts have been specified, the DB->get () method with the
DB_CONSUME_WAIT flag may return DB_LOCK_NOTGRANTED. This failure, by itself, does not
require the enclosing transaction be aborted.

e DB_GET_BOTH
Retrieve the key/data pair only if both the key and data match the arguments.
When using a secondary index handle, the DB_GET_BOTH: flag causes:

» the DB->pget() version of this method to retun the secondary key/primary key/data
tuple only if both the primary and secondary keys match the arguments.

» the DB->get () version of this method to result in an error.
« DB_SET_RECNO

Retrieve the specified numbered key/data pair from a database. Upon return, both the key
and data items will have been filled in.

9/9/2013

DB C API Page 32

../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_NOTGRANTED

Library Version 11.2.5.3 The DB Handle

The data field of the specified key must be a pointer to a logical record number (that is, a
db_recno_t). This record number determines the record to be retrieved.

For DB_SET_RECNO to be specified, the underlying database must be of type Btree, and it
must have been created with the DB_RECNUM flag.

In addition, the following flags may be set by bitwise inclusively OR'ing them into the flags
parameter:

e DB_IGNORE_LEASE

Return the data item irrespective of the state of master leases. The item will be returned
under all conditions: if master leases are not configured, if the request is made to a client,
if the request is made to a master with a valid lease, or if the request is made to a master
without a valid lease.

e DB_MULTIPLE
Return multiple data items in the buffer to which the data parameter refers.

In the case of Btree or Hash databases, all of the data items associated with the specified
key are entered into the buffer. In the case of Queue, Recno or Heap databases, all of the
data items in the database, starting at, and subsequent to, the specified key, are entered
into the buffer.

The buffer to which the data parameter refers must be provided from user memory (see
DB_DBT_USERMEM). The buffer must be at least as large as the page size of the underlying
database, aligned for unsigned integer access, and be a multiple of 1024 bytes in size.

If the buffer size is insufficient, then upon return from the call the size field of the data
parameter will have been set to an estimated buffer size, and the error DB_BUFFER_SMALL
is returned. (The size is an estimate as the exact size needed may not be known until all
entries are read. It is best to initially provide a relatively large buffer, but applications
should be prepared to resize the buffer as necessary and repeatedly call the method.)

The DB_MULTIPLE flag may only be used alone, or with the DB_GET_BOTH and
DB_SET_RECNO options. The DB_MULTIPLE flag may not be used when accessing databases
made into secondary indices using the DB->associate() (page 6) method.

See the DBT and Bulk Operations (page 189) for more information on working with bulk
get.

e DB_READ_COMMITTED

Configure a transactional get operation to have degree 2 isolation (the read is not
repeatable).

e DB_READ_UNCOMMITTED

Configure a transactional get operation to have degree 1 isolation, reading modified but not
yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not specified
when the underlying database was opened.

9/9/2013

DB C API Page 33

Library Version 11.2.5.3 The DB Handle

+ DB_RMW

Acquire write locks instead of read locks when doing the read, if locking is configured.
Setting this flag can eliminate deadlock during a read-modify-write cycle by acquiring the
write lock during the read part of the cycle so that another thread of control acquiring a
read lock for the same item, in its own read-modify-write cycle, will not result in deadlock.

Because the DB->get () method will not hold locks across Berkeley DB calls in non-
transactional operations, the DB_RMW flag to the DB->get() call is meaningful only in the
presence of transactions.

Errors

The DB->get () method may fail and return one of the following non-zero errors:
DB_BUFFER_SMALL

The requested item could not be returned due to undersized buffer.
DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See DB->set_lk_exclusive() (page
122) for more information.

DB_LOCK_NOTGRANTED

The DB_CONSUME_WAIT flag was specified, lock or transaction timers were configured and the
lock could not be granted before the wait-time expired.

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LEASE_EXPIRED
The operation failed because the site's replication master lease has expired.
DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

9/9/2013

DB C API Page 34

Library Version 11.2.5.3 The DB Handle

DB_SECONDARY_BAD
A secondary index references a nonexistent primary key.

EINVAL

If a record number of 0 was specified; the DB_THREAD flag was specified to the DB-

>open() (page 70) method and none of the DB_DBT_MALLOC, DB_DBT_REALLOC or
DB_DBT_USERMEM flags were set in the DBT; the DB->pget () method was called with a DB
handle that does not refer to a secondary index; or if an invalid flag value or parameter was

specified.
Class
DB

See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 35

Library Version 11.2.5.3 The DB Handle

DB->get_bt_minkey()

#tinclude <db.h>

int
DB->get_bt_minkey (DB *db, u_int32_t *bt_minkeyp);

The DB->get_bt_minkey() method returns the minimum number of key/data pairs
intended to be stored on any single Btree leaf page. This value can be set using the DB-
>set_bt_minkey() (page 92) method.

The DB->get_bt_minkey() method may be called at any time during the life of the
application.

The DB->get_bt_minkey() method returns a non-zero error value on failure and 0 on success.
Parameters
bt_minkeyp

The DB->get_bt_minkey() method returns the minimum number of key/data pairs intended
to be stored on any single Btree leaf page in bt_minkeyp.

Class

DB

See Also

Database and Related Methods (page 3), DB->set_bt_minkey() (page 92)

9/9/2013 DB C API Page 36

Library Version 11.2.5.3 The DB Handle

DB->get_byteswapped()

#tinclude <db.h>

int
DB->get_byteswapped(DB *db, int *isswapped);

The DB->get_byteswapped() method returns whether the underlying database files were
created on an architecture of the same byte order as the current one, or if they were not
(that is, big-endian on a little-endian machine, or vice versa). This information may be used to
determine whether application data needs to be adjusted for this architecture or not.

The DB->get_byteswapped() method may not be called before the DB->open() (page 70)
method is called.

The DB->get_byteswapped() method returns a non-zero error value on failure and 0 on
success.

Parameters

isswapped

If the underlying database files were created on an architecture of the same byte order as the
current one, 0 is stored into the memory location referenced by isswapped. If the underlying
database files were created on an architecture of a different byte order as the current one, 1
is stored into the memory location referenced by isswapped.

Errors

The DB->get_byteswapped() method may fail and return one of the following non-zero
errors:

EINVAL

If the method was called before DB->open() (page 70) was called; or if an invalid flag value
or parameter was specified.

Class

DB

See Also

Database and Related Methods (page 3)

9/9/2013

DB C API Page 37

Library Version 11.2.5.3 The DB Handle

DB->get_cachesize()

#include <db.h>
int
DB->get_cachesize(DB *db,
u_int32_t *gbytesp, u_int32_t *bytesp, int *ncachep);

The DB->get_cachesize() method returns the current size and composition of the cache.
These values may be set using the DB->set_cachesize() (page 95) method.

The DB->get_cachesize() method may be called at any time during the life of the
application.

The DB->get_cachesize() method returns a non-zero error value on failure and 0 on success.
Parameters
gbytesp

The gbytesp parameter references memory into which the gigabytes of memory in the cache
is copied.

bytesp

The bytesp parameter references memory into which the additional bytes of memory in the
cache is copied.

ncachep

The ncachep parameter references memory into which the number of caches is copied.

Class
DB

See Also

Database and Related Methods (page 3), DB->set_cachesize() (page 95)

9/9/2013 DB C API Page 38

Library Version 11.2.5.3

The DB Handle

DB->get_create_dir()

#tinclude <db.h>

int
DB->get_create_dir(DB *db, const char **dirp);

Determine which directory a database file will be created in or was found in.
The DB->get_create_dir() method may be called at any time.

The DB->get_create_dir() method returns a non-zero error value on failure and 0 on
success.

Parameters
dirp

The dirp will be set to the directory specified in the call to DB->set_create_dir() (page
97) method on this handle or to the directory that the database was found in after DB-
>open() (page 70) has been called.

Errors

The DB->get_create_dir() method may fail and return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.
Class
DB

See Also

Database and Related Methods (page 3)

9/9/2013

DB C API

Page 39

Library Version 11.2.5.3 The DB Handle

DB->get_dbname()

#tinclude <db.h>

int
DB->get_dbname(DB *db, const char **filenamep, const char **dbnamep);

The DB->get_dbname () method returns the filename and database name used by the DB
handle.

The DB->get_dbname () method returns a non-zero error value on failure and 0 on success.

Parameters
filenamep

The filenamep parameter references memory into which a pointer to the current filename is
copied.

dbnamep

The dbnamep parameter references memory into which a pointer to the current database
name is copied.

Class
DB

See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 40

Library Version 11.2.5.3 The DB Handle

DB->get_encrypt_flags()

#tinclude <db.h>

int
DB->get_encrypt_flags(DB *db, u_int32_t *flagsp);

The DB->get_encrypt_flags() method returns the encryption flags. This flag can be set
using the DB->set_encrypt() (page 100) method.

The DB->get_encrypt_flags() method may be called at any time during the life of the
application.

The DB->get_encrypt_flags() method returns a non-zero error value on failure and 0 on
success.

Parameters

flagsp

The DB->get_encrypt flags() method returns the encryption flags in flagsp.
Class

DB
See Also

Database and Related Methods (page 3), DB->set_encrypt() (page 100)

9/9/2013 DB C API Page 41

Library Version 11.2.5.3 The DB Handle

DB->get_errfile()

#tinclude <db.h>

void
DB->get_errfile(DB *db, FILE **errfilep);

The DB->get_errfile() method returns the FILE *, as set by the DB->set_errfile() (page
103) method.

The DB->get_errfile() method may be called at any time during the life of the application.
Parameters

errfilep

The DB->get_errfile() method returns the FILE * in errfilep.
Class

DB
See Also

Database and Related Methods (page 3), DB->set_errfile() (page 103)

9/9/2013 DB C API Page 42

Library Version 11.2.5.3 The DB Handle

DB->get_errpfx()
#include <db.h>
void DB->get_errpfx(DB *db, const char **errpfxp);
The DB->get_errpfx() method returns the error prefix.
The DB->get_errpfx() method may be called at any time during the life of the application.
Parameters
errpfxp
The DB->get_errpfx() method returns a reference to the error prefix in errpfxp.
Class
DB
See Also

Database and Related Methods (page 3), DB->set_errpfx() (page 105)

9/9/2013 DB C API Page 43

Library Version 11.2.5.3 The DB Handle

DB->get_flags()

#tinclude <db.h>

int
DB->get flags(DB *db, u_int32_t *flagsp);

The DB->get_flags() method returns the current database flags as set by the DB-
>set_flags() (page 108) method.

The DB->get_flags() method may be called at any time during the life of the application.
The DB->get_flags() method returns a non-zero error value on failure and 0 on success.
Parameters
flagsp
The DB->get_flags() method returns the current flags in flagsp.
Class
DB
See Also

Database and Related Methods (page 3), DB->set_flags() (page 108)

9/9/2013 DB C API Page 44

Library Version 11.2.5.3 The DB Handle

DB->get_h_ffactor()

#tinclude <db.h>

int
DB->get_h_ffactor(DB *db, u_int32_t *h_ffactorp);

The DB->get_h_ffactor() method returns the hash table density as set by the DB-

>set_h_ffactor() (page 116) method. The hash table density is the number of items that
Berkeley DB tries to place in a hash bucket before splitting the hash bucket.

The DB->get_h_ffactor() method may be called at any time during the life of the
application.

The DB->get_h_ffactor() method returns a non-zero error value on failure and 0 on success.
Parameters

h_ffactorp

The DB->get_h_ffactor() method returns the hash table density in h_ffactorp.
Class

DB
See Also

Database and Related Methods (page 3), DB->set_h_ffactor() (page 116)

9/9/2013 DB C API Page 45

Library Version 11.2.5.3 The DB Handle

DB->get_h_nelem()

#tinclude <db.h>

int
DB->get_h_nelem(DB *db, u_int32_t *h_nelemp);

The DB->get_h_nelem() method returns the estimate of the final size of the hash table as set
by the DB->set_h_nelem() (page 118) method.

The DB->get_h_nelem() method may be called at any time during the life of the application.

The DB->get_h_nelem() method returns a non-zero error value on failure and 0 on success.
Parameters

h_nelemp

The DB->get_h_nelem() method returns the estimate of the final size of the hash table in
h_nelemp.

Class

DB

See Also

Database and Related Methods (page 3), DB->set_h_nelem() (page 118)

9/9/2013 DB C API Page 46

Library Version 11.2.5.3 The DB Handle

DB->get__heapsize()

#include <db.h>
int
DB->get_heapsize(DB *db, u_int32_t *gbytesp, u_int32_t *bytesp);

Used when the underlying database is configured to use the Heap access method. This method
returns the maximum size of the database's heap file. This value may be set using the DB-
>set_heapsize() (page 119) method.

The DB->get_heapsize() method may be called at any time during the life of the
application.

The DB->get_heapsize() method returns a non-zero error value on failure and 0 on success.

Parameters

gbytesp

The gbytesp parameter references memory into which is copied the maximum number of
gigabytes in the heap.

bytesp

The bytesp parameter references memory into which is copied the additional bytes in the
heap.

Class

DB

See Also

Database and Related Methods (page 3), DB->set_heapsize() (page 119)

9/9/2013

DB C API Page 47

Library Version 11.2.5.3 The DB Handle

DB->get_heap_regionsize()

#tinclude <db.h>

int
DB->get_heap_regionsize(DB *db, u_int32_t *npagesp);

Used when the underlying database is configured to use the Heap access method. This
method returns the number of pages in a region. This value may be set using the DB-
>set_heap_regionsize() (page 121) method.

The DB->get_heap_regionsize() method may be called at any time during the life of the
application.

The DB->get_heap_regionsize() method returns a non-zero error value on failure and 0 on
success.

Parameters

npagesp

The npagesp parameter references memory into which is copied the number of pages in a
region.

Class
DB

See Also

Database and Related Methods (page 3), DB->set_heap_regionsize() (page 121)

9/9/2013 DB C API Page 48

Library Version 11.2.5.3 The DB Handle

DB->get_lk_exclusive()
#include <db.h>

int
DB->get_lk_exclusive(DB *db, int *onoff, int *nowait);

Returns whether the database handle is configured to obtain a write lock on the entire
database. This can be set using the DB->set_lk_exclusive() (page 122) method.

The DB->get_1k_exclusive() method may be called at any time during the life of the
application.

The DB->get_1k_exclusive() always returns o.

Parameters
onoff

Indicates whether the handle is configured for exclusive database locking. If 9, it is not
configured for exclusive locking. If 1, then it is configured for exclusive locking.

nowait

Indicates whether the handle is configured for immediate locking. If @, then the locking
operation will block until it can obtain an exclusive database lock. If 1, then the locking
operation will error out if it cannot immediately obtain an exclusive lock.

Class
DB

See Also

Database and Related Methods (page 3), DB->set_lk_exclusive() (page 122)

9/9/2013 DB C API Page 49

Library Version 11.2.5.3 The DB Handle

DB->get_lorder()

#tinclude <db.h>

int
DB->get_lorder(DB *db, int *lorderp);

The DB->get_lorder() method returns the database byte order; a byte order of 4,321
indicates a big endian order, and a byte order of 1,234 indicates a little endian order. This
value is set using the DB->set_lorder() (page 124) method.

The DB->get_lorder() method may be called at any time during the life of the application.
The DB->get_lorder() method returns a non-zero error value on failure and 0 on success.
Parameters
lorderp
The DB->get_lorder() method returns the database byte order in lorderp.
Class
DB
See Also

Database and Related Methods (page 3), DB->set_lorder() (page 124)

9/9/2013 DB C API Page 50

Library Version 11.2.5.3 The DB Handle

DB->get_msgfile()
#include <db.h>

void
DB->get_msgfile(DB *db, FILE **msgfilep);

The DB->get_msgfile() method returns the FILE * used to output informational or

statistical messages. This file handle is configured using the DB->set_msgfile() (page 127)
method.

The DB->get_msgfile() method may be called at any time during the life of the application
Parameters

msdfilep

The DB->get_msgfile() method returns the FILE * in msgfilep.
Class
DB

See Also

Database and Related Methods (page 3), DB->set_msgfile() (page 127)

9/9/2013 DB C API Page 51

Library Version 11.2.5.3 The DB Handle

DB->get_multiple()

#tinclude <db.h>

int
DB->get_multiple(DB *db);

This method returns non-zero if the DB handle references a physical file supporting multiple
databases, and 0 otherwise.

In this case, the DB handle is a handle on a database whose key values are the names of the
databases stored in the physical file and whose data values are opaque objects. No keys or
data values may be modified or stored using the database handle.

This method may not be called before the DB->open() (page 70) method is called.
Class

DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 52

Library Version 11.2.5.3 The DB Handle

DB->get_open_flags()

#tinclude <db.h>

int
DB->get_open_flags(DB *db, u_int32_t *flagsp);

The DB->get_open_flags() method returns the current open method flags. That is, this
method returns the flags that were specified when DB->open() (page 70) was called.

The DB->get_open_flags() method may not be called before the DB->open() method is
called.

The DB->get_open_flags() method returns a non-zero error value on failure and 0 on
success.

Parameters

flagsp

The DB->get_open_flags() method returns the current open method flags in flagsp.
Class

DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 53

Library Version 11.2.5.3 The DB Handle

DB->get_partition_callback()

#tinclude <db.h>

int
DB->get_partition_callback(DB *db, u_int32_t *partsp,
u_int32_t (**callback_fcn) (DB *dbp, DBT *key);

The DB->get_partition_callback() method returns the partitioning information as set by
the DB->set_partition() (page 129) method.

The DB->get_partition_callback() method may be called at any time during the life of
the application.

The DB->get_partition_callback() method returns a non-zero error value on failure and 0
on success.

Parameters

partsp

The DB->get_partition_callback() method returns number of partitions in the partsp
parameter.

callback_fcn

The callback_fcn parameter will be set to the partitioning function.
Class
DB

See Also

Database and Related Methods (page 3), DB->set_partition() (page 129)

9/9/2013 DB C API Page 54

Library Version 11.2.5.3 The DB Handle

DB->get_partition_dirs()

#tinclude <db.h>

int
DB->get_partition_dirs(DB *db, const char ***dirsp);

Determine which directorise the database partitions files will be created in or were found in.
The DB->get_partition_dirs() method may be called at any time.

