/* $NetBSD: if_smsc.c,v 1.45.2.1 2019/09/01 13:00:36 martin Exp $ */ /* $OpenBSD: if_smsc.c,v 1.4 2012/09/27 12:38:11 jsg Exp $ */ /* $FreeBSD: src/sys/dev/usb/net/if_smsc.c,v 1.1 2012/08/15 04:03:55 gonzo Exp $ */ /*- * Copyright (c) 2012 * Ben Gray . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * SMSC LAN9xxx devices (http://www.smsc.com/) * * The LAN9500 & LAN9500A devices are stand-alone USB to Ethernet chips that * support USB 2.0 and 10/100 Mbps Ethernet. * * The LAN951x devices are an integrated USB hub and USB to Ethernet adapter. * The driver only covers the Ethernet part, the standard USB hub driver * supports the hub part. * * This driver is closely modelled on the Linux driver written and copyrighted * by SMSC. * * H/W TCP & UDP Checksum Offloading * --------------------------------- * The chip supports both tx and rx offloading of UDP & TCP checksums, this * feature can be dynamically enabled/disabled. * * RX checksuming is performed across bytes after the IPv4 header to the end of * the Ethernet frame, this means if the frame is padded with non-zero values * the H/W checksum will be incorrect, however the rx code compensates for this. * * TX checksuming is more complicated, the device requires a special header to * be prefixed onto the start of the frame which indicates the start and end * positions of the UDP or TCP frame. This requires the driver to manually * go through the packet data and decode the headers prior to sending. * On Linux they generally provide cues to the location of the csum and the * area to calculate it over, on FreeBSD we seem to have to do it all ourselves, * hence this is not as optimal and therefore h/w TX checksum is currently not * implemented. */ #include __KERNEL_RCSID(0, "$NetBSD: if_smsc.c,v 1.45.2.1 2019/09/01 13:00:36 martin Exp $"); #ifdef _KERNEL_OPT #include "opt_usb.h" #endif #include #include #include #include #include "ioconf.h" struct smsc_softc { struct usbnet smsc_un; /* * The following stores the settings in the mac control (MAC_CSR) * register */ uint32_t sc_mac_csr; uint32_t sc_rev_id; uint32_t sc_coe_ctrl; }; #define SMSC_MIN_BUFSZ 2048 #define SMSC_MAX_BUFSZ 18944 /* * Various supported device vendors/products. */ static const struct usb_devno smsc_devs[] = { { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN89530 }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN9530 }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN9730 }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500 }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_ALT }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_HAL }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_SAL10 }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500_ALT }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500_SAL10 }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505 }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A_HAL }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A_SAL10 }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505_SAL10 }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14 }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14_ALT }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14_SAL10 } }; #ifdef