/* $NetBSD: uipc_mbuf.c,v 1.255 2024/12/15 11:07:10 skrll Exp $ */ /* * Copyright (c) 1999, 2001, 2018 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center, and Maxime Villard. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1988, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)uipc_mbuf.c 8.4 (Berkeley) 2/14/95 */ #include __KERNEL_RCSID(0, "$NetBSD: uipc_mbuf.c,v 1.255 2024/12/15 11:07:10 skrll Exp $"); #ifdef _KERNEL_OPT #include "ether.h" #include "opt_ddb.h" #include "opt_mbuftrace.h" #include "opt_nmbclusters.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include pool_cache_t mb_cache; /* mbuf cache */ static pool_cache_t mcl_cache; /* mbuf cluster cache */ struct mbstat mbstat; int max_linkhdr; int max_protohdr; int max_hdr; int max_datalen; static void mb_drain(void *, int); static int mb_ctor(void *, void *, int); static void sysctl_kern_mbuf_setup(void); static struct sysctllog *mbuf_sysctllog; static struct mbuf *m_copy_internal(struct mbuf *, int, int, int, bool); static struct mbuf *m_split_internal(struct mbuf *, int, int, bool); static int m_copyback_internal(struct mbuf **, int, int, const void *, int, int); /* Flags for m_copyback_internal. */ #define CB_COPYBACK 0x0001 /* copyback from cp */ #define CB_PRESERVE 0x0002 /* preserve original data */ #define CB_COW 0x0004 /* do copy-on-write */ #define CB_EXTEND 0x0008 /* extend chain */ static const char mclpool_warnmsg[] = "WARNING: mclpool limit reached; increase kern.mbuf.nmbclusters"; MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf"); static percpu_t *mbstat_percpu; #ifdef MBUFTRACE struct mownerhead mowners = LIST_HEAD_INITIALIZER(mowners); struct mowner unknown_mowners[] = { MOWNER_INIT("unknown", "free"), MOWNER_INIT("unknown", "data"), MOWNER_INIT("unknown", "header"), MOWNER_INIT("unknown", "soname"), MOWNER_INIT("unknown", "soopts"), MOWNER_INIT("unknown", "ftable"), MOWNER_INIT("unknown", "control"), MOWNER_INIT("unknown", "oobdata"), }; struct mowner revoked_mowner = MOWNER_INIT("revoked", ""); #endif #define MEXT_ISEMBEDDED(m) ((m)->m_ext_ref == (m)) #define MCLADDREFERENCE(o, n) \ do { \ KASSERT(((o)->m_flags & M_EXT) != 0); \ KASSERT(((n)->m_flags & M_EXT) == 0); \ KASSERT((o)->m_ext.ext_refcnt >= 1); \ (n)->m_flags |= ((o)->m_flags & M_EXTCOPYFLAGS); \ atomic_inc_uint(&(o)->m_ext.ext_refcnt); \ (n)->m_ext_ref = (o)->m_ext_ref; \ mowner_ref((n), (n)->m_flags); \ } while (/* CONSTCOND */ 0) static int nmbclusters_limit(void) { #if defined(PMAP_MAP_POOLPAGE) /* direct mapping, doesn't use space in kmem_arena */ vsize_t max_size = physmem / 4; #else vsize_t max_size = MIN(physmem / 4, nkmempages / 4); #endif max_size = max_size * PAGE_SIZE / MCLBYTES; #ifdef NMBCLUSTERS_MAX max_size = MIN(max_size, NMBCLUSTERS_MAX); #endif return max_size; } /* * Initialize the mbuf allocator. */ void mbinit(void) { CTASSERT(sizeof(struct _m_ext) <= MHLEN); CTASSERT(sizeof(struct mbuf) == MSIZE); sysctl_kern_mbuf_setup(); mb_cache = pool_cache_init(msize, 0, 0, 0, "mbpl", NULL, IPL_VM, mb_ctor, NULL, NULL); KASSERT(mb_cache != NULL); mcl_cache = pool_cache_init(mclbytes, COHERENCY_UNIT, 0, 0, "mclpl", NULL, IPL_VM, NULL, NULL, NULL); KASSERT(mcl_cache != NULL); pool_cache_set_drain_hook(mb_cache, mb_drain, NULL); pool_cache_set_drain_hook(mcl_cache, mb_drain, NULL); /* * Set an arbitrary default limit on the number of mbuf clusters. */ #ifdef NMBCLUSTERS nmbclusters = MIN(NMBCLUSTERS, nmbclusters_limit()); #else nmbclusters = MAX(1024, (vsize_t)physmem * PAGE_SIZE / MCLBYTES / 16); nmbclusters = MIN(nmbclusters, nmbclusters_limit()); #endif /* * Set the hard limit on the mclpool to the number of * mbuf clusters the kernel is to support. Log the limit * reached message max once a minute. */ pool_cache_sethardlimit(mcl_cache, nmbclusters, mclpool_warnmsg, 60); mbstat_percpu = percpu_alloc(sizeof(struct mbstat_cpu)); /* * Set a low water mark for both mbufs and clusters. This should * help ensure that they can be allocated in a memory starvation * situation. This is important for e.g. diskless systems which * must allocate mbufs in order for the pagedaemon to clean pages. */ pool_cache_setlowat(mb_cache, mblowat); pool_cache_setlowat(mcl_cache, mcllowat); #ifdef MBUFTRACE { /* * Attach the unknown mowners. */ int i; MOWNER_ATTACH(&revoked_mowner); for (i = sizeof(unknown_mowners)/sizeof(unknown_mowners[0]); i-- > 0; ) MOWNER_ATTACH(&unknown_mowners[i]); } #endif } static void mb_drain(void *arg, int flags) { struct domain *dp; const struct protosw *pr; struct ifnet *ifp; int s; KERNEL_LOCK(1, NULL); s = splvm(); DOMAIN_FOREACH(dp) { for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) if (pr->pr_drain) (*pr->pr_drain)(); } /* XXX we cannot use psref in H/W interrupt */ if (!cpu_intr_p()) { int bound = curlwp_bind(); IFNET_READER_FOREACH(ifp) { struct psref psref; if_acquire(ifp, &psref); if (ifp->if_drain) (*ifp->if_drain)(ifp); if_release(ifp, &psref); } curlwp_bindx(bound); } splx(s); mbstat.m_drain++; KERNEL_UNLOCK_ONE(NULL); } /* * sysctl helper routine for the kern.mbuf subtree. * nmbclusters, mblowat and mcllowat need range * checking and pool tweaking after being reset. */ static int sysctl_kern_mbuf(SYSCTLFN_ARGS) { int error, newval; struct sysctlnode node; node = *rnode; node.sysctl_data = &newval; switch (rnode->sysctl_num) { case MBUF_NMBCLUSTERS: case MBUF_MBLOWAT: case MBUF_MCLLOWAT: newval = *(int*)rnode->sysctl_data; break; case MBUF_NMBCLUSTERS_LIMIT: newval = nmbclusters_limit(); break; default: return SET_ERROR(EOPNOTSUPP); } error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return error; if (newval < 0) return SET_ERROR(EINVAL); switch (node.sysctl_num) { case MBUF_NMBCLUSTERS: if (newval < nmbclusters) return SET_ERROR(EINVAL); if (newval > nmbclusters_limit()) return SET_ERROR(EINVAL); nmbclusters = newval; pool_cache_sethardlimit(mcl_cache, nmbclusters, mclpool_warnmsg, 60); break; case MBUF_MBLOWAT: mblowat = newval; pool_cache_setlowat(mb_cache, mblowat); break; case MBUF_MCLLOWAT: mcllowat = newval; pool_cache_setlowat(mcl_cache, mcllowat); break; } return 0; } #ifdef MBUFTRACE static void mowner_convert_to_user_cb(void *v1, void *v2, struct cpu_info *ci) { struct mowner_counter *mc = v1; struct mowner_user *mo_user = v2; int i; for (i = 0; i < MOWNER_COUNTER_NCOUNTERS; i++) { mo_user->mo_counter[i] += mc->mc_counter[i]; } } static void mowner_convert_to_user(struct mowner *mo, struct mowner_user *mo_user) { memset(mo_user, 0, sizeof(*mo_user)); CTASSERT(sizeof(mo_user->mo_name) == sizeof(mo->mo_name)); CTASSERT(sizeof(mo_user->mo_descr) == sizeof(mo->mo_descr)); memcpy(mo_user->mo_name, mo->mo_name, sizeof(mo->mo_name)); memcpy(mo_user->mo_descr, mo->mo_descr, sizeof(mo->mo_descr)); percpu_foreach(mo->mo_counters, mowner_convert_to_user_cb, mo_user); } static int sysctl_kern_mbuf_mowners(SYSCTLFN_ARGS) { struct mowner *mo; size_t len = 0; int error = 0; if (namelen != 0) return SET_ERROR(EINVAL); if (newp != NULL) return