The DB->get_partition_dirs() method returns a non-zero error value on failure and 0 on
success.

Parameters
dirsp

The dirsp will be set to the array of directories specified in the call to DB-
>set_partition_dirs() (page 131) method on this handle or to the directoreies that the
database partitions were found in after DB->open() (page 70) has been called.

Errors

The DB->get_partition_dirs() method may fail and return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.
Class

DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 55

Library Version 11.2.5.3 The DB Handle

DB->get_partition_keys()

#tinclude <db.h>

int
DB->get_partition_keys(DB *db, u_int32_t *partsp, DBT *keysp);

The DB->get_partition_keys() method returns the partitioning information as set by the
DB->set_partition() (page 129) method.

The DB->get_partition_keys() method may be called at any time during the life of the
application.

The DB->get_partition_keys() method returns a non-zero error value on failure and 0 on
success.

Parameters

partsp

The DB->get_partition_keys() method returns number of partitions in the partsp
parameter.

keysp

The keysp parameter will be set to the array of partitioning keys.
Class

DB

See Also
Database and Related Methods (page 3), DB->set_partition() (page 129)

9/9/2013 DB C API Page 56

Library Version 11.2.5.3 The DB Handle

DB->get_pagesize()

#tinclude <db.h>

int
DB->get pagesize(DB *db, u_int32_t *pagesizep);

The DB->get_pagesize() method returns the database’s current page size, as set by the DB-
>set_pagesize() (page 128) method. Note that if DB->set_pagesize() was not called by
your application, then the default pagesize is selected based on the underlying filesystem [/0
block size. If you call DB->get pagesize() before you have opened the database, the value
returned by this method is therefore the underlying filesystem 1/0 block size.

The DB->get_pagesize() method may be called only after the database has been opened.
The DB->get_pagesize() method returns a non-zero error value on failure and 0 on success.
Parameters
pagesizep
The DB->get_pagesize() method returns the page size in pagesizep.
Class
DB
See Also

Database and Related Methods (page 3), DB->set_pagesize() (page 128)

9/9/2013 DB C API Page 57

Library Version 11.2.5.3 The DB Handle

DB->get_priority()

#tinclude <db.h>

int
DB->get_priority(DB *db, DB_CACHE_PRIORITY *priorityp);

The DB->get_priority() method returns the cache priority for pages referenced by the DB
handle. This priority value is set using the DB->set_priority() (page 132) method.

The DB->get_priority() method may be called only after the database has been opened.

The DB->get_priority() method returns a non-zero error value on failure and 0 on success.
Parameters

priorityp

The DB->get_priority() method returns a reference to the cache priority in priorityp. See
DB->set_priority() (page 132) for a list of possible priorities.

Class

DB
See Also

Database and Related Methods (page 3), DB->set_priority() (page 132)

9/9/2013 DB C API Page 58

Library Version 11.2.5.3 The DB Handle

DB->get_(q_extentsize()

#tinclude <db.h>

int

DB->get_q_extentsize(DB *db, u_int32_t *extentsizep);
The DB->get_q_extentsize() method returns the number of pages in an extent. This value
is used only for Queue databases and is set using the DB->set_q_extentsize() (page 133)
method.

The DB->get_q_extentsize() method may be called only after the database has been
opened.

The DB->get_q_extentsize() method returns a non-zero error value on failure and 0 on
success.

Parameters
extentsizep

The DB->get_q_extentsize() method returns the number of pages in an extent in
extentsizep. If used on a handle that has not yet been opened, @ is returned.

Class

DB
See Also

Database and Related Methods (page 3), DB->set_q_extentsize() (page 133)

9/9/2013 DB C API Page 59

Library Version 11.2.5.3 The DB Handle

DB->get_re_delim()

#tinclude <db.h>

int
DB->get_re_delim(DB *db, int *delimp);

The DB->get_re_delim() method returns the delimiting byte, which is used to mark the end
of a record in the backing source file for the Recno access method. This value is set using the
DB->set_re_delim() (page 134) method.

The DB->get_re_delim() method may be called only after the database has been opened.

The DB->get_re_delim() method returns a non-zero error value on failure and 0 on success.

Parameters
delimp

The DB->get_re_delim() method returns the delimiting byte in delimp. If this method is
called on a handle that has not yet been opened, then the default delimiting byte is returned.
See DB->set_re_delim() (page 134) for details.

Class
DB

See Also
Database and Related Methods (page 3), DB->set_re_delim() (page 134)

9/9/2013 DB C API Page 60

Library Version 11.2.5.3 The DB Handle

DB->get_re_len()

#tinclude <db.h>

int
DB->get_re_len(DB *db, u_int32_t *re_lenp);

The DB->get_re_len() method returns the length of the records held in a Queue access
method database. This value can be set using the DB->set_re_len() (page 135) method.

The DB->get_re_len() method may be called only after the database has been opened.

The DB->get_re_len() method returns a non-zero error value on failure and 0 on success.
Parameters

re_lenp

The DB->get_re_len() method returns the record length in re_lenp. If the record length has
never been set using DB->set_re_len() (page 135), then 0 is returned.

Class
DB
See Also

Database and Related Methods (page 3), DB->set_re_len() (page 135)

9/9/2013 DB C API Page 61

Library Version 11.2.5.3 The DB Handle

DB->get_re_pad()

#tinclude <db.h>

int
DB->get_re_pad(DB *db, int *re_padp);

The DB->get_re_pad() method returns the pad character used for short, fixed-length
records used by the Queue and Recno access methods. This character is set using the DB-
>set_re_pad() (page 136) method.

The DB->get_re_pad() method may be called only after the database has been opened.

The DB->get_re_pad() method returns a non-zero error value on failure and 0 on success.

Parameters

re_padp

The DB->get_re_pad() method returns the pad character in re_padp. If used on a
handle that has not yet been opened, the default pad character is returned. See the DB-
>set_re_pad() (page 136) method description for what that default value is.

Class
DB

See Also

Database and Related Methods (page 3), DB->set_re_pad() (page 136)

9/9/2013 DB C API Page 62

Library Version 11.2.5.3 The DB Handle

DB->get_re_source()
#tinclude <db.h>

int
DB->get_re_source(DB *db, const char **sourcep);

The DB->get_re_source() method returns the source file used by the Recno access method.
This file is configured for the Recno access method using the DB->set_re_source() (page 137)
method.

The DB->get_re_source() method may be called only after the database has been opened.
The DB->get_re_source() method returns a non-zero error value on failure and 0 on success.
Parameters
sourcep
The DB->get_re_source() method returns a reference to the source file in sourcep.
Class
DB
See Also

Database and Related Methods (page 3), DB->set_re_source() (page 137)

9/9/2013 DB C API Page 63

Library Version 11.2.5.3 The DB Handle

DB->get_type()

#tinclude <db.h>

int
DB->get_type(DB *db, DBTYPE *type);

The DB->get_type() method returns the type of the underlying access method (and file
format). The type value is one of DB_BTREE, DB_HASH, DB_RECNO, or DB_QUEUE. This value
may be used to determine the type of the database after a return from DB->open() (page
70) with the type parameter set to DB_UNKNOWN.

The DB->get_type() method may not be called before the DB->open() (page 70) method is
called.

The DB->get_type() method returns a non-zero error value on failure and 0 on success.
Parameters

type

The type parameter references memory into which the type of the underlying access method
is copied.

Errors
The DB->get_type() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called before DB->open() (page 70) was called; or if an invalid flag value
or parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 64

Library Version 11.2.5.3 The DB Handle

DB->join()
#include <db.h>
int
DB->join(DB *primary,
DBC **curslist, DBC **dbcp, u_int32_t flags);

The DB->join() method creates a specialized join cursor for use in performing equality or
natural joins on secondary indices. For information on how to organize your data to use this
functionality, see Equality join.

The DB->join() method is called using the DB handle of the primary database.

The join cursor supports only the DBcursor->get() (page 171) and DBcursor->close() (page
164) cursor functions:

o DBcursor->get() (page 171)

Iterates over the values associated with the keys to which each item in curslist was
initialized. Any data value that appears in all items specified by the curslist parameter
is then used as a key into the primary, and the key/data pair found in the primary is
returned. The flags parameter must be set to 0 or the following value:

« DB_JOIN_ITEM

Do not use the data value found in all the cursors as a lookup key for the primary, but
simply return it in the key parameter instead. The data parameter is left unchanged.

In addition, the following flag may be set by bitwise inclusively OR'ing it into the flags
parameter:

e DB_READ_UNCOMMITTED

Configure a transactional join operation to have degree 1 isolation, reading modified but
not yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not
specified when the underlying database was opened.

« DB_RMW

Acquire write locks instead of read locks when doing the read, if locking is configured.
Setting this flag can eliminate deadlock during a read-modify-write cycle by acquiring the
write lock during the read part of the cycle so that another thread of control acquiring

a read lock for the same item, in its own read-modify-write cycle, will not result in
deadlock.

o DBcursor->close() (page 164)

Close the returned cursor and release all resources. (Closing the cursors in curslist is the
responsibility of the caller.)

The DB->join() method returns a non-zero error value on failure and 0 on success.

9/9/2013 DB C API Page 65

../../programmer_reference/am_cursor.html#am_join

Library Version 11.2.5.3 The DB Handle

Parameters

curslist

The curslist parameter contains a NULL terminated array of cursors. Each cursor must have
been initialized to refer to the key on which the underlying database should be joined.
Typically, this initialization is done by a DBcursor->get() (page 171) call with the DB_SET

flag specified. Once the cursors have been passed as part of a curslist, they should not be
accessed or modified until the newly created join cursor has been closed, or else inconsistent
results may be returned.

Joined values are retrieved by doing a sequential iteration over the first cursor in the curslist
parameter, and a nested iteration over each secondary cursor in the order they are specified
in the curslist parameter. This requires database traversals to search for the current datum in
all the cursors after the first. For this reason, the best join performance normally results from
sorting the cursors from the one that refers to the least number of data items to the one that
refers to the most. By default, DB->join() does this sort on behalf of its caller.

For the returned join cursor to be used in a transaction-protected manner, the cursors listed in
curslist must have been created within the context of the same transaction.

dbcp

The newly created join cursor is returned in the memory location to which dbcp refers.
flags

The flags parameter must be set to 0 or the following value:

+ DB_JOIN_NOSORT

Do not sort the cursors based on the number of data items to which they refer. If the data
are structured so that cursors with many data items also share many common elements,
higher performance will result from listing those cursors before cursors with fewer data
items; that is, a sort order other than the default. The DB_JOIN_NOSORT flag permits
applications to perform join optimization prior to calling the DB->join() method.

Errors

The DB->join() method may fail and return one of the following non-zero errors:
DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

9/9/2013

DB C API Page 66

Library Version 11.2.5.3 The DB Handle

DB_SECONDARY_BAD
A secondary index references a nonexistent primary key.

EINVAL

If cursor methods other than DBcursor->get() (page 171) or DBcursor->close() (page 164)
were called; or if an invalid flag value or parameter was specified.

Class
DB

See Also
Database and Related Methods (page 3)

9/9/2013 DB C API Page 67

Library Version 11.2.5.3 The DB Handle

DB->key_range()

#include <db.h>

int
DB->key range(DB *db, DB_TXN *txnid,
DBT *key, DB_KEY_RANGE *key range, u_int32_t flags);

The DB->key_range() method returns an estimate of the proportion of keys that are less
than, equal to, and greater than the specified key. The underlying database must be of type
Btree.

The DB->key_range() method fills in a structure of type DB_KEY_RANGE. The following data
fields are available from the DB_KEY_RANGE structure:

o double less;
A value between 0 and 1, the proportion of keys less than the specified key.
« double equal;
A value between 0 and 1, the proportion of keys equal to the specified key.
o double greater;
A value between 0 and 1, the proportion of keys greater than the specified key.

Values are in the range of 0 to 1; for example, if the field less is 0.05, 5% of the keys in the
database are less than the key parameter. The value for equal will be zero if there is no
matching key, and will be non-zero otherwise.

The DB->key_range() method returns a non-zero error value on failure and 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DB_ENV->txn_begin() (page 615); if the operation is part
of a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned
from DB_ENV->cdsgroup_begin() (page 607); otherwise NULL. If no transaction handle

is specified, but the operation occurs in a transactional database, the operation will be
implicitly transaction protected. The DB->key_range() method does not retain the locks it
acquires for the life of the transaction, so estimates may not be repeatable.

key
The key DBT operated on.
key_range

The estimates are returned in the key_range parameter, which contains three elements of
type double: less, equal, and greater. Values are in the range of 0 to 1; for example, if the

9/9/2013 DB C API Page 68

Library Version 11.2.5.3 The DB Handle

field less is 0.05, 5% of the keys in the database are less than the key parameter. The value
for equal will be zero if there is no matching key, and will be non-zero otherwise.

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The DB->key_range() method may fail and return one of the following non-zero errors:
DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See DB->set_Llk_exclusive() (page
122) for more information.

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.
EINVAL

If the underlying database was not of type Btree; or if an invalid flag value or parameter was
specified.

Class

DB

See Also

Database and Related Methods (page 3)

9/9/2013

DB C API Page 69

Library Version 11.2.5.3 The DB Handle

DB->open()

#include <db.h>

int
DB->open(DB *db, DB_TXN *txnid, const char *file,
const char *database, DBTYPE type, u_int32 t flags, int mode);

The DB->open() method opens the database represented by the file and database.

The currently supported Berkeley DB file formats (or access methods) are Btree, Hash, Heap,
Queue, and Recno. The Btree format is a representation of a sorted, balanced tree structure.
The Hash format is an extensible, dynamic hashing scheme. The Queue format supports fast
access to fixed-length records accessed sequentially or by logical record number. The Recno
format supports fixed- or variable-length records, accessed sequentially or by logical record
number, and optionally backed by a flat text file.

Storage and retrieval for the Berkeley DB access methods are based on key/data pairs; see
DBT for more information.

Calling DB->open() is a relatively expensive operation, and maintaining a set of open
databases will normally be preferable to repeatedly opening and closing the database for each
new query.

The DB->open() method returns a non-zero error value on failure and 0 on success. If DB-
>open() fails, the DB->close() (page 13) method must be called to discard the DB handle.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DB_ENV->txn_begin() (page 615); if the operation is part

of a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DB_ENV->cdsgroup_begin() (page 607); otherwise NULL. If no transaction handle is specified,
but the DB_AUTO_COMMIT flag is specified, the operation will be implicitly transaction
protected. Note that transactionally protected operations on a DB handle requires the DB
handle itself be transactionally protected during its open. Also note that the transaction must
be committed before the handle is closed; see Berkeley DB handles for more information.

file

The file parameter is used as the name of an underlying file that will be used to back the
database; see File naming for more information.

In-memory databases never intended to be preserved on disk may be created by setting the
file parameter to NULL. Whether other threads of control can access this database is driven
entirely by whether the database parameter is set to NULL.

When using a Unicode build on Windows (the default), the file argument will be interpreted as
a UTF-8 string, which is equivalent to ASCII for Latin characters.

9/9/2013

DB C API Page 70

../../programmer_reference/program_scope.html
../../programmer_reference/env_naming.html

Library Version 11.2.5.3 The DB Handle

database

The database parameter is optional, and allows applications to have multiple databases in a
single file. Although no database parameter needs to be specified, it is an error to attempt
to open a second database in a file that was not initially created using a database name.
Further, the database parameter is not supported by the Queue format. Finally, when opening
multiple databases in the same physical file, it is important to consider locking and memory
cache issues; see Opening multiple databases in a single file for more information.

If both the database and file parameters are NULL, the database is strictly temporary and
cannot be opened by any other thread of control. Thus the database can only be accessed by
sharing the single database handle that created it, in circumstances where doing so is safe.

If the database parameter is not set to NULL, the database can be opened by other threads

of control and will be replicated to client sites in any replication group, regardless of whether
the file parameter is set to NULL.

type

The type parameter is of type DBTYPE, and must be set to one of DB_BTREE, DB_HASH,
DB_HEAP, DB_QUEUE, DB_RECNO, or DB_UNKNOWN. If type is DB_UNKNOWN, the database must
already exist and DB->open () will automatically determine its type. The DB->get_type() (page
64) method may be used to determine the underlying type of databases opened using
DB_UNKNOWN.

It is an error to specify the incorrect type for a database that already exists.
flags

The flags parameter must be set to zero or by bitwise inclusively OR'ing together one or more
of the following values:

« DB_AUTO_COMMIT

Enclose the DB->open() call within a transaction. If the call succeeds, the open operation
will be recoverable and all subsequent database modification operations based on this
handle will be transactionally protected. If the call fails, no database will have been
created.

e DB_CREATE

Create the database. If the database does not already exist and the DB_CREATE flag is not
specified, the DB->open () will fail.

 DB_EXCL

Return an error if the database already exists. The DB_EXCL flag is only meaningful when
specified with the DB_CREATE. flag.

e DB_MULTIVERSION

9/9/2013

DB C API Page 71

../../programmer_reference/am_opensub.html

Library Version 11.2.5.3 The DB Handle

Open the database with support for multiversion concurrency control. This will cause
updates to the database to follow a copy-on-write protocol, which is required to support
snapshot isolation. The DB_MULTIVERSION flag requires that the database be transactionally
protected during its open and is not supported by the queue format.

e DB_NOMMAP

Do not map this database into process memory (see the DB_ENV->set_mp_mmapsize() (page
444) method for further information).

e DB_RDONLY

Open the database for reading only. Any attempt to modify items in the database will fail,
regardless of the actual permissions of any underlying files.

e DB_READ_UNCOMMITTED

Support transactional read operations with degree 1 isolation. Read operations on the
database may request the return of modified but not yet committed data. This flag must
be specified on all DB handles used to perform dirty reads or database updates, otherwise
requests for dirty reads may not be honored and the read may block.

e DB_THREAD

Cause the DB handle returned by DB->open() to be free-threaded; that is, concurrently
usable by multiple threads in the address space.