USB_DEBUG #ifndef USMSC_DEBUG #define usmscdebug 0 #else static int usmscdebug = 1; SYSCTL_SETUP(sysctl_hw_smsc_setup, "sysctl hw.usmsc setup") { int err; const struct sysctlnode *rnode; const struct sysctlnode *cnode; err = sysctl_createv(clog, 0, NULL, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "usmsc", SYSCTL_DESCR("usmsc global controls"), NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL); if (err) goto fail; /* control debugging printfs */ err = sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT, "debug", SYSCTL_DESCR("Enable debugging output"), NULL, 0, &usmscdebug, sizeof(usmscdebug), CTL_CREATE, CTL_EOL); if (err) goto fail; return; fail: aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err); } #endif /* SMSC_DEBUG */ #endif /* USB_DEBUG */ #define DPRINTF(FMT,A,B,C,D) USBHIST_LOG(usmscdebug,FMT,A,B,C,D) #define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(usmscdebug,N,FMT,A,B,C,D) #define USMSCHIST_FUNC() USBHIST_FUNC() #define USMSCHIST_CALLED() USBHIST_CALLED(usmscdebug) #define smsc_warn_printf(un, fmt, args...) \ printf("%s: warning: " fmt, device_xname((un)->un_dev), ##args) #define smsc_err_printf(un, fmt, args...) \ printf("%s: error: " fmt, device_xname((un)->un_dev), ##args) /* Function declarations */ int smsc_match(device_t, cfdata_t, void *); void smsc_attach(device_t, device_t, void *); CFATTACH_DECL_NEW(usmsc, sizeof(struct smsc_softc), smsc_match, smsc_attach, usbnet_detach, usbnet_activate); int smsc_chip_init(struct usbnet *); int smsc_setmacaddress(struct usbnet *, const uint8_t *); int smsc_init(struct ifnet *); int smsc_init_locked(struct ifnet *); int smsc_ioctl(struct ifnet *, u_long, void *); void smsc_stop_cb(struct ifnet *, int); void smsc_reset(struct smsc_softc *); static void smsc_miibus_statchg(struct ifnet *); int smsc_readreg(struct usbnet *, uint32_t, uint32_t *); int smsc_writereg(struct usbnet *, uint32_t, uint32_t); int smsc_wait_for_bits(struct usbnet *, uint32_t, uint32_t); static int smsc_miibus_readreg(struct usbnet *, int, int, uint16_t *); static int smsc_miibus_writereg(struct usbnet *, int, int, uint16_t); static int smsc_ioctl_cb(struct ifnet *, u_long, void *); static unsigned smsc_tx_prepare(struct usbnet *, struct mbuf *, struct usbnet_chain *); static void smsc_rx_loop(struct usbnet *, struct usbnet_chain *, uint32_t); static struct usbnet_ops smsc_ops = { .uno_stop = smsc_stop_cb, .uno_ioctl = smsc_ioctl_cb, .uno_read_reg = smsc_miibus_readreg, .uno_write_reg = smsc_miibus_writereg, .uno_statchg = smsc_miibus_statchg, .uno_tx_prepare = smsc_tx_prepare, .uno_rx_loop = smsc_rx_loop, .uno_init = smsc_init, }; int smsc_readreg(struct usbnet *un, uint32_t off, uint32_t *data) { usb_device_request_t req; uint32_t buf; usbd_status err; usbnet_isowned_mii(un); if (usbnet_isdying(un)) return 0; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = SMSC_UR_READ_REG; USETW(req.wValue, 0); USETW(req.wIndex, off); USETW(req.wLength, 4); err = usbd_do_request(un->un_udev, &req, &buf); if (err != 0) smsc_warn_printf(un, "Failed to read register 0x%0x\n", off); *data = le32toh(buf); return err; } int smsc_writereg(struct usbnet *un, uint32_t off, uint32_t data) { usb_device_request_t req; uint32_t buf; usbd_status