SET_ERROR(EPERM); LIST_FOREACH(mo, &mowners, mo_link) { struct mowner_user mo_user; mowner_convert_to_user(mo, &mo_user); if (oldp != NULL) { if (*oldlenp - len < sizeof(mo_user)) { error = SET_ERROR(ENOMEM); break; } error = copyout(&mo_user, (char *)oldp + len, sizeof(mo_user)); if (error) break; } len += sizeof(mo_user); } if (error == 0) *oldlenp = len; return error; } #endif /* MBUFTRACE */ void mbstat_type_add(int type, int diff) { struct mbstat_cpu *mb; int s; s = splvm(); mb = percpu_getref(mbstat_percpu); mb->m_mtypes[type] += diff; percpu_putref(mbstat_percpu); splx(s); } static void mbstat_convert_to_user_cb(void *v1, void *v2, struct cpu_info *ci) { struct mbstat_cpu *mbsc = v1; struct mbstat *mbs = v2; int i; for (i = 0; i < __arraycount(mbs->m_mtypes); i++) { mbs->m_mtypes[i] += mbsc->m_mtypes[i]; } } static void mbstat_convert_to_user(struct mbstat *mbs) { memset(mbs, 0, sizeof(*mbs)); mbs->m_drain = mbstat.m_drain; percpu_foreach(mbstat_percpu, mbstat_convert_to_user_cb, mbs); } static int sysctl_kern_mbuf_stats(SYSCTLFN_ARGS) { struct sysctlnode node; struct mbstat mbs; mbstat_convert_to_user(&mbs); node = *rnode; node.sysctl_data = &mbs; node.sysctl_size = sizeof(mbs); return sysctl_lookup(SYSCTLFN_CALL(&node)); } static void sysctl_kern_mbuf_setup(void) { KASSERT(mbuf_sysctllog == NULL); sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "mbuf", SYSCTL_DESCR("mbuf control variables"), NULL, 0, NULL, 0, CTL_KERN, KERN_MBUF, CTL_EOL); sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "msize", SYSCTL_DESCR("mbuf base size"), NULL, msize, NULL, 0, CTL_KERN, KERN_MBUF, MBUF_MSIZE, CTL_EOL); sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "mclbytes", SYSCTL_DESCR("mbuf cluster size"), NULL, mclbytes, NULL, 0, CTL_KERN, KERN_MBUF, MBUF_MCLBYTES, CTL_EOL); sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "nmbclusters", SYSCTL_DESCR("Limit on the number of mbuf clusters"), sysctl_kern_mbuf, 0, &nmbclusters, 0, CTL_KERN, KERN_MBUF, MBUF_NMBCLUSTERS, CTL_EOL); sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "mblowat", SYSCTL_DESCR("mbuf low water mark"), sysctl_kern_mbuf, 0, &mblowat, 0, CTL_KERN, KERN_MBUF, MBUF_MBLOWAT, CTL_EOL); sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "mcllowat", SYSCTL_DESCR("mbuf cluster low water mark"), sysctl_kern_mbuf, 0, &mcllowat, 0, CTL_KERN, KERN_MBUF, MBUF_MCLLOWAT, CTL_EOL); sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "stats", SYSCTL_DESCR("mbuf allocation statistics"), sysctl_kern_mbuf_stats, 0, NULL, 0, CTL_KERN, KERN_MBUF, MBUF_STATS, CTL_EOL); #ifdef MBUFTRACE sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "mowners", SYSCTL_DESCR("Information about mbuf owners"), sysctl_kern_mbuf_mowners, 0, NULL, 0, CTL_KERN, KERN_MBUF, MBUF_MOWNERS, CTL_EOL); #endif sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT, "nmbclusters_limit", SYSCTL_DESCR("Limit of nmbclusters"), sysctl_kern_mbuf, 0, NULL, 0, CTL_KERN, KERN_MBUF, MBUF_NMBCLUSTERS_LIMIT, CTL_EOL); } static int mb_ctor(void *arg, void *object, int flags) { struct mbuf *m = object; #ifdef POOL_VTOPHYS m->m_paddr = POOL_VTOPHYS(m); #else m->m_paddr = M_PADDR_INVALID; #endif return 0; } /* * Add mbuf to the end of a chain */ struct mbuf * m_add(struct mbuf *c, struct mbuf *m) { struct mbuf *n; if (c == NULL) return m; for (n = c; n->m_next != NULL; n = n->m_next) continue; n->m_next = m; return c; } struct mbuf * m_get(int how, int type) { struct mbuf *m; KASSERT(type != MT_FREE); m = pool_cache_get(mb_cache, how == M_WAIT ? PR_WAITOK|PR_LIMITFAIL : PR_NOWAIT); if (m == NULL) return NULL; KASSERTMSG(((vaddr_t)m->m_dat & PAGE_MASK) + MLEN <= PAGE_SIZE, "m=%p m->m_dat=%p" " MLEN=%u PAGE_MASK=0x%x PAGE_SIZE=%u", m, m->m_dat, (unsigned)MLEN, (unsigned)PAGE_MASK, (unsigned)PAGE_SIZE); mbstat_type_add(type, 1); mowner_init(m, type); m->m_ext_ref = m; /* default */ m->m_type = type; m->m_len = 0; m->m_next = NULL; m->m_nextpkt = NULL; /* default */ m->m_data = m->m_dat; m->m_flags = 0; /* default */ return m; } struct mbuf * m_gethdr(int how, int type) { struct mbuf *m; m = m_get(how, type); if (m == NULL) return NULL; m->m_data = m->m_pktdat; m->m_flags = M_PKTHDR; m_reset_rcvif(m); m->m_pkthdr.len = 0; m->m_pkthdr.csum_flags = 0; m->m_pkthdr.csum_data = 0; m->m_pkthdr.segsz = 0; m->m_pkthdr.ether_vtag = 0; m->m_pkthdr.pkthdr_flags = 0; SLIST_INIT(&m->m_pkthdr.tags); m->m_pkthdr.pattr_class = NULL; m->m_pkthdr.pattr_af = AF_UNSPEC; m->m_pkthdr.pattr_hdr = NULL; return m; } struct mbuf * m_get_n(int how, int type, size_t alignbytes, size_t nbytes) { struct mbuf *m; if (alignbytes > MCLBYTES || nbytes > MCLBYTES - alignbytes) return NULL; if ((m = m_get(how, type)) == NULL) return NULL; if (nbytes + alignbytes > MLEN) { m_clget(m, how); if ((m->m_flags & M_EXT) == 0) { m_free(m); return NULL; } } m->m_len = alignbytes + nbytes; m_adj(m, alignbytes); return m; } struct mbuf * m_gethdr_n(int how, int type, size_t alignbytes, size_t nbytes) { struct mbuf *m; if (nbytes > MCLBYTES || nbytes > MCLBYTES - alignbytes) return NULL; if ((m = m_gethdr(how, type)) == NULL) return NULL; if (alignbytes + nbytes > MHLEN) { m_clget(m, how); if ((m->m_flags & M_EXT) == 0) { m_free(m); return NULL; } } m->m_len = m->m_pkthdr.len = alignbytes + nbytes; m_adj(m, alignbytes); return m; } void m_clget(struct mbuf *m, int how) { m->m_ext_storage.ext_buf = (char *)pool_cache_get_paddr(mcl_cache, how == M_WAIT ? (PR_WAITOK|PR_LIMITFAIL) : PR_NOWAIT, &m->m_ext_storage.ext_paddr); if (m->m_ext_storage.ext_buf == NULL) return; KASSERTMSG((((vaddr_t)m->m_ext_storage.ext_buf & PAGE_MASK) + mclbytes <= PAGE_SIZE), "m=%p m->m_ext_storage.ext_buf=%p" " mclbytes=%u PAGE_MASK=0x%x PAGE_SIZE=%u", m, m->m_dat, (unsigned)mclbytes, (unsigned)PAGE_MASK, (unsigned)PAGE_SIZE); MCLINITREFERENCE(m); m->m_data = m->m_ext.ext_buf; m->m_flags = (m->m_flags & ~M_EXTCOPYFLAGS) | M_EXT|M_EXT_CLUSTER|M_EXT_RW; m->m_ext.ext_size = MCLBYTES; m->m_ext.ext_free = NULL; m->m_ext.ext_arg = NULL; /* ext_paddr initialized above */ mowner_ref(m, M_EXT|M_EXT_CLUSTER); } struct mbuf * m_getcl(int how, int type, int flags) { struct mbuf *mp; if ((flags & M_PKTHDR) != 0) mp = m_gethdr(how, type); else mp = m_get(how, type); if (mp == NULL) return NULL; MCLGET(mp, how); if ((mp->m_flags & M_EXT) != 0) return mp; m_free(mp); return NULL; } /* * Utility function for M_PREPEND. Do *NOT* use it directly. */ struct mbuf * m_prepend(struct mbuf *m, int len, int how) { struct mbuf *mn; if (__predict_false(len > MHLEN)) { panic("%s: len > MHLEN", __func__); } KASSERT(len != M_COPYALL); mn = m_get(how, m->m_type); if (mn == NULL) { m_freem(m); return NULL; } if (m->m_flags & M_PKTHDR) { m_move_pkthdr(mn, m); } else { MCLAIM(mn, m->m_owner); } mn->m_next = m; m = mn; if (m->m_flags & M_PKTHDR) { if (len < MHLEN) m_align(m, len); } else { if (len < MLEN) m_align(m, len); } m->m_len = len; return m; } struct mbuf * m_copym(struct mbuf *m, int off, int len, int wait) { /* Shallow