Note that this flag is incompatible with the DB->set_lk_exclusive() method.
e DB_TRUNCATE

Physically truncate the underlying file, discarding all previous databases it might have
held. Underlying filesystem primitives are used to implement this flag. For this reason, it is
applicable only to the file and cannot be used to discard databases within a file.

The DB_TRUNCATE flag cannot be lock or transaction-protected, and it is an error to specify
it in a locking or transaction-protected environment.

mode
On Windows systems, the mode parameter is ignored.

On UNIX systems or in IEEE/ANSI Std 1003.1 (POSIX) environments, files created by the
database open are created with mode mode (as described in chmod(2)) and modified by the
process’ umask value at the time of creation (see umask(2)). Created files are owned by the
process owner; the group ownership of created files is based on the system and directory
defaults, and is not further specified by Berkeley DB. System shared memory segments
created by the database open are created with mode mode, unmodified by the process’ umask
value. If mode is 0, the database open will use a default mode of readable and writable by
both owner and group.

9/9/2013

DB C API Page 72

../../programmer_reference/transapp_read.html

Library Version 11.2.5.3 The DB Handle

Environment Variables

If the database was opened within a database environment, the environment variable
DB_HOME may be used as the path of the database environment home.

DB->open() is affected by any database directory specified using the DB_ENV-
>set_data_dir() (page 273) method, or by setting the "set_data_dir" string in the
environment's DB_CONFIG file.

» TMPDIR

If the file and dbenv parameters to DB->open() are NULL, the environment variable
TMPDIR may be used as a directory in which to create temporary backing files

Errors

The DB->open() method may fail and return one of the following non-zero errors:
DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See DB->set_Llk_exclusive() (page
122) for more information.

ENOENT

The file or directory does not exist.

ENOENT

A nonexistent re_source file was specified.
DB_OLD_VERSION

The database cannot be opened without being first upgraded.
EEXIST

DB_CREATE and DB_EXCL were specified and the database exists.
EINVAL

If an unknown database type, page size, hash function, pad byte, byte order, or a flag value
or parameter that is incompatible with the specified database was specified; the DB_THREAD
flag was specified and fast mutexes are not available for this architecture; the DB_THREAD

9/9/2013

DB C API Page 73

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.3 The DB Handle

flag was specified to DB->open(), but was not specified to the DB_ENV->open() call for
the environment in which the DB handle was created; a backing flat text file was specified
with either the DB_THREAD flag or the provided database environment supports transaction
processing; a Heap database is in use and DB->set_heapsize() (page 119) was used to set

a heap size that is different from the value used to create the database or an invalid heap
region size was set using DB->set_heap_regionsize() (page 121); or if an invalid flag value or
parameter was specified.

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.
Class

DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 74

Library Version 11.2.5.3 The DB Handle

DB->put()

#tinclude <db.h>

int
DB->put(DB *db,
DB_TXN *txnid, DBT *key, DBT *data, u_int32_t flags);

The DB->put () method stores key/data pairs in the database. The default behavior of the
DB->put() function is to enter the new key/data pair, replacing any previously existing key

if duplicates are disallowed, or adding a duplicate data item if duplicates are allowed. If the
database supports duplicates, the DB->put() method adds the new data value at the end of
the duplicate set. If the database supports sorted duplicates, the new data value is inserted at
the correct sorted location.

Unless otherwise specified, the DB->put () method returns a non-zero error value on failure
and 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DB_ENV->txn_begin() (page 615); if the operation is part
of a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned
from DB_ENV->cdsgroup_begin() (page 607); otherwise NULL. If no transaction handle

is specified, but the operation occurs in a transactional database, the operation will be
implicitly transaction protected.

key
The key DBT operated on.

If creating a new record in a Heap database, the key DBT must be empty. The put method will
return the new record's Record ID (RID) in the key DBT.

data

The data DBT operated on.

flags

The flags parameter must be set to 0 or one of the following values:
e DB_APPEND

Append the key/data pair to the end of the database. For the DB_APPEND flag to be
specified, the underlying database must be a Heap, Queue or Recno database. The record
number allocated to the record is returned in the specified key.

There is a minor behavioral difference between the Recno and Queue access methods for
the DB_APPEND flag. If a transaction enclosing a DB->put () operation with the DB_APPEND
flag aborts, the record number may be reallocated in a subsequent DB_APPEND operation if

9/9/2013 DB C API Page 75

Library Version 11.2.5.3 The DB Handle

you are using the Recno access method, but it will not be reallocated if you are using the
Queue access method.

For a Heap database, if the put operation results in the creation of a new record, then this
flag is required.

DB_NODUPDATA

In the case of the Btree and Hash access methods, enter the new key/data pair only if it
does not already appear in the database.

The DB_NODUPDATA flag may only be specified if the underlying database has been
configured to support sorted duplicates. The DB_NODUPDATA flag may not be specified to
the Queue or Recno access methods.

The DB->put () method will return DB_KEYEXIST (page 182) if DB_NODUPDATA is set and
the key/data pair already appears in the database.

DB_NOOVERWRITE

Enter the new key/data pair only if the key does not already appear in the database. The
DB->put () method call with the DB_NOOVERWRITE flag set will fail if the key already exists
in the database, even if the database supports duplicates.

The DB->put () method will return DB_KEYEXIST (page 182) if DB_NOOVERWRITE is set and
the key already appears in the database.

This enforcement of uniqueness of keys applies only to the primary key. The behavior

of insertions into secondary databases is not affected by the DB_NOOVERWRITE flag. In
particular, the insertion of a record that would result in the creation of a duplicate key in a
secondary database that allows duplicates would not be prevented by the use of this flag.

DB_MULTIPLE

Put multiple data items using keys from the buffer to which the key parameter refers and
data values from the buffer to which the data parameter refers.

To put records in bulk with the btree or hash access methods, construct bulk
buffers in the key and data DBT using DB_MULTIPLE_WRITE_INIT (page 195) and
DB_MULTIPLE_WRITE_NEXT (page 196). To put records in bulk with the recno

or queue access methods, construct bulk buffers in the data DBT as before, but
construct the key DBT using DB_MULTIPLE_RECNO_WRITE_INIT (page 200) and
DB_MULTIPLE_RECNO_WRITE_NEXT (page 201) with a data size of zero.

A successful bulk operation is logically equivalent to a loop through each key/data pair,
performing a DB->put() (page 75) for each one.

See DBT and Bulk Operations (page 189) for more information on working with bulk
updates.

The DB_MULTIPLE flag may only be used alone, or with the DB_OVERWRITE_DUP option.

9/9/2013

DB C API Page 76

Library Version 11.2.5.3 The DB Handle

e DB_MULTIPLE_KEY

Errors

Put multiple data items using keys and data from the buffer to which the key parameter
refers.

To put records in bulk with the btree or hash access methods, construct a single

bulk buffer in the key DBT using DB_MULTIPLE_WRITE_INIT (page 195) and
DB_MULTIPLE_KEY_WRITE_NEXT (page 198). To put records in bulk with the

recno or queue access methods, construct a bulk buffer in the key DBT using
DB_MULTIPLE_RECNO_WRITE_INIT (page 200) and DB_MULTIPLE_RECNO_WRITE_NEXT (page
201).

See DBT and Bulk Operations (page 189) for more information on working with bulk
updates.

The DB_MULTIPLE_KEY flag may only be used alone, or with the DB_OVERWRITE_DUP option.
DB_OVERWRITE_DUP

Ignore duplicate records when overwriting records in a database configured for sorted
duplicates.

Normally, if a database is configured for sorted duplicates, an attempt to put a record that
compares identically to a record already existing in the database will fail. Using this flag
causes the put to silently proceed, without failure.

This flag is extremely useful when performing bulk puts (using the DB_MULTIPLE or
DB_MULTIPLE_KEY flags). Depending on the number of records you are writing to the
database with a bulk put, you may not want the operation to fail in the event that

a duplicate record is encountered. Using this flag along with the DB_MULTIPLE or
DB_MULTIPLE_KEY flags allows the bulk put to complete, even if a duplicate record is
encountered.

This flag is also useful if you are using a custom comparison function that compares only
part of the data portion of a record. In this case, two records can compare equally when,
in fact, they are not equal. This flag allows the put to complete, even if your custom
comparison routine claims the two records are equal.

The DB->put () method may fail and return one of the following non-zero errors:

DB_FOREIGN_CONFLICT

A foreign key constraint violation has occurred. This can be caused by one of two things:

1.

An attempt was made to add a record to a constrained database, and the key used for
that record does not exist in the foreign key database.

DB_FOREIGN_ABORT (page 11) was declared for a foreign key database, and then
subsequently a record was deleted from the foreign key database without first removing
it from the constrained secondary database.

9/9/2013

DB C API Page 77

Library Version 11.2.5.3 The DB Handle

DB_HEAP_FULL

An attempt was made to add or update a record in a Heap database. However, the size of the
database was constrained using the DB->set_heapsize() (page 119) method, and that limit has
been reached.

DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See DB->set_lk_exclusive() (page
122) for more information.

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.
EACCES

An attempt was made to modify a read-only database.
EINVAL

If a record number of 0 was specified; an attempt was made to add a record to a fixed-length
database that was too large to fit; an attempt was made to do a partial put; an attempt

was made to add a record to a secondary index; or if an invalid flag value or parameter was
specified.

ENOSPC

A btree exceeded the maximum btree depth (255).
Class

DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 78

Library Version 11.2.5.3 The DB Handle

DB->remove()

#tinclude <db.h>

int
DB->remove(DB *db,
const char *file, const char *database, u_int32_t flags);

The DB->remove () method removes the database specified by the file and database
parameters. If no database is specified, the underlying file represented by file is removed,
incidentally removing all of the databases it contained.

Applications should never remove databases with open DB handles, or in the case of removing

a file, when any database in the file has an open handle. For example, some architectures do

not permit the removal of files with open system handles. On these architectures, attempts to
remove databases currently in use by any thread of control in the system may fail.

The DB->remove () method should not be called if the remove is intended to be
transactionally safe; the DB_ENV->dbremove() (page 216) method should be used instead.

The DB->remove () method may not be called after calling the DB->open() (page 70) method
on any DB handle. If the DB->open() (page 70) method has already been called on a DB handle,
close the existing handle and create a new one before calling DB->remove. ()

The DB handle may not be accessed again after DB->remove() is called, regardless of its
return.

The DB->remove () method returns a non-zero error value on failure and 0 on success.

Parameters

file

The file parameter is the physical file which contains the database(s) to be removed.
database

The database parameter is the database to be removed.

flags

The flags parameter is currently unused, and must be set to 0.

Environment Variables

If the database was opened within a database environment, the environment variable DB_HOME
may be used as the path of the database environment home.

DB->remove() is affected by any database directory specified using the DB_ENV-
>set_data_dir() (page 273) method, or by setting the "set_data_dir" string in the
environment's DB_CONFIG file.

9/9/2013

DB C API Page 79

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.3 The DB Handle

Errors
The DB->remove () method may fail and return one of the following non-zero errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

ENOENT

The file or directory does not exist.
Class

DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 80

Library Version 11.2.5.3 The DB Handle

DB->rename()

#tinclude <db.h>

int
DB->rename(DB *db, const char *file,
const char *database, const char *newname, u_int32_t flags);

The DB->rename () method renames the database specified by the file and database
parameters to newname. If no database is specified, the underlying file represented by file is
renamed, incidentally renaming all of the databases it contained.

Applications should not rename databases that are currently in use. If an underlying file is
being renamed and logging is currently enabled in the database environment, no database

in the file may be open when the DB->rename() method is called. In particular, some
architectures do not permit renaming files with open handles. On these architectures,
attempts to rename databases that are currently in use by any thread of control in the system
may fail.

The DB->rename () method should not be called if the rename is intended to be
transactionally safe; the DB_ENV->dbrename() (page 218) method should be used instead.

The DB->rename () method may not be called after calling the DB->open() (page 70) method
on any DB handle. If the DB->open() (page 70) method has already been called on a DB handle,
close the existing handle and create a new one before calling DB->rename().

The DB handle may not be accessed again after DB->rename() is called, regardless of its
return.

The DB->rename() method returns a non-zero error value on failure and 0 on success.

Parameters

file
The file parameter is the physical file which contains the database(s) to be renamed.

When using a Unicode build on Windows (the default), the file argument will be interpreted as
a UTF-8 string, which is equivalent to ASCII for Latin characters.

database

The database parameter is the database to be renamed.
newname

The newname parameter is the new name of the database or file.
flags

The flags parameter is currently unused, and must be set to 0.

9/9/2013

DB C API Page 81

Library Version 11.2.5.3 The DB Handle

Environment Variables

If the database was opened within a database environment, the environment variable DB_HOME
may be used as the path of the database environment home.

DB->rename() is affected by any database directory specified using the DB_ENV-
>set_data_dir() (page 273) method, or by setting the "set_data_dir" string in the
environment's DB_CONFIG file.

Errors
The DB->rename() method may fail and return one of the following non-zero errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

ENOENT

The file or directory does not exist.
Class

DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 82

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.3 The DB Handle

DB->set_alloc()

#tinclude <db.h>

int

DB->set_alloc(DB *db,
void *(*app_malloc)(size_t),
void *(*app_realloc)(void *, size_t),
void (*app_free)(void *));

Set the allocation functions used by the DB_ENV and DB methods to allocate or free memory
owned by the application.

There are a number of interfaces in Berkeley DB where memory is allocated by the library

and then given to the application. For example, the DB_DBT_MALLOC flag, when specified

in the DBT object, will cause the DB methods to allocate and reallocate memory which

then becomes the responsibility of the calling application. (See DBT for more information.)
Other examples are the Berkeley DB interfaces which return statistical information to

the application: DB->stat() (page 141), DB_ENV->lock_stat() (page 362), DB_ENV-
>log_archive() (page 380), DB_ENV->log_stat() (page 394), DB_ENV->memp_stat() (page

428), and DB_ENV->txn_stat() (page 621). There is one method in Berkeley DB where

memory is allocated by the application and then given to the library: DB->associate() (page 6).

On systems in which there may be multiple library versions of the standard allocation
routines (notably Windows NT), transferring memory between the library and the application
will fail because the Berkeley DB library allocates memory from a different heap than the
application uses to free it. To avoid this problem, the DB_ENV->set_alloc() (page 264) and
DB->set_alloc() methods can be used to pass Berkeley DB references to the application's
allocation routines.

It is not an error to specify only one or two of the possible allocation function parameters to
these interfaces; however, in that case the specified interfaces must be compatible with the
standard library interfaces, as they will be used together. The functions specified must match
the calling conventions of the ANSI C X3.159-1989 (ANSI C) library routines of the same name.

Because databases opened within Berkeley DB environments use the allocation interfaces
specified to the environment, it is an error to attempt to set those interfaces in a database
created within an environment.

The DB->set_alloc() method may not be called after the DB->open() (page 70) method is
called.

The DB->set_alloc() method returns a non-zero error value on failure and 0 on success.

Errors

The DB->set_alloc() method may fail and return one of the following non-zero errors:
EINVAL

If called in a database environment, or called after DB->open() (page 70) was called; or if an
invalid flag value or parameter was specified.

9/9/2013

DB C API Page 83

Library Version 11.2.5.3 The DB Handle

Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 84

Library Version 11.2.5.3 The DB Handle

DB->set_append_recno()

#include <db.h>

int
DB->set_append_recno(DB *,
int (*db_append_recno_fcn) (DB *dbp, DBT *data, db_recno_t recno));

When using the DB_APPEND option of the DB->put() (page 75) method, it may be useful to

modify the stored data based on the generated key. If a callback function is specified using
the DB->set_append_recno() method, it will be called after the record number has been
selected, but before the data has been stored.

The DB->set_append_recno() method configures operations performed using the specified
DB handle, not all operations performed on the underlying database.

The DB->set_append_recno() method may not be called after the DB->open() (page 70)
method is called.

The DB->set_append_recno() method returns a non-zero error value on failure and 0 on
success.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

Parameters

db_append_recno_fcn

The db_append_recno_fcn parameter is a function to call after the record number has been
selected but before the data has been stored into the database. The function takes three
parameters:

e dbp

The dbp parameter is the enclosing database handle.
» data

The data parameter is the data DBT to be stored.
* recno

The recno parameter is the generated record number.

The called function may modify the data DBT. If the function needs to allocate memory for
the data field, the flags field of the returned DBT should be set to DB_DBT_APPMALLOC, which
indicates that Berkeley DB should free the memory when it is done with it.

9/9/2013

DB C API Page 85

Library Version 11.2.5.3 The DB Handle

The callback function must return 0 on success and errno or a value outside of the Berkeley
DB error name space on failure.

Errors

The DB->set_append_recno() method may fail and return one of the following non-zero
errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 86

Library Version 11.2.5.3 The DB Handle

DB->set_bt_compare()

#tinclude <db.h>

int
DB->set_bt_compare(DB *db,
int (*bt_compare_fcn) (DB *db, const DBT *dbtl, const DBT *dbt2));

Set the Btree key comparison function. The comparison function is called whenever it is
necessary to compare a key specified by the application with a key currently stored in the
tree.

If no comparison function is specified, the keys are compared lexically, with shorter keys
collating before longer keys.

The DB->set_bt_compare() method configures operations performed using the specified DB
handle, not all operations performed on the underlying database.

The DB->set_bt_compare() method may not be called after the DB->open() (page 70)
method is called. If the database already exists when DB->open() (page 70) is called, the
information specified to DB->set_bt_compare() must be the same as that historically used to
create the database or corruption can occur.

The DB->set_bt_compare() method returns a non-zero error value on failure and 0 on
success.