err; usbnet_isowned_mii(un); if (usbnet_isdying(un)) return 0; buf = htole32(data); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = SMSC_UR_WRITE_REG; USETW(req.wValue, 0); USETW(req.wIndex, off); USETW(req.wLength, 4); err = usbd_do_request(un->un_udev, &req, &buf); if (err != 0) smsc_warn_printf(un, "Failed to write register 0x%0x\n", off); return err; } int smsc_wait_for_bits(struct usbnet *un, uint32_t reg, uint32_t bits) { uint32_t val; int err, i; for (i = 0; i < 100; i++) { if ((err = smsc_readreg(un, reg, &val)) != 0) return err; if (!(val & bits)) return 0; DELAY(5); } return 1; } static int smsc_miibus_readreg(struct usbnet *un, int phy, int reg, uint16_t *val) { uint32_t addr; uint32_t data = 0; usbnet_isowned_mii(un); if (un->un_phyno != phy) return EINVAL; if (smsc_wait_for_bits(un, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) { smsc_warn_printf(un, "MII is busy\n"); return ETIMEDOUT; } addr = (phy << 11) | (reg << 6) | SMSC_MII_READ; smsc_writereg(un, SMSC_MII_ADDR, addr); if (smsc_wait_for_bits(un, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) { smsc_warn_printf(un, "MII read timeout\n"); return ETIMEDOUT; } smsc_readreg(un, SMSC_MII_DATA, &data); *val = data & 0xffff; return 0; } static int smsc_miibus_writereg(struct usbnet *un, int phy, int reg, uint16_t val) { uint32_t addr; usbnet_isowned_mii(un); if (un->un_phyno != phy) return EINVAL; if (smsc_wait_for_bits(un, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) { smsc_warn_printf(un, "MII is busy\n"); return ETIMEDOUT; } smsc_writereg(un, SMSC_MII_DATA, val); addr = (phy << 11) | (reg << 6) | SMSC_MII_WRITE; smsc_writereg(un, SMSC_MII_ADDR, addr); if (smsc_wait_for_bits(un, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) { smsc_warn_printf(un, "MII write timeout\n"); return ETIMEDOUT; } return 0; } void smsc_miibus_statchg(struct ifnet *ifp) { USMSCHIST_FUNC(); USMSCHIST_CALLED(); struct usbnet * const un = ifp->if_softc; if (usbnet_isdying(un)) return; struct smsc_softc * const sc = usbnet_softc(un); struct mii_data * const mii = usbnet_mii(un); uint32_t flow; uint32_t afc_cfg; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: usbnet_set_link(un, true); break; case IFM_1000_T: /* Gigabit ethernet not supported by chipset */ break; default: break; } } /* Lost link, do nothing. */ if (!usbnet_havelink(un)) return; usbnet_lock_mii(un); int err = smsc_readreg(un, SMSC_AFC_CFG, &afc_cfg); usbnet_unlock_mii(un); if (err) { smsc_warn_printf(un, "failed to read initial AFC_CFG, " "error %d\n", err); return; } /* Enable/disable full duplex operation and TX/RX pause */ if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { DPRINTF("full duplex operation", 0, 0, 0, 0); sc->sc_mac_csr &= ~SMSC_MAC_CSR_RCVOWN; sc->sc_mac_csr |= SMSC_MAC_CSR_FDPX; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) flow = 0xffff0002; else flow = 0; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) afc_cfg |= 0xf; else afc_cfg &= ~0xf; } else { DPRINTF("half duplex operation", 0, 0, 0, 0); sc->sc_mac_csr &= ~SMSC_MAC_CSR_FDPX; sc->sc_mac_csr |= SMSC_MAC_CSR_RCVOWN; flow = 0; afc_cfg |= 0xf; } usbnet_lock_mii(un); err = smsc_writereg(un, SMSC_MAC_CSR, sc->sc_mac_csr); err += smsc_writereg(un, SMSC_FLOW, flow); err += smsc_writereg(un, SMSC_AFC_CFG, afc_cfg); usbnet_unlock_mii(un); if (err) smsc_warn_printf(un, "media change failed, error %d\n", err); } static inline uint32_t smsc_hash(uint8_t addr[ETHER_ADDR_LEN]) { return (ether_crc32_be(addr, ETHER_ADDR_LEN) >> 26) & 0x3f; } static void smsc_setiff_locked(struct usbnet *un) { USMSCHIST_FUNC(); USMSCHIST_CALLED(); struct smsc_softc * const sc = usbnet_softc(un); struct ifnet * const ifp = usbnet_ifp(un); struct ethercom *ec = usbnet_ec(un); struct ether_multi *enm; struct ether_multistep step; uint32_t hashtbl[2] = { 0, 0 }; uint32_t hash; usbnet_isowned_mii(un); if (usbnet_isdying(un)) return; if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) { allmulti: DPRINTF("receive all multicast enabled", 0, 0, 0, 0); sc->sc_mac_csr |= SMSC_MAC_CSR_MCPAS; sc->sc_mac_csr &= ~SMSC_MAC_CSR_HPFILT; smsc_writereg(un, SMSC_MAC_CSR, sc->sc_mac_csr); return; } else { sc->sc_mac_csr |= SMSC_MAC_CSR_HPFILT; sc->sc_mac_csr &= ~(SMSC_MAC_CSR_PRMS | SMSC_MAC_CSR_MCPAS); } ETHER_LOCK(ec); ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { ETHER_UNLOCK(ec); goto allmulti; } hash = smsc_hash(enm->enm_addrlo); hashtbl[hash >> 5] |= 1 << (hash & 0x1F); ETHER_NEXT_MULTI(step, enm); } ETHER_UNLOCK(ec); /* Debug */ if (sc->sc_mac_csr & SMSC_MAC_CSR_HPFILT) { DPRINTF("receive select group of macs", 0, 0, 0, 0); } else { DPRINTF("receive own packets only", 0, 0, 0, 0); } /* Write the hash table and mac control registers */ //XXX should we be doing this? ifp->if_flags &= ~IFF_ALLMULTI; smsc_writereg(un, SMSC_HASHH, hashtbl[1]); smsc_writereg(un, SMSC_HASHL, hashtbl[0]); smsc_writereg(un, SMSC_MAC_CSR, sc->sc_mac_csr); } static void smsc_setiff(struct usbnet *un) { usbnet_lock_mii(un); smsc_setiff_locked(un); usbnet_unlock_mii(un); } static int smsc_setoe_locked(struct usbnet *un) { struct smsc_softc * const sc = usbnet_softc(un); struct ifnet * const ifp = usbnet_ifp(un); uint32_t val; int err; usbnet_isowned_mii(un); err = smsc_readreg(un, SMSC_COE_CTRL, &val); if (err != 0) { smsc_warn_printf(un, "failed to read SMSC_COE_CTRL (err=%d)\n", err); return err; } /* Enable/disable the Rx checksum */ if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) val |= (SMSC_COE_CTRL_RX_EN | SMSC_COE_CTRL_RX_MODE); else val &= ~(SMSC_COE_CTRL_RX_EN | SMSC_COE_CTRL_RX_MODE); /* Enable/disable the Tx checksum (currently not supported) */ if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx)) val |= SMSC_COE_CTRL_TX_EN; else val &= ~SMSC_COE_CTRL_TX_EN; sc->sc_coe_ctrl = val; err = smsc_writereg(un, SMSC_COE_CTRL, val); if (err != 0) { smsc_warn_printf(un, "failed to write SMSC_COE_CTRL (err=%d)\n", err); return err; } return 0; } static void smsc_setoe(struct usbnet *un) { usbnet_lock_mii(un); smsc_setoe_locked(un); usbnet_unlock_mii(un); } int smsc_setmacaddress(struct usbnet *un, const uint8_t *addr) { USMSCHIST_FUNC(); USMSCHIST_CALLED(); int err; uint32_t val; DPRINTF("setting mac address to %02jx:%02jx:%02jx:...", addr[0], addr[1], addr[2], 0); DPRINTF("... %02jx:%0j2x:%02jx", addr[3], addr[4], addr[5], 0); val = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0]; if ((err = smsc_writereg(un, SMSC_MAC_ADDRL, val)) != 0) goto done; val = (addr[5] << 