/* $NetBSD: m_netbsd.c,v 1.30 2024/02/04 05:43:05 mrg Exp $ */ /* * top - a top users display for Unix * * SYNOPSIS: For a NetBSD-1.5 (or later) system * * DESCRIPTION: * Originally written for BSD4.4 system by Christos Zoulas. * Based on the FreeBSD 2.0 version by Steven Wallace and Wolfram Schneider. * NetBSD-1.0 port by Arne Helme. Process ordering by Luke Mewburn. * NetBSD-1.3 port by Luke Mewburn, based on code by Matthew Green. * NetBSD-1.4/UVM port by matthew green. * NetBSD-1.5 port by Simon Burge. * NetBSD-1.6/UBC port by Tomas Svensson. * - * This is the machine-dependent module for NetBSD-1.5 and later * works for: * NetBSD-1.6ZC * and should work for: * NetBSD-2.0 (when released) * - * NetBSD-4.0 updates from Christos Zoulas. * NetBSD-5.0 updates from Andrew Doran, Mindaugas Rasiukevicius and * Christos Zoulas. * NetBSD-6.0 updates from matthew green, Christos Zoulas, and * Mindaugas Rasiukevicius. * NetBSD-8 updates from Leonardo Taccari. * NetBSD-10 updates from Christos Zoulas and matthew green. * * top does not need to be installed setuid or setgid with this module. * * LIBS: -lkvm * * CFLAGS: -DHAVE_GETOPT -DORDER -DHAVE_STRERROR * * AUTHORS: Christos Zoulas * Steven Wallace * Wolfram Schneider * Arne Helme * Luke Mewburn * matthew green * Simon Burge * Tomas Svensson * Andrew Doran * * * $Id: m_netbsd.c,v 1.30 2024/02/04 05:43:05 mrg Exp $ */ #include #ifndef lint __RCSID("$NetBSD: m_netbsd.c,v 1.30 2024/02/04 05:43:05 mrg Exp $"); #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "os.h" #include "top.h" #include "machine.h" #include "utils.h" #include "display.h" #include "loadavg.h" #include "username.h" static void percentages64(int, int *, u_int64_t *, u_int64_t *, u_int64_t *); /* get_process_info passes back a handle. This is what it looks like: */ struct handle { struct process_select *sel; struct kinfo_proc2 **next_proc; /* points to next valid proc pointer */ int remaining; /* number of pointers remaining */ }; /* define what weighted CPU is. */ #define weighted_cpu(pfx, pct, pp) ((pp)->pfx ## swtime == 0 ? 0.0 : \ ((pct) / (1.0 - exp((pp)->pfx ## swtime * logcpu)))) /* what we consider to be process size: */ /* NetBSD introduced p_vm_msize with RLIMIT_AS */ #ifdef RLIMIT_AS #define PROCSIZE(pp) \ ((pp)->p_vm_msize) #else #define PROCSIZE(pp) \ ((pp)->p_vm_tsize + (pp)->p_vm_dsize + (pp)->p_vm_ssize) #endif /* * These definitions control the format of the per-process area */ static char Proc_header[] = " PID X PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND"; /* 0123456 -- field to fill in starts at header+6 */ #define PROC_UNAME_START 6 #define Proc_format \ "%5d %-8.8s %3d %4d%7s %5s %-9.9s%7s %5.*f%% %5.*f%% %s" static char Thread_header[] = " PID LID X PRI STATE TIME WCPU CPU NAME COMMAND"; /* 0123456 -- field to fill in starts at header+6 */ #define THREAD_UNAME_START 12 #define Thread_format \ "%5d %5d %-8.8s %3d %-9.9s%7s %5.2f%% %5.2f%% %-9.9s %s" /* * Process state names for the "STATE" column of the display. */ const char *state_abbrev[] = { "", "IDLE", "RUN", "SLEEP", "STOP", "ZOMB", "DEAD", "CPU" }; static kvm_t *kd; static char *(*userprint)(int); /* these are retrieved from the kernel in _init */ static double logcpu; static int hz; static int ccpu; /* these are for calculating CPU state percentages */ static int ncpu = 0; static u_int64_t *cp_time; static u_int64_t *cp_old; static u_int64_t *cp_diff; /* these are for detailing the process states */ int process_states[8]; const char *procstatenames[] = { "", " idle, ", " runnable, ", " sleeping, ", " stopped, ", " zombie, ", " dead, ", " on CPU, ", NULL }; /* these are for detailing the CPU states */ int *cpu_states; const char *cpustatenames[] = { "user", "nice", "system", "interrupt", "idle", NULL }; /* these are for detailing the memory statistics */ long memory_stats[7]; const char *memorynames[] = { "K Act, ", "K Inact, ", "K Wired, ", "K Exec, ", "K File, ", "K Free, ", NULL }; long swap_stats[9]; const char *swapnames[] = { "K Total, ", "K Used, ", "K Free ", " Pools: ", "K Used ", " Network: ", "K In, ", "K Out, ", NULL }; /* these are names given to allowed sorting orders -- first is default */ const char *ordernames[] = { "cpu", "pri", "res", "size", "state", "time", "pid", "command", "username", NULL }; /* forward definitions for comparison functions */ static int compare_cpu(struct proc **, struct proc **); static int compare_prio(struct proc **, struct proc **); static int compare_res(struct proc **, struct proc **); static int compare_size(struct proc **, struct proc **); static int compare_state(struct proc **, struct proc **); static int compare_time(struct proc **, struct proc **); static int compare_pid(struct proc **, struct proc **); static int compare_command(struct proc **, struct proc **); static int compare_username(struct proc **, struct proc **); int (*proc_compares[])(struct proc **, struct proc **) = { compare_cpu, compare_prio, compare_res, compare_size, compare_state, compare_time, compare_pid, compare_command, compare_username, NULL }; static char *format_next_lwp(caddr_t, char *(*)(int)); static char *format_next_proc(caddr_t, char *(*)(int)); static caddr_t get_proc_info(struct system_info *, struct process_select *, int (*)(struct proc **, struct proc **)); static caddr_t get_lwp_info(struct system_info *, struct process_select *, int (*)(struct proc **, struct proc **)); /* these are for keeping track of the proc array */ static int nproc; static int onproc = -1; static int nlwp; static int onlwp = -1; static int pref_len; static int lref_len; static struct kinfo_proc2 *pbase; static struct kinfo_lwp *lbase; static struct kinfo_proc2 **pref; static struct kinfo_lwp **lref; static int maxswap; static void *swapp; static int procgen; static int thread_nproc; static int thread_onproc = -1; static struct kinfo_proc2 *thread_pbase; /* these are for getting the memory statistics */ static int pageshift; /* log base 2 of the pagesize */ int threadmode; /* define pagetok in terms of pageshift */ #define pagetok(size) ((size) << pageshift) /* * Print swapped processes as and * system processes as [pname] */ static const char * get_pretty(const struct kinfo_proc2 *pp) { if ((pp->p_flag & P_SYSTEM) != 0) return "[]"; if ((pp->p_flag & P_INMEM) == 0) return "<>"; return ""; } static const char * get_command(const struct process_select *sel, struct kinfo_proc2 *pp) { static char cmdbuf[128]; const char *pretty; char **argv; if (pp == NULL) return ""; pretty = get_pretty(pp); if (sel->fullcmd == 0 || kd == NULL || (argv = kvm_getargv2(kd, pp, sizeof(cmdbuf))) == NULL) { if (pretty[0] != '\0' && pp->p_comm[0] != pretty[0]) snprintf(cmdbuf, sizeof(cmdbuf), "%c%s%c", pretty[0], printable(pp->p_comm), pretty[1]); else strlcpy(cmdbuf, printable(pp->p_comm), sizeof(cmdbuf)); } else { char *d = cmdbuf; if (pretty[0] != '\0' && argv[0][0] != pretty[0]) *d++ = pretty[0]; while (*argv) { const char *s = printable(*argv++); while (d < cmdbuf + sizeof(cmdbuf) - 2 && (*d++ = *s++) != '\0') continue; if (d > cmdbuf && d < cmdbuf + sizeof(cmdbuf) - 2 && d[-1] == '\0') d[-1] = ' '; } if (pretty[0] != '\0' && pretty[0] == cmdbuf[0]) *d++ = pretty[1]; *d++ = '\0'; } return cmdbuf; } int machine_init(statics) struct statics *statics; { int pagesize; int mib[2]; size_t size; struct clockinfo clockinfo; struct timespec boottime; if ((kd = kvm_open(NULL, NULL, NULL, KVM_NO_FILES, "kvm_open")) == NULL) return -1; mib[0] = CTL_HW; mib[1] = HW_NCPU; size = sizeof(ncpu); if (sysctl(mib, 2, &ncpu, &size, NULL, 0) == -1) { fprintf(stderr, "top: sysctl hw.ncpu failed: %s\n", strerror(errno)); return(-1); } statics->ncpu = ncpu; cp_time = malloc(sizeof(cp_time[0]) * CPUSTATES * ncpu); mib[0] = CTL_KERN; mib[1] = KERN_CP_TIME; size = sizeof(cp_time[0]) * CPUSTATES * ncpu; if (sysctl(mib, 2, cp_time, &size, NULL, 0) < 0) { fprintf(stderr, "top: sysctl kern.cp_time failed: %s\n", strerror(errno)); return(-1); } /* Handle old call that returned only aggregate */ if (size == sizeof(cp_time[0]) * CPUSTATES) ncpu = 1; cpu_states = malloc(sizeof(cpu_states[0]) * CPUSTATES * ncpu); cp_old = calloc(CPUSTATES * ncpu, sizeof(cp_old[0])); cp_diff = malloc(sizeof(cp_diff[0]) * CPUSTATES * ncpu); if (cpu_states == NULL || cp_time == NULL || cp_old == NULL || cp_diff == NULL) { fprintf(stderr, "top: machine_init: %s\n", strerror(errno)); return(-1); } mib[0] = CTL_KERN; mib[1] = KERN_CCPU; size = sizeof(ccpu); if (sysctl(mib, 2, &ccpu, &size, NULL, 0) == -1) { fprintf(stderr, "top: sysctl kern.ccpu failed: %s\n", strerror(errno)); return(-1); } mib[0] = CTL_KERN; mib[1] = KERN_CLOCKRATE; size = sizeof(clockinfo); if (sysctl(mib, 2, &clockinfo, &size, NULL, 0) == -1) { fprintf(stderr, "top: sysctl kern.clockrate failed: %s\n", strerror(errno)); return(-1); } hz = clockinfo.stathz; /* this is used in calculating WCPU -- calculate it ahead of time */ logcpu = log(loaddouble(ccpu)); pbase = NULL; lbase = NULL; pref = NULL; nproc = 0; onproc = -1; nlwp = 0; onlwp = -1; /* get the page size with "getpagesize" and calculate pageshift from it */ pagesize = getpagesize(); pageshift = 0; while (pagesize > 1) { pageshift++; pagesize >>= 1; } /* we only need the amount of log(2)1024 for our conversion */ pageshift -= LOG1024; /* fill in the statics information */ #ifdef notyet statics->ncpu = ncpu; #endif statics->procstate_names = procstatenames; statics->cpustate_names = cpustatenames; statics->memory_names = memorynames; statics->swap_names = swapnames; statics->order_names = ordernames; statics->flags.threads = 1; statics->flags.fullcmds = 1; mib[0] = CTL_KERN; mib[1] = KERN_BOOTTIME; size = sizeof(boottime); if (sysctl(mib, 2, &boottime, &size, NULL, 0) != -1 && boottime.tv_sec != 0) statics->boottime = boottime.tv_sec; else statics->boottime = 0; /* all done! */ return(0); } char * format_process_header(struct process_select *sel, caddr_t handle, int count) { char *header; char *ptr; const char *uname_field = sel->usernames ? "USERNAME" : " UID "; if (sel->threads) { header = Thread_header; ptr = header + THREAD_UNAME_START; } else { header = Proc_header; ptr = header + PROC_UNAME_START; } while (*uname_field != '\0') { *ptr++ = *uname_field++; } return(header); } char * format_header(char *uname_field) { char *header = Proc_header; char *ptr = header + PROC_UNAME_START; while (*uname_field != '\0') { *ptr++ = *uname_field++; } return(header); } static void get_network_kilobytes(long *kb_in, long *kb_out) { struct if_msghdr *ifm; int mib[6] = { CTL_NET, AF_ROUTE, 0, 0, NET_RT_IFLIST, 0 }; struct rt_msghdr *rtm; struct if_data *ifd = NULL; static char *buf = NULL; static size_t olen; char *next, *lim; size_t len; static uint64_t last_bytes_in; static uint64_t last_bytes_out; uint64_t cur_bytes_in = 0; uint64_t cur_bytes_out = 0; if (sysctl(mib, 6, NULL, &len, NULL, 0) == -1) err(1, "sysctl"); if (len > olen) { free(buf); if ((buf = malloc(len)) == NULL) err(1, NULL); olen = len; } if (sysctl(mib, 6, buf, &len, NULL, 0) == -1) err(1, "sysctl"); lim = buf + len; for (next = buf; next < lim; next += rtm->rtm_msglen) { rtm = (struct rt_msghdr *)next; if (rtm->rtm_version != RTM_VERSION) continue; switch (rtm->rtm_type) { case RTM_IFINFO: ifm = (struct if_msghdr *)next; ifd = &ifm->ifm_data; cur_bytes_in += ifd->ifi_ibytes; cur_bytes_out += ifd->ifi_obytes; break; } } *kb_in = (cur_bytes_in - last_bytes_in) / 1024; *kb_out = (cur_bytes_out - last_bytes_out) / 1024; last_bytes_in = cur_bytes_in; last_bytes_out = cur_bytes_out; } void get_system_info(struct system_info *si) { size_t ssize; int mib[6]; struct uvmexp_sysctl uvmexp; struct swapent *sep; u_int64_t totalsize, totalinuse; int size, inuse, ncounted, i; int rnswap, nswap; mib[0] = CTL_KERN; mib[1] = KERN_CP_TIME; ssize = sizeof(cp_time[0]) * CPUSTATES * ncpu; if (sysctl(mib, 2, cp_time, &ssize, NULL, 0) < 0) { fprintf(stderr, "top: sysctl kern.cp_time failed: %s\n", strerror(errno)); quit(23); } if (getloadavg(si->load_avg, NUM_AVERAGES) < 0) { int j; warn("can't getloadavg"); for (j = 0; j < NUM_AVERAGES; j++) si->load_avg[j] = 0.0; } /* convert cp_time counts to percentages */ for (i = 0; i < ncpu; i++) { int j = i * CPUSTATES; percentages64(CPUSTATES, cpu_states + j, cp_time + j, cp_old + j, cp_diff + j); } mib[0] = CTL_VM; mib[1] = VM_UVMEXP2; ssize = sizeof(uvmexp); if (sysctl(mib, 2, &uvmexp, &ssize, NULL, 0) < 0) { fprintf(stderr, "top: sysctl vm.uvmexp2 failed: %s\n", strerror(errno)); quit(23); } /* convert memory stats to Kbytes */ memory_stats[0] = pagetok(uvmexp.active); memory_stats[1] = pagetok(uvmexp.inactive); memory_stats[2] = pagetok(uvmexp.wired); memory_stats[3] = pagetok(uvmexp.execpages); memory_stats[4] = pagetok(uvmexp.filepages); memory_stats[5] = pagetok(uvmexp.free); swap_stats[0] = swap_stats[1] = swap_stats[2] = 0; do { nswap = swapctl(SWAP_NSWAP, 0, 0); if (nswap < 1) break; if (nswap > maxswap) { if (swapp) free(swapp); swapp = sep = malloc(nswap * sizeof(*sep)); if (sep == NULL) break; maxswap = nswap; } else sep = swapp; rnswap = swapctl(SWAP_STATS, (void *)sep, nswap); if (nswap != rnswap) break; totalsize = totalinuse = ncounted = 0; for (; rnswap-- > 0; sep++) { ncounted++; size = sep->se_nblks; inuse = sep->se_inuse; totalsize += size; totalinuse += inuse; } swap_stats[0] = dbtob(totalsize) / 1024; swap_stats[1] = dbtob(totalinuse) / 1024; swap_stats[2] = dbtob(totalsize) / 1024 - swap_stats[1]; } while (0); swap_stats[4] = pagetok(uvmexp.poolpages); get_network_kilobytes(&swap_stats[6], &swap_stats[7]); memory_stats[6] = -1; swap_stats[3] = swap_stats[5] = swap_stats[8] = -1; /* set arrays and strings */ si->cpustates = cpu_states; si->memory = memory_stats; si->swap = swap_stats; si->last_pid = -1; } static struct kinfo_proc2 * proc_from_thread(struct kinfo_lwp *pl) { struct kinfo_proc2 *pp = thread_pbase; int i; for (i = 0; i < thread_nproc; i++, pp++) if ((pid_t)pp->p_pid == (pid_t)pl->l_pid) return pp; return NULL; } static int uid_from_thread(struct kinfo_lwp *pl) { struct kinfo_proc2 *pp; if ((pp = proc_from_thread(pl)) == NULL) return -1; return pp->p_ruid; } caddr_t get_process_info(struct system_info *si, struct process_select *sel, int c) { userprint = sel->usernames ? username : itoa7; if ((threadmode = sel->threads) != 0) return get_lwp_info(si, sel, proc_compares[c]); else return get_proc_info(si, sel, proc_compares[c]); } static caddr_t get_proc_info(struct system_info *si, struct process_select *sel, int (*compare)(struct proc **, struct proc **)) { int i; int total_procs; int active_procs; struct kinfo_proc2 **prefp, **n; struct kinfo_proc2 *pp; int op, arg; /* these are copied out of sel for speed */ int show_idle; int show_system; int show_uid; char *show_command; static struct handle handle; procgen++; if (sel->pid == (pid_t)-1) { op = KERN_PROC_ALL; arg = 0; } else { op = KERN_PROC_PID; arg = sel->pid; } pbase = kvm_getproc2(kd, op, arg, sizeof(struct kinfo_proc2), &nproc); if (pbase == NULL) { if (sel->pid != (pid_t)-1) { nproc = 0; } else { (void) fprintf(stderr, "top: Out of memory.\n"); quit(23); } } if (nproc > onproc) { n = (struct kinfo_proc2 **) realloc(pref, sizeof(struct kinfo_proc2 *) * nproc); if (n == NULL) { (void) fprintf(stderr, "top: Out of memory.\n"); quit(23); } pref = n; onproc = nproc; } /* get a pointer to the states summary array */ si->procstates = process_states; /* set up flags which define what we are going to select */ show_idle = sel->idle; show_system = sel->system; show_uid = sel->uid != -1; show_command = sel->command; /* count up process states and get pointers to interesting procs */ total_procs = 0; active_procs = 0; memset((char *)process_states, 0, sizeof(process_states)); prefp = pref; for (pp = pbase, i = 0; i < nproc; pp++, i++) { /* * Place pointers to each valid proc structure in pref[]. * Process slots that are actually in use have a non-zero * status field. Processes with P_SYSTEM set are system * processes---these get ignored unless show_sysprocs is set. */ if (pp->p_stat != 0 && (show_system || ((pp->p_flag & P_SYSTEM) == 0))) { total_procs++; process_states[(unsigned char) pp->p_stat]++; if (pp->p_stat != LSZOMB && (show_idle || (pp->p_pctcpu != 0) || (pp->p_stat == LSRUN || pp->p_stat == LSONPROC)) && (!show_uid || pp->p_ruid == (uid_t)sel->uid) && (!show_command || strstr(get_command(sel, pp), show_command) != NULL)) { *prefp++ = pp; active_procs++; } } } /* if requested, sort