Parameters

bt_compare_fcn

The bt_compare_fcn function is the application-specified Btree comparison function. The
comparison function takes three parameters:

e db

The db parameter is the enclosing database handle.
e dbtl

The dbt1 parameter is the DBT representing the application supplied key.
e dbt2

The dbt2 parameter is the DBT representing the current tree's key.

The bt_compare_fcn function must return an integer value less than, equal to, or greater
than zero if the first key parameter is considered to be respectively less than, equal to, or
greater than the second key parameter. In addition, the comparison function must cause the
keys in the database to be well-ordered. The comparison function must correctly handle any
key values used by the application (possibly including zero-length keys). In addition, when
Btree key prefix comparison is being performed (see DB->set_bt_prefix() (page 93) for

9/9/2013

DB C API Page 87

Library Version 11.2.5.3 The DB Handle

more information), the comparison routine may be passed a prefix of any database key. The
data and size fields of the DBT are the only fields that may be used for the purposes of this
comparison, and no particular alignment of the memory to which by the data field refers may
be assumed.

Errors
The DB->set_bt_compare() method may fail and return one of the following non-zero errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 88

Library Version 11.2.5.3 The DB Handle

DB->set_bt_compress()

#tinclude <db.h>

int
DB->set_bt_compress(DB *db,
int (*bt_compress_fcn) (DB *db, const DBT *prevKey,
const DBT *prevData, const DBT *key, const DBT *data, DBT *dest),
int (*bt_decompress_fcn) (DB *db, const DBT *prevKey,
const DBT *prevData, DBT *compressed, DBT *destKey,
DBT *destData));

Set the Btree compression and decompression functions. The compression function is called
whenever a key/data pair is added to the tree and the decompression function is called
whenever data is requested from the tree.

This method is only compatible with prefix-based compression routines. This callback is mostly
intended for compressing keys. From a performance perspective, it is better to perform
compression of the data portion of your records outside of the Berkeley DB library.

If NULL function pointers are specified, then default compression and decompression functions
are used. Berkeley DB's default compression function performs prefix compression on all keys
and prefix compression on data values for duplicate keys. If using default compression, both
the default compression and decompression functions must be used.

The DB->set_bt_compress() method configures operations performed using the specified DB
handle, not all operations performed on the underlying database.

The DB->set_bt_compress() method may not be called after the DB->open() (page 70)
method is called. If the database already exists when DB->open() (page 70) is called, the
information specified to DB->set_bt_compress() must be the same as that historically used
to create the database or corruption can occur.

The DB->set_bt_compress() method returns a non-zero error value on failure and 0 on
success.

Parameters

bt_compress_fcn

The bt_compress_fcn function is the application-specified Btree compression function. The
compression function takes six parameters:

e db
The db parameter is the enclosing database handle.
e prevKey

The prevKey parameter is the DBT representing the key immediately preceding the
application supplied key.

9/9/2013

DB C API Page 89

Library Version 11.2.5.3 The DB Handle

prevData

The prevData parameter is the DBT representing the data associated with prevKey.
key

The key parameter is the DBT representing the application supplied key.

data

The data parameter is the DBT representing the application supplied data.

dest

The dest parameter is the DBT representing the data stored in the tree, where the function
should write the compressed data.

The bt_compress_fcn function must return 0 on success and a non-zero value on failure. If
the compressed data cannot fit in dest->data (the size of which is stored in dest->ulen), the
function should identify the required buffer size in dest->size and return DB_BUFFER_SMALL.

bt_decompress_fcn

The bt_decompress_fcn function is the application-specified Btree decompression function.
The decompression function takes six parameters:

db
The db parameter is the enclosing database handle.
prevKey

The prevKey parameter is the DBT representing the key immediately preceding the key
being decompressed.

prevData
The prevData parameter is the DBT representing the data associated with prevKey.
compressed

The compressed parameter is the DBT representing the data stored in the tree, that is, the
compressed data.

destKey

The key parameter is the DBT where the decompression function should store the
decompressed key.

destData

The data parameter is the DBT where the decompression function should store the
decompressed key.

9/9/2013

DB C API Page 90

Library Version 11.2.5.3 The DB Handle

The bt_decompress_fcn function must return 0 on success and a non-zero value on failure. If
the decompressed data cannot fit in key->data or data->data (the size of which is available in
the DBT's ulen field), the function should identify the required buffer size using the DBT's size
field and return DB_BUFFER_SMALL.

Errors

The DB->set_bt_compress() method may fail and return one of the following non-zero
errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 91

Library Version 11.2.5.3 The DB Handle

DB->set_bt_minkey()

#tinclude <db.h>

int
DB->set_bt_minkey(DB *db, u_int32_t bt_minkey);

Set the minimum number of key/data pairs intended to be stored on any single Btree leaf
page.

This value is used to determine if key or data items will be stored on overflow pages instead
of Btree leaf pages. For more information on the specific algorithm used, see Minimum keys
per page. The bt_minkey value specified must be at least 2; if bt_minkey is not explicitly
set, a value of 2 is used.

The DB->set_bt_minkey() method configures a database, not only operations performed
using the specified DB handle.

The DB->set_bt_minkey() method may not be called after the DB->open() (page 70) method
is called. If the database already exists when DB->open() (page 70) is called, the information
specified to DB->set_bt_minkey() will be ignored.

The DB->set_bt _minkey() method returns a non-zero error value on failure and 0 on success.

Parameters
bt_minkey

The bt_minkey parameter is the minimum number of key/data pairs intended to be stored on
any single Btree leaf page.

Errors
The DB->set_bt_minkey() method may fail and return one of the following non-zero errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB

See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 92

../../programmer_reference/bt_conf.html#am_conf_bt_minkey
../../programmer_reference/bt_conf.html#am_conf_bt_minkey

Library Version 11.2.5.3 The DB Handle

DB->set_bt_prefix()

#tinclude <db.h>

int
DB->set_bt_prefix(DB *db,
size_t (*bt_prefix_fcn)(DB *, const *dbtl, const *dbt2));

Set the Btree prefix function. The prefix function is used to determine the amount by

which keys stored on the Btree internal pages can be safely truncated without losing their
uniqueness. See the Btree prefix comparison section of the Berkeley DB Reference Guide for
more details about how this works. The usefulness of this is data-dependent, but can produce
significantly reduced tree sizes and search times in some data sets.

If no prefix function or key comparison function is specified by the application, a default
lexical comparison function is used as the prefix function. If no prefix function is specified and
a key comparison function is specified, no prefix function is used. It is an error to specify a
prefix function without also specifying a Btree key comparison function.

The DB->set_bt_prefix() method configures operations performed using the specified DB
handle, not all operations performed on the underlying database.

The DB->set_bt_prefix() method may not be called after the DB->open() (page 70) method
is called. If the database already exists when DB->open() (page 70) is called, the information
specified to DB->set_bt_prefix() must be the same as that historically used to create the

database or corruption can occur.

The DB->set_bt_prefix() method returns a non-zero error value on failure and 0 on success.

Parameters

bt_prefix_fcn

The bt_prefix_fcn function is the application-specific Btree prefix function. The prefix
function takes three parameters:

e db

The db parameter is the enclosing database handle.
e dbtl

The dbt1 parameter is a DBT representing a database key.
e dbt2

The dbt2 parameter is a DBT representing a database key.

The bt_prefix_fcn function must return the number of bytes of the second key parameter
that would be required by the Btree key comparison function to determine the second key
parameter’s ordering relationship with respect to the first key parameter. If the two keys are

9/9/2013

DB C API Page 93

../../programmer_reference/bt_conf.html#am_conf_bt_prefix

Library Version 11.2.5.3 The DB Handle

equal, the key length should be returned. The prefix function must correctly handle any key
values used by the application (possibly including zero-length keys). The data and size fields
of the DBT are the only fields that may be used for the purposes of this determination, and no
particular alignment of the memory to which the data field refers may be assumed.

Errors
The DB->set_bt_prefix() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 94

Library Version 11.2.5.3 The DB Handle

DB->set_cachesize()
#include <db.h>
int
DB->set_cachesize(DB *db,
u_int32_t gbytes, u_int32_t bytes, int ncache);

Set the size of the shared memory buffer pool -- that is, the cache. The cache should be the
size of the normal working data set of the application, with some small amount of additional
memory for unusual situations. (Note: the working set is not the same as the number of pages
accessed simultaneously, and is usually much larger.)

The default cache size is 256KB, and may not be specified as less than 20KB. Any cache size
less than 500MB is automatically increased by 25% to account for buffer pool overhead; cache
sizes larger than 500MB are used as specified. The maximum size of a single cache is 4GB on
32-bit systems and 10TB on 64-bit systems. (All sizes are in powers-of-two, that is, 256KB

is 2*18 not 256,000.) For information on tuning the Berkeley DB cache size, see Selecting a
cache size.

It is possible to specify caches to Berkeley DB large enough they cannot be allocated
contiguously on some architectures. For example, some releases of Solaris limit the amount of
memory that may be allocated contiguously by a process. If ncache is 0 or 1, the cache will be
allocated contiguously in memory. If it is greater than 1, the cache will be split across ncache
separate regions, where the region size is equal to the initial cache size divided by ncache.

Because databases opened within Berkeley DB environments use the cache specified to
the environment, it is an error to attempt to set a cache in a database created within an
environment.

The DB->set_cachesize() method may not be called after the DB->open() (page 70) method
is called.

The DB->set_cachesize() method returns a non-zero error value on failure and 0 on success.
Parameters

gbytes

The size of the cache is set to gbytes gigabytes plus bytes.

bytes

The size of the cache is set to gbytes gigabytes plus bytes.

ncache

The ncache parameter is the number of caches to create.
Errors

The DB->set_cachesize() method may fail and return one of the following non-zero errors:

9/9/2013 DB C API Page 95

../../programmer_reference/general_am_conf.html#am_conf_cachesize
../../programmer_reference/general_am_conf.html#am_conf_cachesize

Library Version 11.2.5.3 The DB Handle

EINVAL

If the specified cache size was impossibly small; the method was called after DB-
>open() (page 70) was called; or if an invalid flag value or parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 96

Library Version 11.2.5.3 The DB Handle

DB->set_create_dir()

#tinclude <db.h>

int
DB->set_create_dir(DB *db, const char *dir);

Specify which directory a database should be created in or looked for.

The DB->set_create_dir() method may not be called after the DB->open() (page 70)
method is called.

The DB->set_create_dir() method returns a non-zero error value on failure and 0 on
success.

Parameters

dir

The dir will be used to create or locate the database file specified in the DB->open() (page 70)
method call. The directory must be one of the directories in the environment list specified by
DB_ENV->add_data_dir() (page 206).

Errors

The DB->set_create_dir() method may fail and return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class

DB

See Also

Database and Related Methods (page 3)

9/9/2013

DB C API Page 97

Library Version 11.2.5.3 The DB Handle

DB->set_dup_compare()

#tinclude <db.h>

int
DB->set_dup_compare(DB *db,
int (*dup_compare_fcn) (DB *db, const DBT *dbtl, const DBT *dbt2));

Set the duplicate data item comparison function. The comparison function is called whenever
it is necessary to compare a data item specified by the application with a data item currently
stored in the database. Calling DB->set_dup_compare() implies calling DB->set_flags() (page
108) with the DB_DUPSORT flag.

If no comparison function is specified, the data items are compared lexically, with shorter
data items collating before longer data items.

The DB->set_dup_compare() method may not be called after the DB->open() (page 70)
method is called. If the database already exists when DB->open() (page 70) is called, the
information specified to DB->set_dup_compare() must be the same as that historically used
to create the database or corruption can occur.

The DB->set_dup_compare() method returns a non-zero error value on failure and 0 on
success.

Parameters

dup_compare_fcn

The dup_compare_fcn function is the application-specified duplicate data item comparison
function. The function takes three arguments:

e db

The db parameter is the enclosing database handle.
e dbtl

The dbt1 parameter is a DBT representing the application supplied data item.
e dbt2

The dbt2 parameter is a DBT representing the current tree's data item.

The dup_compare_fcn function must return an integer value less than, equal to, or greater
than zero if the first data item parameter is considered to be respectively less than, equal
to, or greater than the second data item parameter. In addition, the comparison function
must cause the data items in the set to be well-ordered. The comparison function must
correctly handle any data item values used by the application (possibly including zero-length
data items). The data and size fields of the DBT are the only fields that may be used for the
purposes of this comparison, and no particular alignment of the memory to which the data
field refers may be assumed.

9/9/2013

DB C API Page 98

Library Version 11.2.5.3 The DB Handle

Errors

The DB->set_dup_compare() method may fail and return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.
Class

DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 99

Library Version 11.2.5.3 The DB Handle

DB->set_encrypt()

#tinclude <db.h>

int
DB->set_encrypt(DB *db, const char *passwd, u_int32_t flags);

Set the password used by the Berkeley DB library to perform encryption and decryption.

Because databases opened within Berkeley DB environments use the password specified to
the environment, it is an error to attempt to set a password in a database created within an
environment.

The DB->set_encrypt() method may not be called after the DB->open() (page 70) method is
called.

The DB->set_encrypt() method returns a non-zero error value on failure and 0 on success.

Parameters
passwd
The passwd parameter is the password used to perform encryption and decryption.
flags
The flags parameter must be set to 0 or the following value:
« DB_ENCRYPT_AES

Use the Rijndael/AES (also known as the Advanced Encryption Standard and Federal
Information Processing Standard (FIPS) 197) algorithm for encryption or decryption.

Errors
The DB->set_encrypt() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

EOPNOTSUPP

Cryptography is not available in this Berkeley DB release.
Class

DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 100

Library Version 11.2.5.3 The DB Handle

DB->set_errcall()

#tinclude <db.h>

void
DB->set_errcall(DB *, void (*db_errcall_fcn)
(const DB_ENV *dbenv, const char *errpfx, const char *msg));

When an error occurs in the Berkeley DB library, a Berkeley DB error or an error return value
is returned by the interface. In some cases, however, the errno value may be insufficient to
completely describe the cause of the error, especially during initial application debugging.

The DB_ENV->set_errcall() (page 285) and DB->set_errcall() methods are used to enhance
the mechanism for reporting error messages to the application. In some cases, when an error
occurs, Berkeley DB will call db_errcall_fcn() with additional error information. It is up to the
db_errcall_fcn() function to display the error message in an appropriate manner.

Setting db_errcall_fcn to NULL unconfigures the callback interface.

Alternatively, you can use the DB->set_errfile() (page 103) or DB->set_errfile() (page 287)
methods to display the additional information via a C library FILE *.

This error-logging enhancement does not slow performance or significantly increase
application size, and may be run during normal operation as well as during application
debugging.

For DB handles opened inside of Berkeley DB environments, calling the DB->set_errcall()
method affects the entire environment and is equivalent to calling the DB_ENV-
>set_errcall() (page 285) method.

When used on a database that was not opened in an environment, the DB->set_errcall()
method configures operations performed using the specified DB handle, not all operations
performed on the underlying database.

The DB->set_errcall() method may be called at any time during the life of the application.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

Parameters

db_errcall_fcn

The db_errcall_fcn parameter is the application-specified error reporting function. The
function takes three parameters:

e dbenv

9/9/2013

DB C API Page 101

Library Version 11.2.5.3 The DB Handle

The dbenv parameter is the enclosing database environment.
e errpfx

The errpfx parameter is the prefix string (as previously set by DB->set_errpfx() (page 105)
or DB_ENV->set_errpfx() (page 289)).

* msg
The msg parameter is the error message string.
Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 102

Library Version 11.2.5.3 The DB Handle

DB->set_errfile()

#include <db.h>

void
DB->set_errfile(DB *db, FILE *errfile);

When an error occurs in the Berkeley DB library, a Berkeley DB error or an error return value
is returned by the interface. In some cases, however, the errno value may be insufficient to
completely describe the cause of the error, especially during initial application debugging.

The DB_ENV->set_errfile() (page 287) and DB->set_errfile() methods are used to enhance
the mechanism for reporting error messages to the application by setting a C library FILE * to
be used for displaying additional Berkeley DB error messages. In some cases, when an error
occurs, Berkeley DB will output an additional error message to the specified file reference.

Alternatively, you can use the DB_ENV->set_errcall() (page 285) or DB->set_errcall() (page
101) methods to capture the additional error information in a way that does not use C library
FILE *'s.

The error message will consist of the prefix string and a colon (":") (if a prefix string was
previously specified using DB->set_errpfx() (page 105) or DB_ENV->set_errpfx() (page 289)),
an error string, and a trailing <newline> character.

The default configuration when applications first create DB or DB_ENV handles is as if the
DB_ENV->set_errfile() (page 287) or DB->set_errfile() methods were called with the
standard error output (stderr) specified as the FILE * argument. Applications wanting no
output at all can turn off this default configuration by calling the DB_ENV->set_errfile() (page
287) or DB->set_errfile() methods with NULL as the FILE * argument. Additionally,
explicitly configuring the error output channel using any of the following methods will also
turn off this default output for the application:

e DB->set_errfile()

o DB_ENV->set_errfile() (page 287)
o DB_ENV->set_errcall() (page 285)
« DB->set_errcall() (page 101)

This error logging enhancement does not slow performance or significantly increase
application size, and may be run during normal operation as well as during application
debugging.

For DB handles opened inside of Berkeley DB environments, calling the DB->set_errfile()
method affects the entire environment and is equivalent to calling the DB_ENV-
>set_errfile() (page 287) method.

When used on a database that was not opened in an environment, the DB->set_errfile()
method configures operations performed using the specified DB handle, not all operations
performed on the underlying database.

9/9/2013

DB C API Page 103

Library Version 11.2.5.3 The DB Handle

The DB->set_errfile() method may be called at any time during the life of the application.

Parameters
errfile

The errfile parameter is a C library FILE * to be used for displaying additional Berkeley DB
error information.

Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 104

Library Version 11.2.5.3 The DB Handle

DB->set_errpfx()

#tinclude <db.h>

void
DB->set_errpfx(DB *db, const char *errpfx);

Set the prefix string that appears before error messages issued by Berkeley DB.