8) | addr[4]; err = smsc_writereg(un, SMSC_MAC_ADDRH, val); done: return err; } void smsc_reset(struct smsc_softc *sc) { struct usbnet * const un = &sc->smsc_un; usbnet_isowned(un); if (usbnet_isdying(un)) return; /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); /* Reinitialize controller to achieve full reset. */ smsc_chip_init(un); } int smsc_init(struct ifnet *ifp) { struct usbnet * const un = ifp->if_softc; usbnet_lock(un); int ret = smsc_init_locked(ifp); usbnet_unlock(un); return ret; } int smsc_init_locked(struct ifnet *ifp) { struct usbnet * const un = ifp->if_softc; struct smsc_softc * const sc = usbnet_softc(un); if (usbnet_isdying(un)) return EIO; /* Cancel pending I/O */ usbnet_stop(un, ifp, 1); /* Reset the ethernet interface. */ smsc_reset(sc); usbnet_lock_mii_un_locked(un); /* Load the multicast filter. */ smsc_setiff_locked(un); /* TCP/UDP checksum offload engines. */ smsc_setoe_locked(un); usbnet_unlock_mii_un_locked(un); return usbnet_init_rx_tx(un); } void smsc_stop_cb(struct ifnet *ifp, int disable) { struct usbnet * const un = ifp->if_softc; struct smsc_softc * const sc = usbnet_softc(un); // XXXNH didn't do this before smsc_reset(sc); } int smsc_chip_init(struct usbnet *un) { struct smsc_softc * const sc = usbnet_softc(un); uint32_t reg_val; int burst_cap; int err; usbnet_lock_mii_un_locked(un); /* Enter H/W config mode */ smsc_writereg(un, SMSC_HW_CFG, SMSC_HW_CFG_LRST); if ((err = smsc_wait_for_bits(un, SMSC_HW_CFG, SMSC_HW_CFG_LRST)) != 0) { smsc_warn_printf(un, "timed-out waiting for reset to " "complete\n"); goto init_failed; } /* Reset the PHY */ smsc_writereg(un, SMSC_PM_CTRL, SMSC_PM_CTRL_PHY_RST); if ((err = smsc_wait_for_bits(un, SMSC_PM_CTRL, SMSC_PM_CTRL_PHY_RST)) != 0) { smsc_warn_printf(un, "timed-out waiting for phy reset to " "complete\n"); goto init_failed; } usbd_delay_ms(un->un_udev, 40); /* Set the mac address */ struct ifnet * const ifp = usbnet_ifp(un); const char *eaddr = CLLADDR(ifp->if_sadl); if ((err = smsc_setmacaddress(un, eaddr)) != 0) { smsc_warn_printf(un, "failed to set the MAC address\n"); goto init_failed; } /* * Don't know what the HW_CFG_BIR bit is, but following the reset * sequence as used in the Linux driver. */ if ((err = smsc_readreg(un, SMSC_HW_CFG, ®_val)) != 0) { smsc_warn_printf(un, "failed to read HW_CFG: %d\n", err); goto init_failed; } reg_val |= SMSC_HW_CFG_BIR; smsc_writereg(un, SMSC_HW_CFG, reg_val); /* * There is a so called 'turbo mode' that the linux driver supports, it * seems to allow you to jam multiple frames per Rx transaction. * By default this driver supports that and therefore allows multiple * frames per USB transfer. * * The xfer buffer size needs to reflect this as well, therefore based * on the calculations in the Linux driver the RX bufsize is set to * 18944, * bufsz = (16 * 1024 + 5 * 512) * * Burst capability is the number of URBs that can be in a burst of * data/ethernet frames. */ if (un->un_udev->ud_speed == USB_SPEED_HIGH) burst_cap = 37; else burst_cap = 128; smsc_writereg(un, SMSC_BURST_CAP, burst_cap); /* Set the default bulk in delay (magic value from Linux driver) */ smsc_writereg(un, SMSC_BULK_IN_DLY, 0x00002000); /* * Initialise the RX interface */ if ((err = smsc_readreg(un, SMSC_HW_CFG, ®_val)) < 0) { smsc_warn_printf(un, "failed to read HW_CFG: (err = %d)\n", err); goto init_failed; } /* * The following settings are used for 'turbo mode', a.k.a multiple * frames per Rx transaction (again info taken form Linux driver). */ reg_val |= (SMSC_HW_CFG_MEF | SMSC_HW_CFG_BCE); /* * set Rx data offset to ETHER_ALIGN which will make the IP header * align on a word boundary. */ reg_val |= ETHER_ALIGN << SMSC_HW_CFG_RXDOFF_SHIFT; smsc_writereg(un, SMSC_HW_CFG, reg_val); /* Clear the status register ? */ smsc_writereg(un, SMSC_INTR_STATUS, 0xffffffff); /* Read and display the revision register */ if ((err = smsc_readreg(un, SMSC_ID_REV, &sc->sc_rev_id)) < 0) { smsc_warn_printf(un, "failed to read ID_REV (err = %d)\n", err); goto init_failed; } /* GPIO/LED setup */ reg_val = SMSC_LED_GPIO_CFG_SPD_LED | SMSC_LED_GPIO_CFG_LNK_LED | SMSC_LED_GPIO_CFG_FDX_LED; smsc_writereg(un, SMSC_LED_GPIO_CFG, reg_val); /* * Initialise the TX interface */ smsc_writereg(un, SMSC_FLOW, 0); smsc_writereg(un, SMSC_AFC_CFG, AFC_CFG_DEFAULT); /* Read the current MAC configuration */ if ((err = smsc_readreg(un, SMSC_MAC_CSR, &sc->sc_mac_csr)) < 0) { smsc_warn_printf(un, "failed to read MAC_CSR (err=%d)\n", err); goto init_failed; } /* disable pad stripping, collides with checksum offload */ sc->sc_mac_csr &= ~SMSC_MAC_CSR_PADSTR; /* Vlan */ smsc_writereg(un, SMSC_VLAN1, (uint32_t)ETHERTYPE_VLAN); /* * Start TX */ sc->sc_mac_csr |= SMSC_MAC_CSR_TXEN; smsc_writereg(un, SMSC_MAC_CSR, sc->sc_mac_csr); smsc_writereg(un, SMSC_TX_CFG, SMSC_TX_CFG_ON); /* * Start RX */ sc->sc_mac_csr |= SMSC_MAC_CSR_RXEN; smsc_writereg(un, SMSC_MAC_CSR, sc->sc_mac_csr); usbnet_unlock_mii_un_locked(un); return 0; init_failed: usbnet_unlock_mii_un_locked(un); smsc_err_printf(un, "smsc_chip_init failed (err=%d)\n", err); return err; } static int smsc_ioctl_cb(struct ifnet *ifp, u_long cmd, void *data) { struct usbnet * const un = ifp->if_softc; switch (cmd) { case SIOCSIFFLAGS: case SIOCSETHERCAP: case SIOCADDMULTI: case SIOCDELMULTI: smsc_setiff(un); break; case SIOCSIFCAP: smsc_setoe(un); break; default: break; } return 0; } int smsc_match(device_t parent, cfdata_t match, void *aux) { struct usb_attach_arg *uaa = aux; return (usb_lookup(smsc_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE; } void smsc_attach(device_t parent, device_t self, void *aux) { USBNET_MII_DECL_DEFAULT(unm); struct smsc_softc * const sc = device_private(self); struct usbnet * const un = &sc->smsc_un; struct usb_attach_arg *uaa = aux; struct usbd_device *dev = uaa->uaa_device; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; char *devinfop; unsigned bufsz; int err, i; uint32_t mac_h, mac_l; KASSERT((void *)sc == un); aprint_naive("\n"); aprint_normal("\n"); un->un_dev = self; un->un_udev = dev; un->un_sc = sc; un->un_ops = &smsc_ops; un->un_rx_xfer_flags = USBD_SHORT_XFER_OK; un->un_tx_xfer_flags = USBD_FORCE_SHORT_XFER; un->un_rx_list_cnt = SMSC_RX_LIST_CNT; un->un_tx_list_cnt = SMSC_TX_LIST_CNT; devinfop = usbd_devinfo_alloc(un->un_udev, 0); aprint_normal_dev(self, "%s\n", devinfop); usbd_devinfo_free(devinfop); err = usbd_set_config_no(dev, SMSC_CONFIG_INDEX, 1); if (err) { aprint_error_dev(self, "failed to set