copy on M_EXT. */ return m_copy_internal(m, off, len, wait, false); } struct mbuf * m_dup(struct mbuf *m, int off, int len, int wait) { /* Deep copy. */ return m_copy_internal(m, off, len, wait, true); } static inline int m_copylen(int len, int copylen) { return (len == M_COPYALL) ? copylen : uimin(len, copylen); } static struct mbuf * m_copy_internal(struct mbuf *m, int off0, int len, int wait, bool deep) { struct mbuf *m0 __diagused = m; int len0 __diagused = len; struct mbuf *n, **np; int off = off0; struct mbuf *top; int copyhdr = 0; if (off < 0 || (len != M_COPYALL && len < 0)) panic("%s: off %d, len %d", __func__, off, len); if (off == 0 && m->m_flags & M_PKTHDR) copyhdr = 1; while (off > 0) { if (m == NULL) panic("%s: m == NULL, off %d", __func__, off); if (off < m->m_len) break; off -= m->m_len; m = m->m_next; } np = ⊤ top = NULL; while (len == M_COPYALL || len > 0) { if (m == NULL) { if (len != M_COPYALL) panic("%s: m == NULL, len %d [!COPYALL]", __func__, len); break; } n = m_get(wait, m->m_type); *np = n; if (n == NULL) goto nospace; MCLAIM(n, m->m_owner); if (copyhdr) { m_copy_pkthdr(n, m); if (len == M_COPYALL) n->m_pkthdr.len -= off0; else n->m_pkthdr.len = len; copyhdr = 0; } n->m_len = m_copylen(len, m->m_len - off); if (m->m_flags & M_EXT) { if (!deep) { n->m_data = m->m_data + off; MCLADDREFERENCE(m, n); } else { /* * We don't care if MCLGET fails. n->m_len is * recomputed and handles that. */ MCLGET(n, wait); n->m_len = 0; n->m_len = M_TRAILINGSPACE(n); n->m_len = m_copylen(len, n->m_len); n->m_len = uimin(n->m_len, m->m_len - off); memcpy(mtod(n, void *), mtod(m, char *) + off, (unsigned)n->m_len); } } else { memcpy(mtod(n, void *), mtod(m, char *) + off, (unsigned)n->m_len); } if (len != M_COPYALL) len -= n->m_len; off += n->m_len; KASSERTMSG(off <= m->m_len, "m=%p m->m_len=%d off=%d len=%d m0=%p off0=%d len0=%d", m, m->m_len, off, len, m0, off0, len0); if (off == m->m_len) { m = m->m_next; off = 0; } np = &n->m_next; } return top; nospace: m_freem(top); return NULL; } /* * Copy an entire packet, including header (which must be present). * An optimization of the common case 'm_copym(m, 0, M_COPYALL, how)'. */ struct mbuf * m_copypacket(struct mbuf *m, int how) { struct mbuf *top, *n, *o; if (__predict_false((m->m_flags & M_PKTHDR) == 0)) { panic("%s: no header (m = %p)", __func__, m); } n = m_get(how, m->m_type); top = n; if (!n) goto nospace; MCLAIM(n, m->m_owner); m_copy_pkthdr(n, m); n->m_len = m->m_len; if (m->m_flags & M_EXT) { n->m_data = m->m_data; MCLADDREFERENCE(m, n); } else { memcpy(mtod(n, char *), mtod(m, char *), n->m_len); } m = m->m_next; while (m) { o = m_get(how, m->m_type); if (!o) goto nospace; MCLAIM(o, m->m_owner); n->m_next = o; n = n->m_next; n->m_len = m->m_len; if (m->m_flags & M_EXT) { n->m_data = m->m_data; MCLADDREFERENCE(m, n); } else { memcpy(mtod(n, char *), mtod(m, char *), n->m_len); } m = m->m_next; } return top; nospace: m_freem(top); return NULL; } void m_copydata(struct mbuf *m, int off, int len, void *cp) { unsigned int count; struct mbuf *m0 = m; int len0 = len; int off0 = off; void *cp0 = cp; KASSERT(len != M_COPYALL); if (off < 0 || len < 0) panic("m_copydata: off %d, len %d", off, len); while (off > 0) { if (m == NULL) panic("m_copydata(%p,%d,%d,%p): m=NULL, off=%d (%d)", m0, len0, off0, cp0, off, off0 - off); if (off < m->m_len) break; off -= m->m_len; m = m->m_next; } while (len > 0) { if (m == NULL) panic("m_copydata(%p,%d,%d,%p): " "m=NULL, off=%d (%d), len=%d (%d)", m0, len0, off0, cp0, off, off0 - off, len, len0 - len); count = uimin(m->m_len - off, len); memcpy(cp, mtod(m, char *) + off, count); len -= count; cp = (char *)cp + count; off = 0; m = m->m_next; } } /* * Concatenate mbuf chain n to m. * n might be copied into m (when n->m_len is small), therefore data portion of * n could be copied into an mbuf of different mbuf type. * Any m_pkthdr is not updated. */ void m_cat(struct mbuf *m, struct mbuf *n) { while (m->m_next) m = m->m_next; while (n) { if (M_READONLY(m) || n->m_len > M_TRAILINGSPACE(m)) { /* just join the two chains */ m->m_next = n; return; } /* splat the data from one into the other */ memcpy(mtod(m, char *) + m->m_len, mtod(n, void *), (u_int)n->m_len); m->m_len += n->m_len; n = m_free(n); } } void m_adj(struct mbuf *mp, int req_len) { int len = req_len; struct mbuf *m; int count; if ((m = mp) == NULL) return; if (len >= 0) { /* * Trim from head. */ while (m != NULL && len > 0) { if (m->m_len <= len) { len -= m->m_len; m->m_len = 0; m = m->m_next; } else { m->m_len -= len; m->m_data += len; len = 0; } } if (mp->m_flags & M_PKTHDR) mp->m_pkthdr.len -= (req_len - len); } else { /* * Trim from tail. Scan the mbuf chain, * calculating its length and finding the last mbuf. * If the adjustment only affects this mbuf, then just * adjust and return. Otherwise, rescan and truncate * after the remaining size. */ len = -len; count = 0; for (;;) { count += m->m_len; if (m->m_next == NULL) break; m = m->m_next; } if (m->m_len >= len) { m->m_len -= len; if (mp->m_flags & M_PKTHDR) mp->m_pkthdr.len -= len; return; } count -= len; if (count < 0) count = 0; /* * Correct length for chain is "count". * Find the mbuf with last data, adjust its length, * and toss data from remaining mbufs on chain. */ m = mp; if (m->m_flags & M_PKTHDR) m->m_pkthdr.len = count; for (; m; m = m->m_next) { if (m->m_len >= count) { m->m_len = count; break; } count -= m->m_len; } if (m) { while (m->m_next) (m = m->m_next)->m_len = 0; } } } /* * m_ensure_contig: rearrange an mbuf chain that given length of bytes * would be contiguous and in the data area of an mbuf (therefore, mtod() * would work for a structure of given length). * * => On success, returns true and the resulting mbuf chain; false otherwise. * => The mbuf chain may change, but is always preserved valid. */ bool m_ensure_contig(struct mbuf **m0, int len) { struct mbuf *n = *m0, *m; size_t count, space; KASSERT(len != M_COPYALL); /* * If first mbuf has no cluster, and has room for len bytes * without shifting current data, pullup into it, * otherwise allocate a new mbuf to prepend to the chain. */ if ((n->m_flags & M_EXT) == 0 && n->m_data + len < &n->m_dat[MLEN] && n->m_next) { if (n->m_len >= len) { return true; } m = n; n = n->m_next; len -= m->m_len; } else { if (len > MHLEN) { return false; } m = m_get(M_DONTWAIT, n->m_type); if (m == NULL) { return false; } MCLAIM(m, n->m_owner); if (n->m_flags & M_PKTHDR) { m_move_pkthdr(m, n); } } space = &m->m_dat[MLEN] - (m->m_data + m->m_len); do { count = MIN(MIN(MAX(len, max_protohdr), space), n->m_len); memcpy(mtod(m, char *) + m->m_len, mtod(n, void *), (unsigned)count); len -= count; m->m_len += count; n->m_len -= count; space -= count; if (n->m_len) n->m_data += count; else n = m_free(n); } while (len > 0 && n); m->m_next = n; *m0 = m; return len <= 0; } /* * m_pullup: same as m_ensure_contig(), but destroys mbuf chain on error. */ struct mbuf * m_pullup(struct mbuf *n, int len) { struct