The DB->set_errpfx() and DB_ENV->set_errpfx() (page 289) methods do not copy the
memory to which the errpfx parameter refers; rather, they maintain a reference to it.
Although this allows applications to modify the error message prefix at any time (without
repeatedly calling the interfaces), it means the memory must be maintained until the handle
is closed.

For DB handles opened inside of Berkeley DB environments, calling the DB->set_errpfx()
method affects the entire environment and is equivalent to calling the DB_ENV-
>set_errpfx() (page 289) method.

The DB->set_errpfx() method configures operations performed using the specified DB
handle, not all operations performed on the underlying database.

The DB->set_errpfx() method may be called at any time during the life of the application.
Parameters

errpfx

The errpfx parameter is the application-specified error prefix for additional error messages.
Class

DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 105

Library Version 11.2.5.3 The DB Handle

DB->set_feedback()

#tinclude <db.h>

int
DB->set_feedback(DB *,
void (*db_feedback_fcn) (DB *dbp, int opcode, int percent));

Some operations performed by the Berkeley DB library can take non-trivial amounts of time.
The DB->set_feedback() method can be used by applications to monitor progress within
these operations. When an operation is likely to take a long time, Berkeley DB will call the
specified callback function with progress information.

It is up to the callback function to display this information in an appropriate manner.

The DB->set_feedback() method may be called at any time during the life of the
application.

The DB->set_feedback() method returns a non-zero error value on failure and 0 on success.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

Parameters
db_feedback_fcn

The db_feedback_fcn parameter is the application-specified feedback function called to
report Berkeley DB operation progress. The callback function must take three parameters:

« dbp
The dbp parameter is a reference to the enclosing database.
¢ opcode

The opcode parameter is an operation code. The opcode parameter may take on any of the
following values:

e DB_UPGRADE

The underlying database is being upgraded.
e DB_VERIFY

The underlying database is being verified.

e percent

9/9/2013 DB C API Page 106

Library Version 11.2.5.3 The DB Handle

The percent parameter is the percent of the operation that has been completed, specified
as an integer value between 0 and 100.

Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 107

Library Version 11.2.5.3 The DB Handle

DB->set_flags()

#include <db.h>

int
DB->set_flags(DB *db, u_int32_t flags);
Configure a database. Calling DB->set_flags() is additive; there is no way to clear flags.

The DB->set_flags() method may not be called after the DB->open() (page 70) method is
called.

The DB->set_flags() method returns a non-zero error value on failure and 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

General
The following flags may be specified for any Berkeley DB access method:
e DB_CHKSUM

Do checksum verification of pages read into the cache from the backing filestore. Berkeley
DB uses the SHA1 Secure Hash Algorithm if encryption is configured and a general hash
algorithm if it is not.

Calling DB->set_flags() with the DB_CHKSUM flag only affects the specified DB handle
(and any other Berkeley DB handles opened within the scope of that handle).

If the database already exists when DB->open() (page 70) is called, the DB_CHKSUM flag will
be ignored.

e DB_ENCRYPT

Encrypt the database using the cryptographic password specified to the DB_ENV-
>set_encrypt() (page 278) or DB->set_encrypt() (page 100) methods.

Calling DB->set_flags() with the DB_ENCRYPT flag only affects the specified DB handle
(and any other Berkeley DB handles opened within the scope of that handle).

If the database already exists when DB->open() (page 70) is called, the DB_ENCRYPT flag
must be the same as the existing database or an error will be returned.

Encrypted databases are not portable between machines of different byte orders, that
is, encrypted databases created on big-endian machines cannot be read on little-endian
machines, and vice versa.

« DB_TXN_NOT_DURABLE

9/9/2013

DB C API Page 108

Library Version 11.2.5.3 The DB Handle

If set, Berkeley DB will not write log records for this database. This means that updates
of this database exhibit the ACI (atomicity, consistency, and isolation) properties, but

not D (durability); that is, database integrity will be maintained, but if the application or
system fails, integrity will not persist. The database file must be verified and/or restored
from backup after a failure. In order to ensure integrity after application shut down,

the database handles must be closed without specifying DB_NOSYNC, or all database
changes must be flushed from the database environment cache using either the DB_ENV-
>txn_checkpoint() (page 619) or DB_ENV->memp_sync() (page 435) methods. All database
handles for a single physical file must set DB_TXN_NOT_DURABLE, including database
handles for different databases in a physical file.

Calling DB->set_flags() with the DB_TXN_NOT_DURABLE flag only affects the specified DB
handle (and any other Berkeley DB handles opened within the scope of that handle).

Btree
The following flags may be specified for the Btree access method:

+ DB_DUP

Permit duplicate data items in the database; that is, insertion when the key of the key/
data pair being inserted already exists in the database will be successful. The ordering of
duplicates in the database is determined by the order of insertion, unless the ordering is
otherwise specified by use of a cursor operation or a duplicate sort function.

The DB_DUPSORT flag is preferred to DB_DUP for performance reasons. The DB_DUP flag
should only be used by applications wanting to order duplicate data items manually.

Calling DB->set_flags() with the DB_DUP flag affects the database, including all threads
of control accessing the database.

If the database already exists when DB->open() (page 70) is called, the DB_DUP flag must be
the same as the existing database or an error will be returned.

It is an error to specify both DB_DUP and DB_RECNUM.
DB_DUPSORT

Permit duplicate data items in the database; that is, insertion when the key of the key/
data pair being inserted already exists in the database will be successful. The ordering

of duplicates in the database is determined by the duplicate comparison function. If the
application does not specify a comparison function using the DB->set_dup_compare() (page
98) method, a default lexical comparison will be used. It is an error to specify both
DB_DUPSORT and DB_RECNUM.

Calling DB->set_flags() with the DB_DUPSORT flag affects the database, including all
threads of control accessing the database.

If the database already exists when DB->open() (page 70) is called, the DB_DUPSORT flag
must be the same as the existing database or an error will be returned.

9/9/2013

DB C API Page 109

Library Version 11.2.5.3 The DB Handle

e DB_RECNUM

Support retrieval from the Btree using record numbers. For more information, see the
DB_SET_RECNO flag to the DB->get() (page 31) and DBcursor->get() (page 171) methods.

Logical record numbers in Btree databases are mutable in the face of record insertion or
deletion. See the DB_RENUMBER flag in the Recno access method information for further
discussion.

Maintaining record counts within a Btree introduces a serious point of contention, namely
the page locations where the record counts are stored. In addition, the entire database
must be locked during both insertions and deletions, effectively single-threading the
database for those operations. Specifying DB_RECNUM can result in serious performance
degradation for some applications and data sets.

It is an error to specify both DB_DUP and DB_RECNUM.

Calling DB->set_flags() with the DB_RECNUM flag affects the database, including all
threads of control accessing the database.

If the database already exists when DB->open() (page 70) is called, the DB_RECNUM flag
must be the same as the existing database or an error will be returned.

e DB_REVSPLITOFF

Turn off reverse splitting in the Btree. As pages are emptied in a database, the Berkeley
DB Btree implementation attempts to coalesce empty pages into higher-level pages in
order to keep the database as small as possible and minimize search time. This can hurt
performance in applications with cyclical data demands; that is, applications where the
database grows and shrinks repeatedly. For example, because Berkeley DB does page-level
locking, the maximum level of concurrency in a database of two pages is far smaller than
that in a database of 100 pages, so a database that has shrunk to a minimal size can cause
severe deadlocking when a new cycle of data insertion begins.

Calling DB->set_flags() with the DB_REVSPLITOFF flag only affects the specified DB
handle (and any other Berkeley DB handles opened within the scope of that handle).

Hash

The following flags may be specified for the Hash access method:

« DB_DUP
Permit duplicate data items in the database; that is, insertion when the key of the key/
data pair being inserted already exists in the database will be successful. The ordering of
duplicates in the database is determined by the order of insertion, unless the ordering is

otherwise specified by use of a cursor operation.

The DB_DUPSORT flag is preferred to DB_DUP for performance reasons. The DB_DUP flag
should only be used by applications wanting to order duplicate data items manually.

9/9/2013 DB C API Page 110

Library Version 11.2.5.3 The DB Handle

Calling DB->set_flags() with the DB_DUP flag affects the database, including all threads
of control accessing the database.

If the database already exists when DB->open() (page 70) is called, the DB_DUP flag must be
the same as the existing database or an error will be returned.

DB_DUPSORT

Permit duplicate data items in the database; that is, insertion when the key of the key/
data pair being inserted already exists in the database will be successful. The ordering

of duplicates in the database is determined by the duplicate comparison function. If the
application does not specify a comparison function using the DB->set_dup_compare() (page
98) method, a default lexical comparison will be used.

Calling DB->set_flags() with the DB_DUPSORT flag affects the database, including all
threads of control accessing the database.

If the database already exists when DB->open() (page 70) is called, the DB_DUPSORT flag
must be the same as the existing database or an error will be returned.

DB_REVSPLITOFF

Turns off hash bucket compaction. When a hash bucket is emptied, the Berkeley DB Hash
implementation will decrease the hash table size, coalescing buckets. This will decrease the
number of pages in the database. This can hurt performance in applications with cyclical
data demands — that is, applications where the database grows and shrinks repeatedly —
because of the cost of resplitting buckets when they grow again.

Calling DB->set_flags() with the DB_REVSPLITOFF flag only affects the specified DB
handle (and any other Berkeley DB handles opened within the scope of that handle).

Queue
The following flags may be specified for the Queue access method:

e DB_INORDER

The DB_INORDER flag modifies the operation of the DB_CONSUME or DB_CONSUME_WAIT
flags to DB->get() (page 31) to return key/data pairs in order. That is, they will always
return the key/data item from the head of the queue.

The default behavior of queue databases is optimized for multiple readers, and does

not guarantee that record will be retrieved in the order they are added to the queue.
Specifically, if a writing thread adds multiple records to an empty queue, reading threads
may skip some of the initial records when the next DB->get() (page 31) call returns.

This flag modifies the DB->get() (page 31) call to verify that the record being returned is
in fact the head of the queue. This will increase contention and reduce concurrency when
there are many reading threads.

9/9/2013

DB C API Page 111

Library Version 11.2.5.3 The DB Handle

Calling DB->set_flags() with the DB_INORDER flag only affects the specified DB handle
(and any other Berkeley DB handles opened within the scope of that handle).

Recno
The following flags may be specified for the Recno access method:

e DB_RENUMBER

Specifying the DB_RENUMBER flag causes the logical record numbers to be mutable, and
change as records are added to and deleted from the database.

Using the DB->put() (page 75) or DBcursor->put() (page 180) interfaces to create new
records will cause the creation of multiple records if the record number is more than one
greater than the largest record currently in the database. For example, creating record 28,
when record 25 was previously the last record in the database, will create records 26 and 27
as well as 28. Attempts to retrieve records that were created in this manner will result in an
error return of DB_KEYEMPTY.

If a created record is not at the end of the database, all records following the new record
will be automatically renumbered upward by one. For example, the creation of a new
record numbered 8 causes records numbered 8 and greater to be renumbered upward by
one. If a cursor was positioned to record number 8 or greater before the insertion, it will be
shifted upward one logical record, continuing to refer to the same record as it did before.

If a deleted record is not at the end of the database, all records following the removed
record will be automatically renumbered downward by one. For example, deleting the
record numbered 8 causes records numbered 9 and greater to be renumbered downward
by one. If a cursor was positioned to record number 9 or greater before the removal, it will
be shifted downward one logical record, continuing to refer to the same record as it did
before.

If a record is deleted, all cursors that were positioned on that record prior to the removal
will no longer be positioned on a valid entry. This includes cursors used to delete an item.
For example, if a cursor was positioned to record number 8 before the removal of that
record, subsequent calls to DBcursor->get() (page 171) with flags of DB_CURRENT will

result in an error return of DB_KEYEMPTY until the cursor is moved to another record. A call
to DBcursor->get() (page 171) with flags of DB_NEXT will return the new record numbered

8 - which is the record that was numbered 9 prior to the delete (if such a record existed).

For these reasons, concurrent access to a Recno database with the DB_RENUMBER flag
specified may be largely meaningless, although it is supported.

Calling DB->set_flags() with the DB_RENUMBER flag affects the database, including all
threads of control accessing the database.

If the database already exists when DB->open() (page 70) is called, the DB_RENUMBER flag
must be the same as the existing database or an error will be returned.

e DB_SNAPSHOT

9/9/2013

DB C API Page 112

../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Library Version 11.2.5.3 The DB Handle

This flag specifies that any specified re_source file be read in its entirety when DB-
>open() (page 70) is called. If this flag is not specified, the re_source file may be read
lazily.

See the DB->set_re_source() (page 137) method for information on the re_source file.

Calling DB->set_flags() with the DB_SNAPSHOT flag only affects the specified DB handle
(and any other Berkeley DB handles opened within the scope of that handle).

Errors

The DB->set_flags() method may fail and return one of the following non-zero errors:
EINVAL
An invalid flag value or parameter was specified.
Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 113

Library Version 11.2.5.3 The DB Handle

DB->set__h_compare()

#tinclude <db.h>

int
DB->set_h_compare(DB *db,
int (*compare_fcn) (DB *db, const DBT *dbtl, const DBT *dbt2));

Set the Hash key comparison function. The comparison function is called whenever it is
necessary to compare a key specified by the application with a key currently stored in the
database.

If no comparison function is specified, a byte-by-byte comparison is performed.

The DB->set_h_compare() method configures operations performed using the specified DB
handle, not all operations performed on the underlying database.

The DB->set_h_compare() method may not be called after the DB->open() (page 70) method
is called. If the database already exists when DB->open() (page 70) is called, the information
specified to DB->set_h_compare() must be the same as that historically used to create the

database or corruption can occur.

The DB->set_h_compare() method returns a non-zero error value on failure and 0 on success.

Parameters

compare_fcn

The compare_fcn function is the application-specified Hash comparison function. The
comparison function takes three parameters:

» db

The db parameter is the enclosing database handle.
» dbt1l

The dbt1 parameter is the DBT representing the application supplied key.
o dbt2

The dbt2 parameter is the DBT representing the current database's key.

The compare_fcn function must return an integer value less than, equal to, or greater than
zero if the first key parameter is considered to be respectively less than, equal to, or greater
than the second key parameter. The comparison function must correctly handle any key values
used by the application (possibly including zero-length keys). The data and size fields of

the DBT are the only fields that may be used for the purposes of this comparison, and no
particular alignment of the memory to which by the data field refers may be assumed.

Errors

The DB->set_h_compare() method may fail and return one of the following non-zero errors:

9/9/2013

DB C API Page 114

Library Version 11.2.5.3 The DB Handle

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 115

Library Version 11.2.5.3 The DB Handle

DB->set_h_ffactor()

#tinclude <db.h>

int
DB->set_h_ffactor(DB *db, u_int32_t h_ffactor);

Set the desired density within the hash table. If no value is specified, the fill factor will be
selected dynamically as pages are filled.

The density is an approximation of the number of keys allowed to accumulate in any one
bucket, determining when the hash table grows or shrinks. If you know the average sizes
of the keys and data in your data set, setting the fill factor can enhance performance. A
reasonable rule computing fill factor is to set it to the following:

(pagesize - 32) / (average key size + average data_size + 8)

The DB->set_h_ffactor() method configures a database, not only operations performed
using the specified DB handle.

The DB->set_h_ffactor() method may not be called after the DB->open() (page 70) method
is called. If the database already exists when DB->open() (page 70) is called, the information
specified to DB->set_h_ffactor() will be ignored.

The DB->set_h_ffactor() method returns a non-zero error value on failure and 0 on success.

Parameters

h_ffactor

The h_ffactor parameter is the desired density within the hash table.

Errors

The DB->set_h_ffactor() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class

DB

See Also

Database and Related Methods (page 3)

9/9/2013

DB C API Page 116

Library Version 11.2.5.3 The DB Handle

DB->set_h_hash()

#tinclude <db.h>

int

DB->set_h_hash(DB *db,
u_int32_t (*h_hash_fcn) (DB *dbp, const void *bytes,
u_int32_t length));

Set a user-defined hash function; if no hash function is specified, a default hash function is
used. Because no hash function performs equally well on all possible data, the user may find
that the built-in hash function performs poorly with a particular data set.

The DB->set_h_hash() method configures operations performed using the specified DB
handle, not all operations performed on the underlying database.

The DB->set_h_hash() method may not be called after the DB->open() (page 70) method is
called. If the database already exists when DB->open() (page 70) is called, the information
specified to DB->set_h_hash() must be the same as that historically used to create the

database or corruption can occur.

The DB->set_h_hash() method returns a non-zero error value on failure and 0 on success.

Parameters
h_hash_fcn
The h_hash_fcn parameter is the application-specified hash function.

Application-specified hash functions take a pointer to a byte string and a length as
parameters, and return a value of type u_int32_t. The hash function must handle any key
values used by the application (possibly including zero-length keys).

Errors
The DB->set_h_hash() method may fail and return one of the following non-zero errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB

See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 117

Library Version 11.2.5.3 The DB Handle

DB->set_h_nelem()
#include <db.h>

int
DB->set_h_nelem(DB *db, u_int32_t h_nelem);

Set an estimate of the final size of the hash table.

In order for the estimate to be used when creating the database, the DB-

>set_h_ffactor() (page 116) method must also be called. If the estimate or fill factor are not
set or are set too low, hash tables will still expand gracefully as keys are entered, although a
slight performance degradation may be noticed.

The DB->set_h_nelem() method configures a database, not only operations performed using
the specified DB handle.

The DB->set_h_nelem() method may not be called after the DB->open() (page 70) method
is called. If the database already exists when DB->open() (page 70) is called, the information
specified to DB->set_h_nelem() will be ignored.