the "interesting" processes */ if (compare != NULL) { qsort((char *)pref, active_procs, sizeof(struct kinfo_proc2 *), (int (*)(const void *, const void *))compare); } /* remember active and total counts */ si->p_total = total_procs; si->p_active = pref_len = active_procs; /* pass back a handle */ handle.next_proc = pref; handle.remaining = active_procs; handle.sel = sel; return((caddr_t)&handle); } static caddr_t get_lwp_info(struct system_info *si, struct process_select *sel, int (*compare)(struct proc **, struct proc **)) { int i; int total_lwps; int active_lwps; struct kinfo_lwp **lrefp, **n; struct kinfo_lwp *lp; struct kinfo_proc2 *pp; /* these are copied out of sel for speed */ int show_idle; int show_system; int show_uid; char *show_command; static struct handle handle; pp = kvm_getproc2(kd, KERN_PROC_ALL, 0, sizeof(struct kinfo_proc2), &thread_nproc); if (pp == NULL) { (void) fprintf(stderr, "top: Out of memory.\n"); quit(23); } if (thread_pbase == NULL || thread_nproc != thread_onproc) { free(thread_pbase); thread_onproc = thread_nproc; thread_pbase = calloc(sizeof(struct kinfo_proc2), thread_nproc); if (thread_pbase == NULL) { (void) fprintf(stderr, "top: Out of memory.\n"); quit(23); } } memcpy(thread_pbase, pp, sizeof(struct kinfo_proc2) * thread_nproc); lbase = kvm_getlwps(kd, -1, 0, sizeof(struct kinfo_lwp), &nlwp); if (lbase == NULL) { #ifdef notyet if (sel->pid != (pid_t)-1) { nproc = 0; nlwp = 0; } else #endif { (void) fprintf(stderr, "top: Out of memory.\n"); quit(23); } } if (nlwp > onlwp) { n = (struct kinfo_lwp **) realloc(lref, sizeof(struct kinfo_lwp *) * nlwp); if (n == NULL) { (void) fprintf(stderr, "top: Out of memory.\n"); quit(23); } lref = n; onlwp = nlwp; } /* get a pointer to the states summary array */ si->procstates = process_states; /* set up flags which define what we are going to select */ show_idle = sel->idle; show_system = sel->system; show_uid = sel->uid != -1; show_command = sel->command; /* count up thread states and get pointers to interesting threads */ total_lwps = 0; active_lwps = 0; memset((char *)process_states, 0, sizeof(process_states)); lrefp = lref; for (lp = lbase, i = 0; i < nlwp; lp++, i++) { if (sel->pid != (pid_t)-1 && sel->pid != (pid_t)lp->l_pid) continue; /* * Place pointers to each valid lwp structure in lref[]. * thread slots that are actually in use have a non-zero * status field. threads with L_SYSTEM set are system * threads---these get ignored unless show_sysprocs is set. */ if (lp->l_stat != 0 && (show_system || ((lp->l_flag & LW_SYSTEM) == 0))) { total_lwps++; process_states[(unsigned char) lp->l_stat]++; if (lp->l_stat != LSZOMB && (show_idle || (lp->l_pctcpu != 0) || (lp->l_stat == LSRUN || lp->l_stat == LSONPROC)) && (!show_uid || uid_from_thread(lp) == sel->uid) && (!show_command || ((pp = proc_from_thread(lp)) != NULL && strstr(get_command(sel, pp), show_command) != NULL))) { *lrefp++ = lp; active_lwps++; } } } /* if requested, sort the "interesting" threads */ if (compare != NULL) { qsort((char *)lref, active_lwps, sizeof(struct kinfo_lwp *), (int (*)(const void *, const void *))compare); } /* remember active and total counts */ si->p_total = total_lwps; si->p_active = lref_len = active_lwps; /* pass back a handle */ handle.next_proc = (struct kinfo_proc2 **)lref; handle.remaining = active_lwps; handle.sel = sel; return((caddr_t)&handle); } char * format_next_process(caddr_t handle, char *(*get_userid)(int)) { if (threadmode) return format_next_lwp(handle, get_userid); else return format_next_proc(handle, get_userid); } char * format_next_proc(caddr_t handle, char *(*get_userid)(int)) { struct kinfo_proc2 *pp; long cputime; double pct, wcpu, cpu; struct handle *hp; const char *statep; #ifdef KI_NOCPU char state[10]; #endif char wmesg[KI_WMESGLEN + 1]; static char fmt[MAX_COLS]; /* static area where result is built */ /* find and remember the next proc structure */ hp = (struct handle *)handle; pp = *(hp->next_proc++); hp->remaining--; /* get the process's user struct and set cputime */ #if 0 /* This does not produce the correct results */ cputime = pp->p_uticks + pp->p_sticks + pp->p_iticks; #else cputime = pp->p_rtime_sec; /* This does not count interrupts */ #endif /* calculate the base for CPU percentages */ pct = pctdouble(pp->p_pctcpu); if (pp->p_stat == LSSLEEP) { strlcpy(wmesg, pp->p_wmesg, sizeof(wmesg)); statep = wmesg; } else statep = state_abbrev[(unsigned)pp->p_stat]; #ifdef KI_NOCPU /* Post-1.5 change: add CPU number if appropriate */ if (pp->p_cpuid != KI_NOCPU && ncpu > 1) { switch (pp->p_stat) { case LSONPROC: case LSRUN: case LSSLEEP: case LSIDL: (void)snprintf(state, sizeof(state), "%.6s/%u", statep, (unsigned int)pp->p_cpuid); statep = state; break; } } #endif wcpu = 100.0 * weighted_cpu(p_, pct, pp); cpu = 100.0 * pct; /* format this entry */ sprintf(fmt, Proc_format, pp->p_pid, (*userprint)(pp->p_ruid), pp->p_priority, pp->p_nice - NZERO, format_k(pagetok(PROCSIZE(pp))), format_k(pagetok(pp->p_vm_rssize)), statep, format_time(cputime), (wcpu >= 100.0) ? 0 : 2, wcpu, (cpu >= 100.0) ? 0 : 2, cpu, get_command(hp->sel, pp)); /* return the result */ return(fmt); } static char * countable(char *p, size_t width) { size_t len = strlen(p); if (len < width) { // shorter than width, ok return p; } size_t first, last = len - 1; for (first = len - 1; isdigit((unsigned char)p[first]); first--) { continue; } if (first == len - 1) { // no digits, ok return p; } first++; last = len - first; if (width < last + 1) { // if not enough for digits, done return p; } size_t start = width - last - 1; // compute starting point p[start] = '*'; // put a star memmove(p + start + 1, p + first, last + 1); // move digits and NUL return p; } static char * format_next_lwp(caddr_t handle, char *(*get_userid)(int)) { struct kinfo_proc2 *pp; struct kinfo_lwp *pl; long cputime; double pct; struct handle *hp; const char *statep; #ifdef KI_NOCPU char state[10]; #endif char wmesg[KI_WMESGLEN + 1]; static char fmt[MAX_COLS]; /* static area where result is built */ int uid; /* find and remember the next proc structure */ hp = (struct handle *)handle; pl = (struct kinfo_lwp *)*(hp->next_proc++); hp->remaining--; pp = proc_from_thread(pl); /* get the process's user struct and set cputime */ uid = pp ? pp->p_ruid : 0; cputime = pl->l_rtime_sec; /* calculate the base for CPU percentages */ pct = pctdouble(pl->l_pctcpu); if (pl->l_stat == LSSLEEP) { strlcpy(wmesg, pl->l_wmesg, sizeof(wmesg)); statep = wmesg; } else statep = state_abbrev[(unsigned)pl->l_stat]; #ifdef KI_NOCPU /* Post-1.5 change: add CPU number if appropriate */ if (pl->l_cpuid != KI_NOCPU && ncpu > 1) { switch (pl->l_stat) { case LSONPROC: case LSRUN: case LSSLEEP: case LSIDL: (void)snprintf(state, sizeof(state), "%.6s/%u", statep, (unsigned int)pl->l_cpuid); statep = state; break; } } #endif if (pl->l_name[0] == '\0') { pl->l_name[0] = '-'; pl->l_name[1] = '\0'; } /* format this entry */ sprintf(fmt, Thread_format, pl->l_pid, pl->l_lid, (*userprint)(uid), pl->l_priority, statep, format_time(cputime), 100.0 * weighted_cpu(l_, pct, pl), 100.0 * pct, countable(printable(pl->l_name), 9), get_command(hp->sel, pp)); /* return the result */ return(fmt); } /* comparison routines for qsort */ /* * There are currently four possible comparison routines. main selects * one of these by indexing in to the array proc_compares. * * Possible keys are defined as macros below. Currently these keys are * defined: percent CPU, CPU ticks, process state, resident set size, * total virtual memory usage. The process states are ordered as follows * (from least to most important): WAIT, zombie, sleep, stop, start, run. * The array declaration below maps a process state index into a number * that reflects this ordering. */ /* * First, the possible comparison keys. These are defined in such a way * that they can be merely listed in the source code to define the actual * desired ordering. */ #define ORDERKEY_PCTCPU(pfx) \ if (lresult = (pctcpu)(p2)->pfx ## pctcpu - (pctcpu)(p1)->pfx ## pctcpu,\ (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0) #define ORDERKEY_CPTICKS(pfx) \ if (lresult = (pctcpu)(p2)->pfx ## rtime_sec \ - (pctcpu)(p1)->pfx ## rtime_sec,\ (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0) #define ORDERKEY_STATE(pfx) \ if ((result = sorted_state[(int)(p2)->pfx ## stat] - \ sorted_state[(int)(p1)->pfx ## stat] ) == 0) #define ORDERKEY_PRIO(pfx) \ if ((result = (p2)->pfx ## priority - (p1)->pfx ## priority) == 0) #define ORDERKEY_RSSIZE \ if ((result = p2->p_vm_rssize - p1->p_vm_rssize) == 0) #define ORDERKEY_MEM \ if ((result = (PROCSIZE(p2) - PROCSIZE(p1))) == 0) #define ORDERKEY_SIZE(v1, v2) \ if ((result = (v2 - v1)) == 0) /* * Now the array that maps process state to a weight. * The order of the elements should match those in state_abbrev[] */ static int sorted_state[] = { 0, /* (not used) ? */ 1, /* "start" SIDL */ 4, /* "run" SRUN */ 3, /* "sleep" SSLEEP */ 3, /* "stop" SSTOP */ 2, /* "dead" SDEAD */ 1, /* "zomb" SZOMB */ 5, /* "onproc" SONPROC */ }; /* compare_cpu - the comparison function for sorting by CPU percentage */ static int compare_cpu(pp1, pp2) struct proc **pp1, **pp2; { int result; pctcpu lresult; if (threadmode) { struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1; struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2; ORDERKEY_PCTCPU(l_) ORDERKEY_CPTICKS(l_) ORDERKEY_STATE(l_) ORDERKEY_PRIO(l_) return result; } else { struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1; struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2; ORDERKEY_PCTCPU(p_) ORDERKEY_CPTICKS(p_) ORDERKEY_STATE(p_) ORDERKEY_PRIO(p_) ORDERKEY_RSSIZE ORDERKEY_MEM return result; } return (result); } /* compare_prio - the comparison function for sorting by process priority */ static int compare_prio(pp1, pp2) struct proc **pp1, **pp2; { int result; pctcpu lresult; if (threadmode) { struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1; struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2; ORDERKEY_PRIO(l_) ORDERKEY_PCTCPU(l_) ORDERKEY_CPTICKS(l_) ORDERKEY_STATE(l_) return result; } else { struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1; struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2; ORDERKEY_PRIO(p_) ORDERKEY_PCTCPU(p_) ORDERKEY_CPTICKS(p_) ORDERKEY_STATE(p_) ORDERKEY_RSSIZE ORDERKEY_MEM return result; } return (result); } /* compare_res - the comparison function for sorting by resident set size */ static int compare_res(pp1, pp2) struct proc **pp1, **pp2; { int result; pctcpu lresult; if (threadmode) { struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1; struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2; ORDERKEY_PCTCPU(l_) ORDERKEY_CPTICKS(l_) ORDERKEY_STATE(l_) ORDERKEY_PRIO(l_) return result; } else { struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1; struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2; ORDERKEY_RSSIZE ORDERKEY_MEM ORDERKEY_PCTCPU(p_) ORDERKEY_CPTICKS(p_) ORDERKEY_STATE(p_) ORDERKEY_PRIO(p_) return result; } return (result); } static int compare_pid(pp1, pp2) struct proc **pp1, **pp2; { if (threadmode) { struct kinfo_lwp *l1 = *(struct kinfo_lwp **) pp1; struct kinfo_lwp *l2 = *(struct kinfo_lwp **) pp2; struct kinfo_proc2 *p1 = proc_from_thread(l1); struct kinfo_proc2 *p2 = proc_from_thread(l2); if (p1 == NULL || p2 == NULL) return -1; return p2->p_pid - p1->p_pid; } else { struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1; struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2; return p2->p_pid - p1->p_pid; } } static int compare_command(pp1, pp2) struct proc **pp1, **pp2; { if (threadmode) { struct kinfo_lwp *l1 = *(struct kinfo_lwp **) pp1; struct kinfo_lwp *l2 = *(struct kinfo_lwp **) pp2; struct kinfo_proc2 *p1 = proc_from_thread(l1); struct kinfo_proc2 *p2 = proc_from_thread(l2); if (p1 == NULL || p2 == NULL) return -1; return strcmp(p2->p_comm, p1->p_comm); } else { struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1; struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2; return strcmp(p2->p_comm, p1->p_comm); } } static int compare_username(pp1, pp2) struct proc **pp1, **pp2; { if (threadmode) { struct kinfo_lwp *l1 = *(struct kinfo_lwp **) pp1; struct kinfo_lwp *l2 = *(struct kinfo_lwp **) pp2; struct kinfo_proc2 *p1 = proc_from_thread(l1); struct