configuration" ", err=%s\n", usbd_errstr(err)); return; } /* Setup the endpoints for the SMSC LAN95xx device(s) */ err = usbd_device2interface_handle(dev, SMSC_IFACE_IDX, &un->un_iface); if (err) { aprint_error_dev(self, "getting interface handle failed\n"); return; } id = usbd_get_interface_descriptor(un->un_iface); if (dev->ud_speed >= USB_SPEED_HIGH) { bufsz = SMSC_MAX_BUFSZ; } else { bufsz = SMSC_MIN_BUFSZ; } un->un_rx_bufsz = bufsz; un->un_tx_bufsz = bufsz; /* Find endpoints. */ for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(un->un_iface, i); if (!ed) { aprint_error_dev(self, "couldn't get ep %d\n", i); return; } if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { un->un_ed[USBNET_ENDPT_RX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { un->un_ed[USBNET_ENDPT_TX] = ed->bEndpointAddress; #if 0 /* not used yet */ } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) { un->un_ed[USBNET_ENDPT_INTR] = ed->bEndpointAddress; #endif } } usbnet_attach(un, "smscdet"); #ifdef notyet /* * We can do TCPv4, and UDPv4 checksums in hardware. */ struct ifnet *ifp = usbnet_ifp(un); ifp->if_capabilities |= /*IFCAP_CSUM_TCPv4_Tx |*/ IFCAP_CSUM_TCPv4_Rx | /*IFCAP_CSUM_UDPv4_Tx |*/ IFCAP_CSUM_UDPv4_Rx; #endif struct ethercom *ec = usbnet_ec(un); ec->ec_capabilities = ETHERCAP_VLAN_MTU; /* Setup some of the basics */ un->un_phyno = 1; usbnet_lock_mii(un); /* * Attempt to get the mac address, if an EEPROM is not attached this * will just return FF:FF:FF:FF:FF:FF, so in such cases we invent a MAC * address based on urandom. */ memset(un->un_eaddr, 0xff, ETHER_ADDR_LEN); prop_dictionary_t dict = device_properties(self); prop_data_t eaprop = prop_dictionary_get(dict, "mac-address"); if (eaprop != NULL) { KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA); KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN); memcpy(un->un_eaddr, prop_data_data_nocopy(eaprop), ETHER_ADDR_LEN); } else { /* Check if there is already a MAC address in the register */ if ((smsc_readreg(un, SMSC_MAC_ADDRL, &mac_l) == 0) && (smsc_readreg(un, SMSC_MAC_ADDRH, &mac_h) == 0)) { un->un_eaddr[5] = (uint8_t)((mac_h >> 8) & 0xff); un->un_eaddr[4] = (uint8_t)((mac_h) & 0xff); un->un_eaddr[3] = (uint8_t)((mac_l >> 24) & 0xff); un->un_eaddr[2] = (uint8_t)((mac_l >> 16) & 0xff); un->un_eaddr[1] = (uint8_t)((mac_l >> 8) & 0xff); un->un_eaddr[0] = (uint8_t)((mac_l) & 0xff); } } usbnet_unlock_mii(un); usbnet_attach_ifp(un, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST, 0, &unm); } void smsc_rx_loop(struct usbnet * un, struct usbnet_chain *c, uint32_t total_len) { USMSCHIST_FUNC(); USMSCHIST_CALLED(); struct smsc_softc * const sc = usbnet_softc(un); struct ifnet *ifp = usbnet_ifp(un); uint8_t *buf = c->unc_buf; usbnet_isowned_rx(un); DPRINTF("total_len %jd/0x%jx", total_len, total_len, 0, 0); while (total_len != 0) { uint32_t rxhdr; if (total_len < sizeof(rxhdr)) { DPRINTF("total_len %jd < sizeof(rxhdr) %jd", total_len, sizeof(rxhdr), 0, 0); ifp->if_ierrors++; return; } memcpy(&rxhdr, buf, sizeof(rxhdr)); rxhdr = le32toh(rxhdr); buf += sizeof(rxhdr); total_len -= sizeof(rxhdr); if (rxhdr & SMSC_RX_STAT_COLLISION) ifp->if_collisions++; if (rxhdr & (SMSC_RX_STAT_ERROR | SMSC_RX_STAT_LENGTH_ERROR | SMSC_RX_STAT_MII_ERROR)) { DPRINTF("rx