The DB->set_h_nelem() method returns a non-zero error value on failure and 0 on success.
Parameters
h_nelem
The h_nelem parameter is an estimate of the final size of the hash table.
Errors
The DB->set_h_nelem() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 118

Library Version 11.2.5.3 The DB Handle

DB->set_heapsize()
#include <db.h>

int
DB->set_heapsize(DB *db,
u_int32_t gbytes, u_int32_t bytes, u_int32_t flags);

Sets the maximum on-disk database file size used by a database configured to use the Heap
access method. If this method is never called, the database’s file size can grow without bound.
If this method is called, then the heap file can never grow larger than the limit defined by
this method. In that case, attempts to update or create records in a Heap database that has
reached its maximum size will result in a DB_HEAP_FULL error return.

The size specified to this method must be at least three times the database page size. That is,
a Heap database must contain at least three database pages. You can set the database page
size using the DB->set_pagesize() (page 128) method.

The DB->set_heapsize() method may not be called after the DB->open() (page 70) method is
called. Further, if this method is called on an existing Heap database, the size specified here
must match the size used to create the database. Note, however, that specifying an incorrect
size to this method will not result in an error return (EINVAL) until the database is opened.

The DB->set_heapsize() method returns a non-zero error value on failure and 0 on success.

Parameters
gbytes
The size of the heap is set to gbytes gigabytes plus bytes.
bytes
The size of the heap is set to gbytes gigabytes plus bytes.
flags
The flags parameter is currently unused, and must be set to 0.
Errors
The DB->set_heapsize() method may fail and return one of the following non-zero errors:
EINVAL

If the specified heap size was too small; the method was called after DB->open() (page 70)
was called; or if an invalid flag value or parameter was specified.

Class

DB

9/9/2013 DB C API Page 119

Library Version 11.2.5.3 The DB Handle

See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 120

Library Version 11.2.5.3 The DB Handle

DB->set_heap_regionsize()

#tinclude <db.h>

int
DB->set_heap_regionsize(DB *db, u_int32_t npages);

Sets the number of pages in a region of a database configured to use the Heap access method.
If this method is never called, the default region size for the database’s page size will be used.
You can set the database page size using the DB->set_pagesize() (page 128) method.

The DB->set_heap_regionsize() method may not be called after the DB->open() (page
70) method is called. If the database already exists when DB->open() (page 70) is called,

the information specified to DB->set_heap_regionsize() will be ignored. If the specified
region size is larger than the maximum region size for the database's page size, an error will
be returned when DB->open() (page 70) is called. The maximum allowable region size will be
included in the error message.

The DB->set_heap_regionsize() method returns a non-zero error value on failure and 0 on
success.

Parameters

npages

The npages parameter is the number of pages in a Heap database region.

Errors

The DB->set_heap_regionsize() method may fail and return one of the following non-zero
errors:

EINVAL

If the specified region size was too small; the method was called after DB->open() (page 70)
was called; or if an invalid flag value or parameter was specified.

Class

DB

See Also

Database and Related Methods (page 3), DB->get_heap_regionsize() (page 48)

9/9/2013

DB C API Page 121

Library Version 11.2.5.3 The DB Handle

DB->set_Ilk_exclusive()

#tinclude <db.h>

int
DB->set_lk_exclusive(DB *db, int nowait_onoff);

Configures the database handle to obtain a write lock on the entire database when it is
opened. This gives the handle exclusive access to the database, because the write lock will
block all other threads of control for both read and write access.

Use this method to improve the throughput performance on your database for the thread that
is controlling this handle. When configured with this method, operations on the database do
not acquire page locks as they perform read and/or write operations. Also, the exclusive lock
means that operations performed on the database handle will never be blocked waiting for
lock due to another thread's activities. The application will also be immune to deadlocks.

On the other hand, use of this method means that you can only have a single thread accessing
the database until the handle is closed. For some applications, the loss of multiple threads
concurrently operating on the database will result in performance degradation.

Also, use of this method means that you can only have one transaction active for the handle at
a time.

Note

This method is incompatible with the DB_THREAD (page 72) configuration flag.

The DB->set_1lk_exclusive() method may not be called after the DB->open() (page 70)
method is called.

The DB->set_1k_exclusive() method returns a non-zero error value on failure and 0 on
success.

Replication Notes

Replication applications that use exclusive database handles need to be written with caution.
This is because replication clients cannot process updates on an exclusive database until all
local handles on the database are closed. Also, attempting to open an exclusive database
handle on a currently operating client will result in the open call failing with the error
EINVAL.

Also, opening an exclusive database handle on a replication master will result in all clients
being locked out of the database. On clients, existing handles on the exclusive database will
return the error DB_REP_DEAD_HANDLE when accessed, and must be closed. New handles
opened on the exclusive database will block until the master closes its exclusive database
handle.

9/9/2013

DB C API Page 122

Library Version 11.2.5.3 The DB Handle

Parameters
nowait_onoff

If set to @, this method will block until it can obtain the exclusive lock on the database. If set
to some value other than @, DB_LOCK_NOTGRANTED is returned when the handle is opened if
the exclusive database lock cannot be immediately obtained.

Errors

The DB->set_1k_exclusive() method may fail and return one of the following non-zero
errors:

EINVAL

If the method was called after DB->open() (page 70) was called; the method was called on a
currently operating replication client; or if an invalid flag value or parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 123

Library Version 11.2.5.3 The DB Handle

DB->set_lorder()

#tinclude <db.h>

int
DB->set_lorder(DB *db, int lorder);

Set the byte order for integers in the stored database metadata. The host byte order of the
machine where the Berkeley DB library was compiled will be used if no byte order is set.

The access methods provide no guarantees about the byte ordering of the application data
stored in the database, and applications are responsible for maintaining any necessary
ordering.

The DB->set_lorder() method configures a database, not only operations performed using
the specified DB handle.

The DB->set_lorder() method may not be called after the DB->open() (page 70) method is
called. If the database already exists when DB->open() (page 70) is called, the information
specified to DB->set_lorder() will be ignored.

If creating additional databases in a single physical file, information specified to DB-
>set_lorder() will be ignored and the byte order of the existing databases will be used.

The DB->set_lorder() method returns a non-zero error value on failure and 0 on success.

Parameters
lorder

The lorder parameter should represent the byte order as an integer; for example, big endian
order is the number 4,321, and little endian order is the number 1,234.

Errors
The DB->set_lorder() method may fail and return one of the following non-zero errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB

See Also

Database and Related Methods (page 3)

9/9/2013

DB C API Page 124

Library Version 11.2.5.3 The DB Handle

DB->set_msgcalil()

#tinclude <db.h>

void
DB->set_msgcall(DB *,
void (*db_msgcall_fcn)(const DB_ENV *dbenv, char *msg));

There are interfaces in the Berkeley DB library which either directly output informational
messages or statistical information, or configure the library to output such messages when
performing other operations, for example, DB_ENV->set_verbose() (page 323) and DB_ENV-
>stat_print() (page 326).

The DB_ENV->set_msgcall() (page 308) and DB->set_msgcall() methods are used to pass
these messages to the application, and Berkeley DB will call db_msgcall_fcn with each
message. It is up to the db_msgcall_fcn function to display the message in an appropriate
manner.

Setting db_msgcall_fcn to NULL unconfigures the callback interface.

Alternatively, you can use the DB->set_msgfile() (page 127) or DB->set_msgfile() (page 310)
methods to display the messages via a C library FILE *.

For DB handles opened inside of Berkeley DB environments, calling the DB->set_msgcall()
method affects the entire environment and is equivalent to calling the DB_ENV-
>set_msgcall() method.

The DB->set_msgcall() method configures operations performed using the specified DB
handle, not all operations performed on the underlying database.

The DB->set_msgcall() method may be called at any time during the life of the application.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

Parameters

db_msgcall_fcn

The db_msgcall_fcn parameter is the application-specified message reporting function. The
function takes two parameters:

» dbenv
The dbenv parameter is the enclosing database environment.

* msg

9/9/2013

DB C API Page 125

Library Version 11.2.5.3 The DB Handle

The msg parameter is the message string.
Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 126

Library Version 11.2.5.3 The DB Handle

DB->set_msgfile()

#tinclude <db.h>

void
DB->set_msgfile(DB *db, FILE *msgfile);

There are interfaces in the Berkeley DB library which either directly output informational
messages or statistical information, or configure the library to output such messages when
performing other operations, for example, DB_ENV->set_verbose() (page 323) and DB_ENV-
>stat_print() (page 326).

The DB_ENV->set_msgfile() (page 310) and DB->set_msgfile() methods are used to display
these messages for the application. In this case the message will include a trailing <newline>
character.

Setting msgfile to NULL unconfigures the interface.

Alternatively, you can use the DB_ENV->set_msgcall() (page 308) or DB->set_msgcall() (page
125) methods to capture the additional error information in a way that does not use C library
FILE *'s.

For DB handles opened inside of Berkeley DB environments, calling the DB->set_msgfile()
method affects the entire environment and is equivalent to calling the DB_ENV-
>set_msgfile() (page 310) method.

The DB->set_msgfile() method configures operations performed using the specified DB
handle, not all operations performed on the underlying database.

The DB->set_msgfile() method may be called at any time during the life of the application.
Parameters

msdfile

The msgfile parameter is a C library FILE * to be used for displaying messages.
Class

DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 127

Library Version 11.2.5.3 The DB Handle

DB->set_pagesize()

#tinclude <db.h>

int
DB->set_pagesize(DB *db, u_int32_t pagesize);

Set the size of the pages used to hold items in the database, in bytes. The minimum page size
is 512 bytes, the maximum page size is 64K bytes, and the page size must be a power-of-two.
If the page size is not explicitly set, one is selected based on the underlying filesystem 1/0
block size. The automatically selected size has a lower limit of 512 bytes and an upper limit of
16K bytes.

For information on tuning the Berkeley DB page size, see Selecting a page size.

The DB->set_pagesize() method configures a database, not only operations performed using
the specified DB handle.

The DB->set_pagesize() method may not be called after the DB->open() (page 70) method
is called. If the database already exists when DB->open() (page 70) is called, the information
specified to DB->set_pagesize() will be ignored.

If creating additional databases in a single physical file, information specified to DB-
>set_pagesize() will be ignored and the page size of the existing databases will be used.

The DB->set_pagesize() method returns a non-zero error value on failure and 0 on success.

Parameters
pagesize
The pagesize parameter sets the database page size.
Errors
The DB->set_pagesize() method may fail and return one of the following non-zero errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013

DB C API Page 128

../../programmer_reference/general_am_conf.html#am_conf_pagesize

Library Version 11.2.5.3 The DB Handle

DB->set_partition()

#tinclude <db.h>

int
DB->set_partition(DB * db, u_int32_t parts, DBT *keys,
u_int32_t (*db_partition_fcn) (DB *db, DBT *key));

Set up partitioning for a database. Partitioning may be used on either BTREE or HASH
databases. Partitions may be specified by either a set of keys specifying a range of values in
each partition or with a callback function that returns the number of the partition to put a
specific key. Partition range keys may only be specified for BTREE databases.

Partitions are implimented as separate database files and can help reduce contention within
a logical database. Contention can come from multiple threads of control accessing database
pages simultaniously. Typically these pages are the root of a btree and the metadata page
which contains allocation information in both BTREE and HASH databases. Each partition has
its own metadata and root pages.

Parameters
Exactly one of the parameters keys and partition_fcn must be NULL.
parts
The parts parameter is the number of partitions to create. The value must be 2 or greater.
keys

The keys parameter is an array of DBT structures containing the keys that specify the range of
key values to be stored in each partition. Each key specifies the minimum value that may be
stored in the corresponding partition. The number of keys must be one less than the number
of partitions specified by the parts parameter since the first partition will hold any key less
than the first key in the array.

db_ partition_fcn

The db_partition_fcn parameter is the application-specified partitioning function. The
function returns an integer which will be used modulo the number of partitions specified by
the parts parameter. The function will be called with two parameters:

« db
The db parameter is the database handle.
* key
The key parameter is the key for which a partition number should be returned.
Class

DB

9/9/2013 DB C API Page 129

Library Version 11.2.5.3 The DB Handle

See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 130

Library Version 11.2.5.3 The DB Handle

DB->set_partition_dirs()

#tinclude <db.h>

int
DB->set_partition_dirs(DB *db, const char **dirs);

Specify which directories the database extents should be created in or looked for. If the
number of directories is less than the number of partitions, the directories will be used in a
round robin fashion.

The DB->set_partition_dirs() method may not be called after the DB->open() (page 70)
method is called.

The DB->set_partition_dirs() method returns a non-zero error value on failure and 0 on
success.

Parameters
dirs

The dirs points to an array of directories that will be used to create or locate the database
extent files specified in the DB->open() (page 70) method call. The directories must be
included in the environment list specified by DB_ENV->add_data_dir() (page 206).

Errors

The DB->set_partition_dirs() method may fail and return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.
Class

DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 131

Library Version 11.2.5.3 The DB Handle

DB->set_priority()

#tinclude <db.h>

int
DB->set_priority(DB *db, DB_CACHE_PRIORITY priority);

Set the cache priority for pages referenced by the DB handle.

The priority of a page biases the replacement algorithm to be more or less likely to discard a
page when space is needed in the buffer pool. The bias is temporary, and pages will eventually
be discarded if they are not referenced again. The DB->set_priority() method is only
advisory, and does not guarantee pages will be treated in a specific way.

The DB->set_priority() method may be called at any time during the life of the
application.

The DB->set_priority() method returns a non-zero error value on failure and 0 on success.
Parameters
priority
The priority parameter must be set to one of the following values:
o DB_PRIORITY_VERY_LOW
The lowest priority: pages are the most likely to be discarded.
e DB_PRIORITY_LOW
The next lowest priority.
e DB_PRIORITY_DEFAULT
The default priority.
e DB_PRIORITY_HIGH
The next highest priority.
e DB_PRIORITY_VERY_HIGH
The highest priority: pages are the least likely to be discarded.
Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 132

Library Version 11.2.5.3 The DB Handle

DB->set_q_extentsize()
#include <db.h>

int
DB->set_q_extentsize(DB *db, u_int32_t extentsize);

Set the size of the extents used to hold pages in a Queue database, specified as a number of
pages. Each extent is created as a separate physical file. If no extent size is set, the default
behavior is to create only a single underlying database file.

For information on tuning the extent size, see Selecting a extent size.

The DB->set_q_extentsize() method configures a database, not only operations performed
using the specified DB handle.

The DB->set_q_extentsize() method may not be called after the DB->open() (page 70)
method is called. If the database already exists when DB->open() (page 70) is called, the
information specified to DB->set_q_extentsize() will be ignored.

The DB->set_q_extentsize() method returns a non-zero error value on failure and 0 on
success.

Parameters

extentsize

The extentsize parameter is the number of pages in a Queue database extent.
Errors

The DB->set_q_extentsize() method may fail and return one of the following non-zero
errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 133

../../programmer_reference/rq_conf.html#am_conf_extentsize

Library Version 11.2.5.3 The DB Handle

DB->set_re_delim()

#tinclude <db.h>

int
DB->set_re_delim(DB *db, int *re_delim);

Set the delimiting byte used to mark the end of a record in the backing source file for the
Recno access method.

This byte is used for variable length records if the re_source file is specified using the DB-
>set_re_source() (page 137) method. If the re_source file is specified and no delimiting byte
was specified, <newline> characters (that is, ASCII Ox0a) are interpreted as end-of-record
markers.

The DB->set_re_delim() method configures a database, not only operations performed using
the specified DB handle.

The DB->set_re_delim() method may not be called after the DB->open() (page 70) method
is called. If the database already exists when DB->open() (page 70) is called, the information
specified to DB->set_re_delim() will be ignored.

The DB->set_re_delim() method returns a non-zero error value on failure and 0 on success.
Parameters
re_delim
The re_delim parameter is the delimiting byte used to mark the end of a record.
Errors
The DB->set_re_delim() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 134

Library Version 11.2.5.3 The DB Handle

DB->set_re_len()
#include <db.h>

int
DB->set _re_len(DB *db, u_int32 t re_len);

For the Queue access method, specify that the records are of length re_len. For the Queue
access method, the record length must be enough smaller than the database'’s page size that
at least one record plus the database page's metadata information can fit on each database

page.

For the Recno access method, specify that the records are fixed-length, not byte-delimited,
and are of length re_len.

Any records added to the database that are less than re_len bytes long are automatically
padded (see DB->set_re_pad() (page 136) for more information).

Any attempt to insert records into the database that are greater than re_len bytes long will
cause the call to fail immediately and return an error.

The DB->set_re_len() method configures a database, not only operations performed using
the specified DB handle.

The DB->set_re_len() method may not be called after the DB->open() (page 70) method is
called. If the database already exists when DB->open() (page 70) is called, the information
specified to DB->set_re_len() will be ignored.

The DB->set_re_len() method returns a non-zero error value on failure and 0 on success.
Parameters

re_len

The re_len parameter is the length of a Queue or Recno database record, in bytes.
Errors

The DB->set_re_len() method may fail and return one of the following non-zero errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 135

Library Version 11.2.5.3 The DB Handle

DB->set_re_pad()

#tinclude <db.h>

int
DB->set_re_pad(DB *db, int re_pad);

Set the padding character for short, fixed-length records for the Queue and Recno access
methods.

If no pad character is specified, <space> characters (that is, ASCII 0x20) are used for padding.

The DB->set_re_pad() method configures a database, not only operations performed using
the specified DB handle.

The DB->set_re_pad() method may not be called after the DB->open() (page 70) method is
called. If the database already exists when DB->open() (page 70) is called, the information
specified to DB->set_re_pad() will be ignored.

The DB->set_re_pad() method returns a non-zero error value on failure and 0 on success.
Parameters
re_pad

The re_pad parameter is the pad character for fixed-length records for the Queue and Recno
access methods.

Errors
The DB->set_re_pad() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 136

Library Version 11.2.5.3 The DB Handle

DB->set_re_source()

#tinclude <db.h>

int
DB->set_re_source(DB *db, char *source);

Set the underlying source file for the Recno access method. The purpose of the source value is
to provide fast access and modification to databases that are normally stored as flat text files.