kinfo_proc2 *p2 = proc_from_thread(l2); if (p1 == NULL || p2 == NULL) return -1; return strcmp(p2->p_login, p1->p_login); } else { struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1; struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2; return strcmp(p2->p_login, p1->p_login); } } /* compare_size - the comparison function for sorting by total memory usage */ static int compare_size(pp1, pp2) struct proc **pp1, **pp2; { int result; pctcpu lresult; if (threadmode) { struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1; struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2; ORDERKEY_PCTCPU(l_) ORDERKEY_CPTICKS(l_) ORDERKEY_STATE(l_) ORDERKEY_PRIO(l_) return result; } else { struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1; struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2; ORDERKEY_MEM ORDERKEY_RSSIZE ORDERKEY_PCTCPU(p_) ORDERKEY_CPTICKS(p_) ORDERKEY_STATE(p_) ORDERKEY_PRIO(p_) return result; } return (result); } /* compare_state - the comparison function for sorting by process state */ static int compare_state(pp1, pp2) struct proc **pp1, **pp2; { int result; pctcpu lresult; if (threadmode) { struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1; struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2; ORDERKEY_STATE(l_) ORDERKEY_PCTCPU(l_) ORDERKEY_CPTICKS(l_) ORDERKEY_PRIO(l_) return result; } else { struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1; struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2; ORDERKEY_STATE(p_) ORDERKEY_PCTCPU(p_) ORDERKEY_CPTICKS(p_) ORDERKEY_PRIO(p_) ORDERKEY_RSSIZE ORDERKEY_MEM return result; } return (result); } /* compare_time - the comparison function for sorting by total CPU time */ static int compare_time(pp1, pp2) struct proc **pp1, **pp2; { int result; pctcpu lresult; if (threadmode) { struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1; struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2; ORDERKEY_CPTICKS(l_) ORDERKEY_PCTCPU(l_) ORDERKEY_STATE(l_) ORDERKEY_PRIO(l_) return result; } else { struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1; struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2; ORDERKEY_CPTICKS(p_) ORDERKEY_PCTCPU(p_) ORDERKEY_STATE(p_) ORDERKEY_PRIO(p_) ORDERKEY_MEM ORDERKEY_RSSIZE return result; } return (result); } /* * proc_owner(pid) - returns the uid that owns process "pid", or -1 if * the process does not exist. * It is EXTREMLY IMPORTANT that this function work correctly. * If top runs setuid root (as in SVR4), then this function * is the only thing that stands in the way of a serious * security problem. It validates requests for the "kill" * and "renice" commands. */ int proc_owner(pid) int pid; { int cnt; struct kinfo_proc2 **prefp; struct kinfo_proc2 *pp; if (threadmode) return(-1); prefp = pref; cnt = pref_len; while (--cnt >= 0) { pp = *prefp++; if (pp->p_pid == (pid_t)pid) return(pp->p_ruid); } return(-1); } /* * percentages(cnt, out, new, old, diffs) - calculate percentage change * between array "old" and "new", putting the percentages i "out". * "cnt" is size of each array and "diffs" is used for scratch space. * The array "old" is updated on each call. * The routine assumes modulo arithmetic. This function is especially * useful on BSD mchines for calculating CPU state percentages. */ static void percentages64(cnt, out, new, old, diffs) int cnt; int *out; u_int64_t *new; u_int64_t *old; u_int64_t *diffs; { int i; u_int64_t change; u_int64_t total_change; u_int64_t *dp; u_int64_t half_total; /* initialization */ total_change = 0; dp = diffs; /* calculate changes for each state and the overall change */ for (i = 0; i < cnt; i++) { /* * Don't worry about wrapping - even at hz=1GHz, a * u_int64_t will last at least 544 years. */ change = *new - *old; total_change += (*dp++ = change); *old++ = *new++; } /* avoid divide by zero potential */ if (total_change == 0) total_change = 1; /* calculate percentages based on overall change, rounding up */ half_total = total_change / 2; for (i = 0; i < cnt; i++) *out++ = (int)((*diffs++ * 1000 + half_total) / total_change); }