error (hdr 0x%08jx)", rxhdr, 0, 0, 0); ifp->if_ierrors++; return; } uint16_t pktlen = (uint16_t)SMSC_RX_STAT_FRM_LENGTH(rxhdr); DPRINTF("total_len %jd pktlen %jd rxhdr 0x%08jx", total_len, pktlen, rxhdr, 0); if (pktlen < ETHER_HDR_LEN) { DPRINTF("pktlen %jd < ETHER_HDR_LEN %jd", pktlen, ETHER_HDR_LEN, 0, 0); ifp->if_ierrors++; return; } pktlen += ETHER_ALIGN; if (pktlen > MCLBYTES) { DPRINTF("pktlen %jd > MCLBYTES %jd", pktlen, MCLBYTES, 0, 0); ifp->if_ierrors++; return; } if (pktlen > total_len) { DPRINTF("pktlen %jd > total_len %jd", pktlen, total_len, 0, 0); ifp->if_ierrors++; return; } uint8_t *pktbuf = buf + ETHER_ALIGN; size_t buflen = pktlen - ETHER_ALIGN; int mbuf_flags = M_HASFCS; int csum_flags = 0; uint16_t csum_data = 0; KASSERT(pktlen < MCLBYTES); /* Check if RX TCP/UDP checksumming is being offloaded */ if (sc->sc_coe_ctrl & SMSC_COE_CTRL_RX_EN) { DPRINTF("RX checksum offload checking", 0, 0, 0, 0); struct ether_header *eh = (struct ether_header *)pktbuf; const size_t cssz = sizeof(csum_data); /* Remove the extra 2 bytes of the csum */ buflen -= cssz; /* * The checksum appears to be simplistically calculated * over the udp/tcp header and data up to the end of the * eth frame. Which means if the eth frame is padded * the csum calculation is incorrectly performed over * the padding bytes as well. Therefore to be safe we * ignore the H/W csum on frames less than or equal to * 64 bytes. * * Ignore H/W csum for non-IPv4 packets. */ DPRINTF("Ethertype %02jx pktlen %02jx", be16toh(eh->ether_type), pktlen, 0, 0); if (be16toh(eh->ether_type) == ETHERTYPE_IP && pktlen > ETHER_MIN_LEN) { csum_flags |= (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA); /* * Copy the TCP/UDP checksum from the last 2 * bytes of the transfer and put in the * csum_data field. */ memcpy(&csum_data, buf + pktlen - cssz, cssz); /* * The data is copied in network order, but the * csum algorithm in the kernel expects it to be * in host network order. */ csum_data = ntohs(csum_data); DPRINTF("RX checksum offloaded (0x%04jx)", csum_data, 0, 0, 0); } } /* round up to next longword */ pktlen = (pktlen + 3) & ~0x3; /* total_len does not include the padding */ if (pktlen > total_len) pktlen = total_len; buf += pktlen; total_len -= pktlen; /* push the packet up */ usbnet_enqueue(un, pktbuf, buflen, csum_flags, csum_data, mbuf_flags); } } static unsigned smsc_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c) { uint32_t txhdr; uint32_t frm_len = 0; usbnet_isowned_tx(un); const size_t hdrsz = sizeof(txhdr) * 2; if ((unsigned)m->m_pkthdr.len > un->un_tx_bufsz - hdrsz) return 0; /* * Each frame is prefixed with two 32-bit values describing the * length of the packet and buffer. */ txhdr = SMSC_TX_CTRL_0_BUF_SIZE(m->m_pkthdr.len) | SMSC_TX_CTRL_0_FIRST_SEG | SMSC_TX_CTRL_0_LAST_SEG; txhdr = htole32(txhdr); memcpy(c->unc_buf, &txhdr, sizeof(txhdr)); txhdr = SMSC_TX_CTRL_1_PKT_LENGTH(m->m_pkthdr.len); txhdr = htole32(txhdr); memcpy(c->unc_buf + sizeof(txhdr), &txhdr, sizeof(txhdr)); frm_len += hdrsz; /* Next copy in the actual packet */ m_copydata(m, 0, m->m_pkthdr.len, c->unc_buf + frm_len); frm_len += m->m_pkthdr.len; return frm_len; } #ifdef _MODULE #include "ioconf.c" #endif USBNET_MODULE(smsc)