The source parameter specifies an underlying flat text database file that is read to initialize
a transient record number index. In the case of variable length records, the records are
separated, as specified by DB->set_re_delim() (page 134). For example, standard UNIX

byte stream files can be interpreted as a sequence of variable length records separated by
<newline> characters.

In addition, when cached data would normally be written back to the underlying database file
(for example, the DB->close() (page 13) or DB->sync() (page 150) methods are called), the in-
memory copy of the database will be written back to the source file.

By default, the backing source file is read lazily; that is, records are not read from the file
until they are requested by the application. If multiple processes (not threads) are accessing
a Recno database concurrently, and are either inserting or deleting records, the backing
source file must be read in its entirety before more than a single process accesses the
database, and only that process should specify the backing source file as part of the DB-
>open() (page 70) call. See the DB_SNAPSHOT flag for more information.

Reading and writing the backing source file specified by source cannot be transaction-
protected because it involves filesystem operations that are not part of the Db transaction
methodology. For this reason, if a temporary database is used to hold the records, it is
possible to lose the contents of the source file, for example, if the system crashes at the right
instant. If a file is used to hold the database, normal database recovery on that file can be
used to prevent information loss, although it is still possible that the contents of source will
be lost if the system crashes.

The source file must already exist (but may be zero-length) when DB->open() (page 70) is
called.

It is not an error to specify a read-only source file when creating a database, nor is it an error
to modify the resulting database. However, any attempt to write the changes to the backing
source file using either the DB->sync() (page 150) or DB->close() (page 13) methods will fail,
of course. Specify the DB_NOSYNC flag to the DB->close() (page 13) method to stop it from
attempting to write the changes to the backing file; instead, they will be silently discarded.

For all of the previous reasons, the source field is generally used to specify databases that are
read-only for Berkeley DB applications; and that are either generated on the fly by software
tools or modified using a different mechanism — for example, a text editor.

The DB->set_re_source() method configures operations performed using the specified DB
handle, not all operations performed on the underlying database.

9/9/2013

DB C API Page 137

Library Version 11.2.5.3 The DB Handle

The DB->set_re_source() method may not be called after the DB->open() (page 70) method
is called. If the database already exists when DB->open() (page 70) is called, the information
specified to DB->set_re_source() must be the same as that historically used to create the

database or corruption can occur.

The DB->set_re_source() method returns a non-zero error value on failure and 0 on success.

Parameters
source
The backing flat text database file for a Recno database.

When using a Unicode build on Windows (the default), the source argument will be
interpreted as a UTF-8 string, which is equivalent to ASCII for Latin characters.

Errors
The DB->set_re_source() method may fail and return one of the following non-zero errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB

See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 138

Library Version 11.2.5.3 The DB Handle

DB->sort_multiple()

#tinclude <db.h>

int
DB->sort_multiple(DB *db, DBT *key, DBT *data, u_int32_t flags);

The DB->sort_multiple() method is used to sort a set of DBTs into database insert order.

If specified the application specific btree comparison and duplicate comparison functions will
be used if they are configured.

The key and data parameters must contain pairs of items. That is the n-th entry in key must
correspond to the n-th entry in data.

The DB->sort_multiple() method returns a non-zero error value on failure and 0 on success.

Parameters
key

The key parameter must contain a set of DBT entries in DB_MULTIPLE or DB_MULTIPLE_KEY
format.

The sorted entries will be returned in the key parameter.
data

If non-NULL, the data parameter must contain a set of DBTs entries in DB_MULTIPLE format.
Each entry must correspond to an entry in the key parameter.

flags
The flags parameter must be set to one of the following values:
o DB_MULTIPLE

Sorts one or two DB_MULTIPLE format DBTs. Assumes that key and data specify pairs of
key and data items to sort together. If the data parameter is NULL the API will sort the key
arrays according to the btree comparison function.

o DB_MULTIPLE_KEY
Sorts a DB_MULTIPLE_KEY format DBT.
Errors
The DB->sort_multiple() method may fail and return one of the following non-zero errors:
EACCES

An attempt was made to modify a read-only database.

9/9/2013 DB C API Page 139

Library Version 11.2.5.3 The DB Handle

EINVAL

An invalid flag value or parameter was specified.
Class

DB
See Also

Database and Related Methods (page 3)

DBT and Bulk Operations (page 189)

9/9/2013 DB C API Page 140

Library Version 11.2.5.3 The DB Handle

DB->stat()

#tinclude <db.h>

int
DB->stat(DB *db, DB_TXN *txnid, void *sp, u_int32_t flags);
The DB->stat () method creates a statistical structure and copies a pointer to it into user-

specified memory locations. Specifically, if sp is non-NULL, a pointer to the statistics for the
database are copied into the memory location to which it refers.

The DB->stat () method returns a non-zero error value on failure and 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DB_ENV->txn_begin() (page 615); if the operation is part
of a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned
from DB_ENV->cdsgroup_begin() (page 607); otherwise NULL. If no transaction handle

is specified, but the operation occurs in a transactional database, the operation will be
implicitly transaction protected.

flags
The flags parameter must be set to 0 or one of the following values:
o DB_FAST_STAT

Return only the values which do not require traversal of the database. Among other things,
this flag makes it possible for applications to request key and record counts without
incurring the performance penalty of traversing the entire database.

e DB_READ_COMMITTED

Database items read during a transactional call will have degree 2 isolation. This ensures
the stability of the data items read during the stat operation but permits that data to be
modified or deleted by other transactions prior to the commit of the specified transaction.

e DB_READ_UNCOMMITTED

Database items read during a transactional call will have degree 1 isolation, including
modified but not yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag
was not specified when the underlying database was opened.

Statistical Structure

Statistical structures are stored in allocated memory. If application-specific allocation routines
have been declared (see DB_ENV->set_alloc() (page 264) for more information), they are
used to allocate the memory; otherwise, the standard C library malloc(3) is used. The caller

9/9/2013

DB C API Page 141

Library Version 11.2.5.3 The DB Handle

is responsible for deallocating the memory. To deallocate the memory, free the memory
reference; references inside the returned memory need not be individually freed.

If the DB_FAST_STAT flag has not been specified, the DB->stat() method will access some of
or all the pages in the database, incurring a severe performance penalty as well as possibly
flushing the underlying buffer pool.

In the presence of multiple threads or processes accessing an active database, the information
returned by DB->stat may be out-of-date.

If the database was not opened read-only and the DB_FAST_STAT flag was not specified, the
cached key and record numbers will be updated after the statistical information has been
gathered.

The DB->stat() method may not be called before the DB->open() (page 70) method is called.
The DB->stat () method returns a non-zero error value on failure and 0 on success.
Hash Statistics

In the case of a Hash database, the statistics are stored in a structure of type DB_HASH_STAT.
The following fields will be filled in:

e uintmax_t hash_bfree;

The number of bytes free on bucket pages.
e u_int32_t hash_bigpages;

The number of big key/data pages.
e uintmax_t hash_big bfree;

The number of bytes free on big item pages.
e u_int32_t hash_buckets;

The number of hash buckets. Returned if DB_FAST_STAT is set.
e u_int32_t hash_dup;

The number of duplicate pages.
e uintmax_t hash_dup_free;

The number of bytes free on duplicate pages.
e u_int32_t hash_ffactor;

The desired fill factor (number of items per bucket) specified at database-creation time.
Returned if DB_FAST_STAT is set.

e u_int32_t hash_free;

9/9/2013

DB C API Page 142

Library Version 11.2.5.3 The DB Handle

The number of pages on the free list.
e u_int32_t hash_magic;

Magic number that identifies the file as a Hash file. Returned if DB_FAST_STAT is set.
e u_int32_t hash_metaflags;

Reports internal flags. For internal use only.
e u_int32_t hash_ndata;

The number of key/data pairs in the database. If DB_FAST_STAT was specified the count
will be the last saved value unless it has never been calculated, in which case it will be 0.
Returned if DB_FAST_STAT is set.

e u_int32_t hash_nkeys;

The number of unique keys in the database. If DB_FAST_STAT was specified the count will be
the last saved value unless it has never been calculated, in which case it will be 0. Returned
if DB_FAST_STAT is set.

e u_int32_t hash_overflows;

The number of overflow pages (overflow pages are pages that contain items that did not fit
in the main bucket page).

e uintmax_t hash_ovfl_free;
The number of bytes free on overflow pages.
e u_int32_t hash_pagecnt;
The number of pages in the database. Returned if DB_FAST_STAT is set.
e u_int32_t hash_pagesize;
The underlying database page (and bucket) size, in bytes. Returned if DB_FAST_STAT is set.
e u_int32_t hash_version;
The version of the Hash database. Returned if DB_FAST_STAT is set.
Heap Statistics

In the case of a Heap database, the statistics are stored in a structure of type DB_HEAP_STAT.
The following fields will be filled in:

e u_int32_t heap_magic;

Magic number that identifies the file as a Heap file. Returned if DB_FAST_STAT is set.

9/9/2013 DB C API Page 143

Library Version 11.2.5.3 The DB Handle

u_int32_t heap_version;
The version of the Heap database. Returned if DB_FAST_STAT is set.
e u_int32_t heap_metaflags;
Reports internal flags. For internal use only.
e u_int32_t heap_nrecs;
Reports the number of records in the Heap database. Returned if DB_FAST_STAT is set.
e u_int32_t heap_pagecnt;
The number of pages in the database. Returned if DB_FAST_STAT is set.
e u_int32_t heap_pagesize;
The underlying database page (and bucket) size, in bytes. Returned if DB_FAST_STAT is set.
e u_int32_t heap_nregions;
The number of regions in the Heap database. Returned if DB_FAST_STAT is set.
e u_int32_t heap_regionsize;
The number of pages in a region in the Heap database. Returned if DB_FAST_STAT is set.
Btree and Recno Statistics

In the case of a Btree or Recno database, the statistics are stored in a structure of type
DB_BTREE_STAT. The following fields will be filled in:

e u_int32_t bt_dup_pg;
Number of database duplicate pages.
e uintmax_t bt_dup_pgfree;
Number of bytes free in database duplicate pages.
e u_int32_t bt_empty_pg;
Number of empty database pages.
e u_int32_t bt_free;
Number of pages on the free list.
e u_int32_t bt_int_pg;

Number of database internal pages.

9/9/2013 DB C API Page 144

Library Version 11.2.5.3 The DB Handle

e uintmax_t bt_int_pgfree;

Number of bytes free in database internal pages.

u_int32_t bt_leaf pg;

Number of database leaf pages.

uintmax_t bt_leaf pgfree;

Number of bytes free in database leaf pages.

u_int32_t bt_levels;

Number of levels in the database.

u_int32_t bt_magic;

Magic number that identifies the file as a Btree database. Returned if DB_FAST_STAT is set.
u_int32_t bt_metaflags;

Reports internal flags. For internal use only.

u_int32_t bt_minkey;

The minimum keys per page. Returned if DB_FAST_STAT is set.
u_int32_t bt_ndata;

For the Btree Access Method, the number of key/data pairs in the database. If the
DB_FAST_STAT flag is not specified, the count will be exact. Otherwise, the count will be
the last saved value unless it has never been calculated, in which case it will be 0.

For the Recno Access Method, the number of records in the database. If the database was
configured with mutable record numbers (see DB_RENUMBER), the count will be exact.
Otherwise, if the DB_FAST_STAT flag is specified the count will be exact but will include
deleted and implicitly created records; if the DB_FAST_STAT flag is not specified, the count
will be exact and will not include deleted or implicitly created records.

Returned if DB_FAST_STAT is set.
u_int32_t bt_nkeys;

For the Btree Access Method, the number of keys in the database. If the DB_FAST_STAT
flag is not specified or the database was configured to support record numbers (see
DB_RECNUM), the count will be exact. Otherwise, the count will be the last saved value
unless it has never been calculated, in which case it will be 0.

For the Recno Access Method, the number of records in the database. If the database was
configured with mutable record numbers (see DB_RENUMBER), the count will be exact.
Otherwise, if the DB_FAST_STAT flag is specified the count will be exact but will include

9/9/2013

DB C API Page 145

Library Version 11.2.5.3 The DB Handle

deleted and implicitly created records; if the DB_FAST_STAT flag is not specified, the count
will be exact and will not include deleted or implicitly created records.

Returned if DB_FAST_STAT is set.
e u_int32_t bt_over_pg;
Number of database overflow pages.
e uintmax_t bt_over_pgfree;
Number of bytes free in database overflow pages.
e u_int32_t bt_pagecnt;
The number of pages in the database. Returned if DB_FAST_STAT is set.
e u_int32_t bt_pagesize;
The underlying database page size, in bytes. Returned if DB_FAST_STAT is set.
e u_int32_t bt_re_len;
The length of fixed-length records. Returned if DB_FAST_STAT is set.
e u_int32_t bt_re_pad;
The padding byte value for fixed-length records. Returned if DB_FAST_STAT is set.
e u_int32_t bt_version;
The version of the Btree database. Returned if DB_FAST_STAT is set.
Queue Statistics

In the case of a Queue database, the statistics are stored in a structure of type
DB_QUEUE_STAT. The following fields will be filled in:

e u_int32_t gs_cur_recno;
Next available record number. Returned if DB_FAST_STAT is set.
e u_int32_t gs_extentsize;
Underlying database extent size, in pages. Returned if DB_FAST_STAT is set.
e u_int32_t gs_first_recno;
First undeleted record in the database. Returned if DB_FAST_STAT is set.
e u_int32_t gs_magic;

Magic number that identifies the file as a Queue file. Returned if DB_FAST_STAT is set.

9/9/2013 DB C API Page 146

Library Version 11.2.5.3 The DB Handle

u_int32_t gqs_metaflags;
Reports internal flags. For internal use only.
e u_int32_t qgs_nkeys;
The number of records in the database. If DB_FAST_STAT was specified the count will be the
last saved value unless it has never been calculated, in which case it will be 0. Returned if
DB_FAST_STAT is set.
e u_int32_t gs_ndata;
The number of records in the database. If DB_FAST_STAT was specified the count will be the
last saved value unless it has never been calculated, in which case it will be 0. Returned if
DB_FAST_STAT is set.
e u_int32_t qs_pages;
Number of pages in the database.
e u_int32_t qs_pagesize;
Underlying database page size, in bytes. Returned if DB_FAST_STAT is set.
e u_int32_t qs_pgfree;
Number of bytes free in database pages.
e u_int32_t gs_re_len;
The length of the records. Returned if DB_FAST_STAT is set.
e u_int32_t gs_re_pad;
The padding byte value for the records. Returned if DB_FAST_STAT is set.
e u_int32_t gs_version;
The version of the Queue file type. Returned if DB_FAST_STAT is set.
Errors
The DB->stat () method may fail and return one of the following non-zero errors:
DB_REP_HANDLE_DEAD
When a client synchronizes with the master, it is possible for committed transactions
to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return

DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

9/9/2013

DB C API Page 147

Library Version 11.2.5.3 The DB Handle

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

EINVAL

An invalid flag value or parameter was specified.
Class
DB

See Also
Database and Related Methods (page 3)

9/9/2013 DB C API Page 148

Library Version 11.2.5.3 The DB Handle

DB->stat_print()

#tinclude <db.h>

int
DB->stat_print(DB *db, u_int32_t flags);

The DB->stat_print() method displays the database statistical information, as described for
the DB->stat() (page 141) method. The information is printed to a specified output channel
(see the DB_ENV->set_msgfile() (page 310) method for more information), or passed to an
application callback function (see the DB_ENV->set_msgcall() (page 308) method for more
information).

The DB->stat_print() method may not be called before the DB->open() (page 70) method is
called.

The DB->stat_print() method returns a non-zero error value on failure and 0 on success.

For Berkeley DB SQL table or index statistics, see Command Line Features Unique to
dbsql (page 677).

Parameters
flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

« DB_FAST_STAT

Return only the values which do not require traversal of the database. Among other things,
this flag makes it possible for applications to request key and record counts without
incurring the performance penalty of traversing the entire database.

e DB_STAT ALL
Display all available information.
Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 149

Library Version 11.2.5.3 The DB Handle

DB->sync()

#tinclude <db.h>

int
DB->sync(DB *db, u_int32_t flags);

The DB->sync () method flushes any cached information to disk. This method operates on
the database file level, so if the file contains multiple database handles then this method will
flush to disk any information that is cached for any of those handles.

If the database is in memory only, the DB->sync() method has no effect and will always
succeed.

It is important to understand that flushing cached information to disk only minimizes the
window of opportunity for corrupted data. Although unlikely, it is possible for database
corruption to happen if a system or application crash occurs while writing data to the
database. To ensure that database corruption never occurs, applications must either: use
transactions and logging with automatic recovery; use logging and application-specific
recovery; or edit a copy of the database, and once all applications using the database have
successfully called DB->close() (page 13), atomically replace the original database with the
updated copy.

The DB->sync () method returns a non-zero error value on failure and 0 on success.

Parameters

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The DB->sync() method may fail and return one of the following non-zero errors:
DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.
EINVAL

An invalid flag value or parameter was specified.

9/9/2013

DB C API Page 150

Library Version 11.2.5.3 The DB Handle

Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 151

Library Version 11.2.5.3 The DB Handle

DB->truncate()

#tinclude <db.h>

int
DB->truncate(DB *db,
DB_TXN *txnid, u_int32_t *countp, u_int32_t flags);

The DB->truncate() method empties the database, discarding all records it contains. The
number of records discarded from the database is returned in countp.

When called on a database configured with secondary indices using the DB->associate() (page
6) method, the DB->truncate() method truncates the primary database and all secondary
indices. A count of the records discarded from the primary database is returned.

It is an error to call the DB->truncate() method on a database with open cursors.

The DB->truncate() method returns a non-zero error value on failure and 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DB_ENV->txn_begin() (page 615); if the operation is part
of a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned
from DB_ENV->cdsgroup_begin() (page 607); otherwise NULL. If no transaction handle

is specified, but the operation occurs in a transactional database, the operation will be
implicitly transaction protected.

countp

The countp parameter references memory into which the number of records discarded from
the database is copied.

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The DB->truncate() method may fail and return one of the following non-zero errors:
DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

9/9/2013

DB C API Page 152

Library Version 11.2.5.3 The DB Handle

You attempted to open a database handle that is configured for no waiting exclusive locking,

but the exclusive lock could not be immediately obtained. See DB->set_lk_exclusive() (page
122) for more information.

EINVAL

If there are open cursors in the database; or if an invalid flag value or parameter was
specified.

Class
DB

See Also

Database and Related Methods (page 3)

9/9/2013

DB C API Page 153

Library Version 11.2.5.3 The DB Handle

DB->upgrade()

#tinclude <db.h>

int
DB->upgrade(DB *db, const char *file, u_int32_t flags);

The DB->upgrade () method upgrades all of the databases included in the file file, if
necessary. If no upgrade is necessary, DB->upgrade () always returns success.

Database upgrades are done in place and are destructive. For example, if pages need to
be allocated and no disk space is available, the database may be left corrupted. Backups
should be made before databases are upgraded. See Upgrading databases for more
information.

Unlike all other database operations, DB->upgrade() may only be done on a system with the
same byte-order as the database.

The DB->upgrade() method returns a non-zero error value on failure and 0 on success.

The DB->upgrade () method is the underlying method used by the db_upgrade utility. See the
db_upgrade utility source code for an example of using DB->upgrade() in a IEEE/ANSI Std
1003.1 (POSIX) environment.

Parameters

file

The file parameter is the physical file containing the databases to be upgraded.
flags

The flags parameter must be set to 0 or the following value:

e DB_DUPSORT

This flag is only meaningful when upgrading databases from releases before the Berkeley
DB 3.1 release.

As part of the upgrade from the Berkeley DB 3.0 release to the 3.1 release, the on-

disk format of duplicate data items changed. To correctly upgrade the format requires
applications to specify whether duplicate data items in the database are sorted or not.
Specifying the DB_DUPSORT flag informs DB->upgrade() that the duplicates are sorted;
otherwise they are assumed to be unsorted. Incorrectly specifying the value of this flag may
lead to database corruption.

Further, because the DB->upgrade() method upgrades a physical file (including all the
databases it contains), it is not possible to use DB->upgrade() to upgrade files in which
some of the databases it includes have sorted duplicate data items, and some of the
databases it includes have unsorted duplicate data items. If the file does not have more
than a single database, if the databases do not support duplicate data items, or if all of the

9/9/2013

DB C API Page 154

../../programmer_reference/am_upgrade.html

Library Version 11.2.5.3 The DB Handle

databases that support duplicate data items support the same style of duplicates (either
sorted or unsorted), DB->upgrade() will work correctly as long as the DB_DUPSORT flag is
correctly specified. Otherwise, the file cannot be upgraded using DB->upgrade; () it must
be upgraded manually by dumping and reloading the databases.

Environment Variables

If the database was opened within a database environment, the environment variable DB_HOME
may be used as the path of the database environment home.

DB->upgrade() is affected by any database directory specified using the DB_ENV-
>set_data_dir() (page 273) method, or by setting the "set_data_dir" string in the
environment's DB_CONFIG file.

Errors
The DB->upgrade() method may fail and return one of the following non-zero errors:
DB_OLD_VERSION
The database cannot be upgraded by this version of the Berkeley DB software.
Class
DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 155

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.3 The DB Handle

DB->verify()

#tinclude <db.h>

int
DB->verify(DB *db, const char *file,
const char *database, FILE *outfile, u_int32_t flags);

The DB->verify() method verifies the integrity of all databases in the file specified by
the file parameter, and optionally outputs the databases’ key/data pairs to the file stream
specified by the outfile parameter.

The DB->verify() method does not perform any locking, even in Berkeley DB
environments that are configured with a locking subsystem. As such, it should only be
used on files that are not being modified by another thread of control.

The DB->verify() method may not be called after the DB->open() (page 70) method is
called.

The DB handle may not be accessed again after DB->verify() is called, regardless of its
return.

The DB->verify() method is the underlying method used by the db_verify utility. See the
db_verify utility source code for an example of using DB->verify() in a IEEE/ANSI Std 1003.1
(POSIX) environment.

The DB->verify() method will return DB_VERIFY_BAD if a database is corrupted. When the
DB_SALVAGE flag is specified, the DB_VERIFY_BAD return means that all key/data pairs in the
file may not have been successfully output. Unless otherwise specified, the DB->verify()
method returns a non-zero error value on failure and 0 on success.

Parameters

file
The file parameter is the physical file in which the databases to be verified are found.
database

The database parameter is the database in file on which the database checks for btree and
duplicate sort order and for hashing are to be performed. See the DB_ORDERCHKONLY flag for
more information.

The database parameter must be set to NULL except when the DB_ORDERCHKONLY flag is set.
outfile

The outfile parameter is an optional file stream to which the databases' key/data pairs are
written.

flags

The flags parameter must be set to 0 or the following value:

9/9/2013

DB C API Page 156

Library Version 11.2.5.3 The DB Handle

e DB_SALVAGE

Write the key/data pairs from all databases in the file to the file stream named in the
outfile parameter. Key values are written for Btree, Hash and Queue databases, but not for
Recno databases.

The output format is the same as that specified for the db_dump utility, and can be used as
input for the db_load utility.

Because the key/data pairs are output in page order as opposed to the sort order used by
db_dump, using DB->verify() to dump key/data pairs normally produces less than optimal
loads for Btree databases.

In addition, the following flags may be set by bitwise inclusively OR'ing them into the flags
parameter:

e DB_AGGRESSIVE

Output all the key/data pairs in the file that can be found. By default, DB->verify() does
not assume corruption. For example, if a key/data pair on a page is marked as deleted,

it is not then written to the output file. When DB_AGGRESSIVE is specified, corruption is
assumed, and any key/data pair that can be found is written. In this case, key/data pairs
that are corrupted or have been deleted may appear in the output (even if the file being
salvaged is in no way corrupt), and the output will almost certainly require editing before
being loaded into a database.

e DB_PRINTABLE

When using the DB_SALVAGE flag, if characters in either the key or data items are printing
characters (as defined by isprint(3)), use printing characters to represent them. This flag
permits users to use standard text editors and tools to modify the contents of databases or
selectively remove data from salvager output.

Note: different systems may have different notions about what characters are considered
printing characters, and databases dumped in this manner may be less portable to external
systems.

e DB_NOORDERCHK
Skip the database checks for btree and duplicate sort order and for hashing.

The DB->verify() method normally verifies that btree keys and duplicate items are
correctly sorted, and hash keys are correctly hashed. If the file being verified contains
multiple databases using differing sorting or hashing algorithms, some of them must
necessarily fail database verification because only one sort order or hash function can be
specified before DB->verify() is called. To verify files with multiple databases having
differing sorting orders or hashing functions, first perform verification of the file as a whole
by using the DB_NOORDERCHK flag, and then individually verify the sort order and hashing
function for each database in the file using the DB_ORDERCHKONLY flag.

e DB_ORDERCHKONLY

9/9/2013 DB C API Page 157

Library Version 11.2.5.3 The DB Handle

Perform the database checks for btree and duplicate sort order and for hashing, skipped by
DB_NOORDERCHK.

When this flag is specified, a database parameter should also be specified, indicating
the database in the physical file which is to be checked. This flag is only safe to use on
databases that have already successfully been verified using DB->verify() with the
DB_NOORDERCHK flag set.

Environment Variables

If the database was opened within a database environment, the environment variable DB_HOME
may be used as the path of the database environment home.

DB->verify() is affected by any database directory specified using the DB_ENV-
>set_data_dir() (page 273) method, or by setting the "set_data_dir" string in the
environment's DB_CONFIG file.

Errors
The DB->verify() method may fail and return one of the following non-zero errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

ENOENT

The file or directory does not exist.
Class

DB
See Also

Database and Related Methods (page 3)

9/9/2013 DB C API Page 158

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 11.2.5.3 The DB Handle

DB_HEAP_RID

#tinclude <db.h>

struct _ db_heap_rid {
db_pgno_t pgno; /* Page number. */
db_indx_t indx; /* Index in the offset table. */

};

Content used for the key in a Heap database record. Berkeley DB creates this structure for you
when you create a record in a Heap database. You should never create this structure or modify
the contents of this structure yourself; Berkeley DB must create and manage it for you.

This structure is returned in the key DBT parameter of the method that you use to add a
record to the Heap database.

Parameters

pgno

The database page number where the record is stored.
indx
Index in the offset table where the record can be found.

See Also

Database and Related Methods (page 3),

9/9/2013 DB C API Page 159

Chapter 3. The DBcursor Handle

A DBcursor object is a handle for a cursor into a Berkeley DB database.

DBcursor handles are not free-threaded. Cursor handles may be shared by multiple threads if
access is serialized by the application.

You create a DBcursor using the DB->cursor() (page 162) method.

If the cursor is to be used to perform operations on behalf of a transaction, the cursor must be
opened and closed within the context of that single transaction.

Once DBcursor->close() (page 164) has been called, the handle may not be accessed again,
regardless of the method's return.

9/9/2013

DB C API Page 160

Library Version 11.2.5.3

The DBcursor Handle

Database Cursors and Related Methods

Database Cursors and Related
Methods

Description

DB->cursor()

Create a cursor handle

DBcursor->close()

Close a cursor handle

DBcursor->cmp()

Compare two cursors for equality.

DBcursor->count()

Return count of duplicates for current key

DBcursor->del()

Delete current key/data pair

DBcursor->dup()

Duplicate the cursor handle

DBcursor->get()

Retrieve by cursor

DBcursor->put()

Store by cursor

DBcursor->set_priority(), DBcursor-
>get_priority()

Set/get the cursor's cache priority

9/9/2013

DB C API

Page 161

Library Version 11.2.5.3 The DBcursor Handle

DB->cursor()

#include <db.h>

int
DB->cursor(DB *db, DB_TXN *txnid, DBC **cursorp, u_int32 t flags);

The DB->cursor() method returns a created database cursor.

Cursors may span threads, but only serially, that is, the application must serialize access to
the cursor handle.

The DB->cursor() method returns a non-zero error value on failure and 0 on success.

Parameters

txnid

To transaction-protect cursor operations, cursors must be opened and closed within the
context of a transaction. The txnid parameter specifies the transaction context in which the
cursor may be used.

Cursor operations are not automatically transaction-protected, even if the DB_AUTO_COMMIT
flag is specified to the DB_ENV->set_flags() (page 292) or DB->open() (page 70) methods. If
cursor operations are to be transaction-protected, the txnid parameter must be a transaction
handle returned from DB_ENV->txn_begin() (page 615); otherwise, NULL.

cursorp

The cursorp parameter references memory into which a pointer to the allocated cursor is
copied.

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

+ DB_CURSOR_BULK

Configure a cursor to optimize for bulk operations. Each successive operation on a cursor
configured with this flag attempts to continue on the same database page as the previous
operation, falling back to a search if a different page is required. This avoids searching

if there is a high degree of locality between cursor operations. This flag is currently only

effective with the btree access method. For other access methods, this flag is ignored.

e DB_READ_COMMITTED

Configure a transactional cursor to have degree 2 isolation. This ensures the stability of the
current data item read by this cursor but permits data read by this cursor to be modified or
deleted prior to the commit of the transaction for this cursor.

e DB_READ_UNCOMMITTED

9/9/2013

DB C API Page 162

Library Version 11.2.5.3 The DBcursor Handle

Errors

Configure a transactional cursor to have degree 1 isolation. Read operations performed
by the cursor may return modified but not yet committed data. Silently ignored if the
DB_READ_UNCOMMITTED flag was not specified when the underlying database was opened.

DB_WRITECURSOR

Specify that the cursor will be used to update the database. The underlying database
environment must have been opened using the DB_INIT_CDB flag.

DB_TXN_SNAPSHOT

Configure a transactional cursor to operate with read-only snapshot isolation. For databases
with the DB_MULTIVERSION flag set, data values will be read as they are when the cursor is
opened, without taking read locks.

This flag implicitly begins a transaction that is committed when the cursor is closed.

This flag is silently ignored if DB_MULTIVERSION is not set on the underlying database or if a
transaction is supplied in the txnid parameter.

The DB->cursor() method may fail and return one of the following non-zero errors:

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

EINVAL

An invalid flag value or parameter was specified.

Class

DB

See Also

Database Cursors and Related Methods (page 161)

9/9/2013

DB C API Page 163

../../programmer_reference/transapp_read.html

Library Version 11.2.5.3 The DBcursor Handle

DBcursor->close()

#include <db.h>
int
DBcursor->close(DBC *DBcursor);

The DBcursor->close() method discards the cursor.

It is possible for the DBcursor->close() method to return DB_LOCK_DEADLOCK, signaling
that any enclosing transaction should be aborted. If the application is already intending to
abort the transaction, this error should be ignored, and the application should proceed.

After the DBcursor->close() method has been called, regardless of its return value, you can
not use the cursor handle again.

It is not required to close the cursor explicitly before closing the database handle or the
transaction handle that owns this cursor because, closing a database handle or a transaction
handle closes those open cursors.

However, it is recommended that you always close all cursor handles immediately after their
use to promote concurrency and to release resources such as page locks.

The DBcursor->close() method returns a non-zero error value on failure and 0 on success.

Errors

The DBcursor->close() method may fail and return one of the following non-zero errors:
DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See DB->set_lk_exclusive() (page
122) for more information.

EINVAL

If the cursor is already closed; or if an invalid flag value or parameter was specified.

Class

DBcursor

See Also

Database Cursors and Related Methods (page 161)

9/9/2013

DB C API Page 164

../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_DEADLOCK

Library Version 11.2.5.3 The DBcursor Handle

DBcursor->cmp()
#include <db.h>

int
DBcursor->cmp(DBC *DBcursor,
DBC *other_cursor, int *result, u_int32_t flags);

The DBcursor->cmp() method compares two cursors for equality. Two cursors are equal if and
only if they are positioned on the same item in the same database.

The DBcursor->cmp() method returns a non-zero error value on failure and 0 on success.

Parameters
other_cursor

The other_cursor parameter references another cursor handle that will be used as the
comparator.

result

If the call is successful and both cursors are positioned on the same item, result is set to zero.
If the call is successful but the cursors are not positioned on the same item, result is set to a
non-zero value. If the call is unsuccessful, the value of result should be ignored.

flags
The flags parameter is currently unused, and must be set to 0.
Errors
The DBcursor->cmp() method may fail and return one of the following non-zero errors:
EINVAL
« If either of the cursors are already closed.

« If the cursors have been opened against different databases.

If either of the cursors have not been positioned.

If the other_dbc parameter is NULL.

If the result parameter is NULL.
Class
DBcursor

See Also

Database Cursors and Related Methods (page 161)

9/9/2013 DB C API Page 165

Library Version 11.2.5.3 The DBcursor Handle

DBcursor->count()
#include <db.h>

int
DBcursor->count(DBC *DBcursor, db_recno_t *countp, u_int32_t flags);

The DBcursor->count() method returns a count of the number of data items for the key to
which the cursor refers.

The DBcursor->count() method returns a non-zero error value on failure and 0 on success.

Parameters
countp

The countp parameter references memory into which the count of the number of duplicate
data items is copied.

flags
The flags parameter is currently unused, and must be set to 0.
Errors
The DBcursor->count() method may fail and return one of the following non-zero errors:
DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

EINVAL

If the cursor has not been initialized; or if an invalid flag value or parameter was specified.
Class

DBcursor
See Also

Database Cursors and Related Methods (page 161)

9/9/2013 DB C API Page 166

Library Version 11.2.5.3 The DBcursor Handle

DBcursor->del()

#tinclude <db.h>

int
DBcursor->del(DBC *DBcursor, u_int32_t flags);

The DBcursor->del() method deletes the key/data pair to which the cursor refers.

When called on a cursor opened on a database that has been made into a secondary index
using the DB->associate() (page 6) method, the DB->del() (page 23) method deletes the key/
data pair from the primary database and all secondary indices.

The cursor position is unchanged after a delete, and subsequent calls to cursor functions
expecting the cursor to refer to an existing key will fail.

The DBcursor->del() method will return DB_KEYEMPTY if the element has already been
deleted. The DBcursor->del() method returns a non-zero error value on failure and 0 on
success.

Parameters

flags
The flags parameter must be set to 0 or one of the following values:

e DB_CONSUME

If the database is of type DB_QUEUE then this flag may be set to force the head of the
queue to move to the first non-deleted item in the queue. Normally this is only done if the
deleted item is exactly at the head when deleted.

Errors

The DBcursor->del() method may fail and return one of the following non-zero errors:
DB_FOREIGN_CONFLICT
A foreign key constraint violation has occurred. This can be caused by one of two things:

1. An attempt was made to add a record to a constrained database, and the key used for
that record does not exist in the foreign key database.

2. DB_FOREIGN_ABORT (page 11) was declared for a foreign key database, and then
subsequently a record was deleted from the foreign key database without first removing
it from the constrained secondary database.

DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

9/9/2013

DB C API Page 167

../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Library Version 11.2.5.3 The DBcursor Handle

DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See DB->set_lk_exclusive() (page
122) for more information.

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DB_SECONDARY_BAD

A secondary index references a nonexistent primary key.

EACCES

An attempt was made to modify a read-only database.

EINVAL

If the cursor has not been initialized; or if an invalid flag value or parameter was specified.
EPERM

Write attempted on read-only cursor when the DB_INIT_CDB flag was specified to DB_ENV-
>open() (page 256).

Class
DBcursor
See Also

Database Cursors and Related Methods (page 161)

9/9/2013 DB C API Page 168

Library Version 11.2.5.3 The DBcursor Handle

DBcursor->dup()

#tinclude <db.h>

int
DBcursor->dup(DBC *DBcursor, DBC **cursorp, u_int32_t flags);
The DBcursor->dup() method creates a new cursor that uses the same transaction and locker

ID as the original cursor. This is useful when an application is using locking and requires two or
more cursors in the same thread of control.

The DBcursor->dup() method returns a non-zero error