mbuf *m = n; KASSERT(len != M_COPYALL); if (!m_ensure_contig(&m, len)) { KASSERT(m != NULL); m_freem(m); m = NULL; } return m; } /* * ensure that [off, off + len) is contiguous on the mbuf chain "m". * packet chain before "off" is kept untouched. * if offp == NULL, the target will start at on resulting chain. * if offp != NULL, the target will start at on resulting chain. * * on error return (NULL return value), original "m" will be freed. * * XXX M_TRAILINGSPACE/M_LEADINGSPACE on shared cluster (sharedcluster) */ struct mbuf * m_pulldown(struct mbuf *m, int off, int len, int *offp) { struct mbuf *n, *o; int hlen, tlen, olen; int sharedcluster; /* Check invalid arguments. */ if (m == NULL) panic("%s: m == NULL", __func__); if (len > MCLBYTES) { m_freem(m); return NULL; } n = m; while (n != NULL && off > 0) { if (n->m_len > off) break; off -= n->m_len; n = n->m_next; } /* Be sure to point non-empty mbuf. */ while (n != NULL && n->m_len == 0) n = n->m_next; if (!n) { m_freem(m); return NULL; /* mbuf chain too short */ } sharedcluster = M_READONLY(n); /* * The target data is on . If we got enough data on the mbuf * "n", we're done. */ #ifdef __NO_STRICT_ALIGNMENT if ((off == 0 || offp) && len <= n->m_len - off && !sharedcluster) #else if ((off == 0 || offp) && len <= n->m_len - off && !sharedcluster && ALIGNED_POINTER((mtod(n, char *) + off), uint32_t)) #endif goto ok; /* * When (len <= n->m_len - off) and (off != 0), it is a special case. * Len bytes from sit in single mbuf, but the caller does * not like the starting position (off). * * Chop the current mbuf into two pieces, set off to 0. */ if (len <= n->m_len - off) { struct mbuf *mlast; o = m_dup(n, off, n->m_len - off, M_DONTWAIT); if (o == NULL) { m_freem(m); return NULL; /* ENOBUFS */ } KASSERTMSG(o->m_len >= len, "o=%p o->m_len=%d len=%d", o, o->m_len, len); for (mlast = o; mlast->m_next != NULL; mlast = mlast->m_next) ; n->m_len = off; mlast->m_next = n->m_next; n->m_next = o; n = o; off = 0; goto ok; } /* * We need to take hlen from and tlen from m_next, 0>, * and construct contiguous mbuf with m_len == len. * * Note that hlen + tlen == len, and tlen > 0. */ hlen = n->m_len - off; tlen = len - hlen; /* * Ensure that we have enough trailing data on mbuf chain. If not, * we can do nothing about the chain. */ olen = 0; for (o = n->m_next; o != NULL; o = o->m_next) olen += o->m_len; if (hlen + olen < len) { m_freem(m); return NULL; /* mbuf chain too short */ } /* * Easy cases first. We need to use m_copydata() to get data from * m_next, 0>. */ if ((off == 0 || offp) && M_TRAILINGSPACE(n) >= tlen && !sharedcluster) { m_copydata(n->m_next, 0, tlen, mtod(n, char *) + n->m_len); n->m_len += tlen; m_adj(n->m_next, tlen); goto ok; } if ((off == 0 || offp) && M_LEADINGSPACE(n->m_next) >= hlen && #ifndef __NO_STRICT_ALIGNMENT ALIGNED_POINTER((n->m_next->m_data - hlen), uint32_t) && #endif !sharedcluster && n->m_next->m_len >= tlen) { n->m_next->m_data -= hlen; n->m_next->m_len += hlen; memcpy(mtod(n->m_next, void *), mtod(n, char *) + off, hlen); n->m_len -= hlen; n = n->m_next; off = 0; goto ok; } /* * Now, we need to do the hard way. Don't copy as there's no room * on both ends. */ o = m_get(M_DONTWAIT, m->m_type); if (o && len > MLEN) { MCLGET(o, M_DONTWAIT); if ((o->m_flags & M_EXT) == 0) { m_free(o); o = NULL; } } if (!o) { m_freem(m); return NULL; /* ENOBUFS */ } /* get hlen from into */ o->m_len = hlen; memcpy(mtod(o, void *), mtod(n, char *) + off, hlen); n->m_len -= hlen; /* get tlen from m_next, 0> into */ m_copydata(n->m_next, 0, tlen, mtod(o, char *) + o->m_len); o->m_len += tlen; m_adj(n->m_next, tlen); o->m_next = n->m_next; n->m_next = o; n = o; off = 0; ok: if (offp) *offp = off; return n; } /* * Like m_pullup(), except a new mbuf is always allocated, and we allow * the amount of empty space before the data in the new mbuf to be specified * (in the event that the caller expects to prepend later). */ struct mbuf * m_copyup(struct mbuf *n, int len, int dstoff) { struct mbuf *m; int count, space; KASSERT(len != M_COPYALL); if (len > ((int)MHLEN - dstoff)) goto bad; m = m_get(M_DONTWAIT, n->m_type); if (m == NULL) goto bad; MCLAIM(m, n->m_owner); if (n->m_flags & M_PKTHDR) { m_move_pkthdr(m, n); } m->m_data += dstoff; space = &m->m_dat[MLEN] - (m->m_data + m->m_len); do { count = uimin(uimin(uimax(len, max_protohdr), space), n->m_len); memcpy(mtod(m, char *) + m->m_len, mtod(n, void *), (unsigned)count); len -= count; m->m_len += count; n->m_len -= count; space -= count; if (n->m_len) n->m_data += count; else n = m_free(n); } while (len > 0 && n); if (len > 0) { (void) m_free(m); goto bad; } m->m_next = n; return m; bad: m_freem(n); return NULL; } struct mbuf * m_split(struct mbuf *m0, int len, int wait) { return m_split_internal(m0, len, wait, true); } static struct mbuf * m_split_internal(struct mbuf *m0, int len0, int wait, bool copyhdr) { struct mbuf *m, *n; unsigned len = len0, remain, len_save; KASSERT(len0 != M_COPYALL); for (m = m0; m && len > m->m_len; m = m->m_next) len -= m->m_len; if (m == NULL) return NULL; remain = m->m_len - len; if (copyhdr && (m0->m_flags & M_PKTHDR)) { n = m_gethdr(wait, m0->m_type); if (n == NULL) return NULL; MCLAIM(n, m0->m_owner); m_copy_rcvif(n, m0); n->m_pkthdr.len = m0->m_pkthdr.len - len0; len_save = m0->m_pkthdr.len; m0->m_pkthdr.len = len0; if ((m->m_flags & M_EXT) == 0 && remain > MHLEN) { /* m can't be the lead packet */ m_align(n, 0); n->m_len = 0; n->m_next = m_split(m, len, wait); if (n->m_next == NULL) { (void)m_free(n); m0->m_pkthdr.len = len_save; return NULL; } return n; } } else if (remain == 0) { n = m->m_next; m->m_next = NULL; return n; } else { n = m_get(wait, m->m_type); if (n == NULL) return NULL; MCLAIM(n, m->m_owner); } if (m->m_flags & M_EXT) { n->m_data = m->m_data + len; MCLADDREFERENCE(m, n); } else { m_align(n, remain); memcpy(mtod(n, void *), mtod(m, char *) + len, remain); } n->m_len = remain; m->m_len = len; n->m_next = m->m_next; m->m_next = NULL; return n; } /* * Routine to copy from device local memory into mbufs. */ struct mbuf * m_devget(char *buf, int totlen, int off, struct ifnet *ifp) { struct mbuf *m; struct mbuf *top = NULL, **mp = ⊤ char *cp, *epkt; int len; cp = buf; epkt = cp + totlen; if (off) { /* * If 'off' is non-zero, packet is trailer-encapsulated, * so we have to skip the type and length fields. */ cp += off + 2 * sizeof(uint16_t); totlen -= 2 * sizeof(uint16_t); } m = m_gethdr(M_DONTWAIT, MT_DATA); if (m == NULL) return NULL; m_set_rcvif(m, ifp); m->m_pkthdr.len = totlen; m->m_len = MHLEN; while (totlen > 0) { if (top) { m = m_get(M_DONTWAIT, MT_DATA); if (m == NULL) { m_freem(top); return NULL; } m->m_len = MLEN; } len = uimin(totlen, epkt - cp); if (len >= MINCLSIZE) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_free(m); m_freem(top); return NULL; } m->m_len = len = uimin(len, MCLBYTES); } else { /* * Place initial small packet/header at end of mbuf. */ if (len < m->m_len) { if (top == 0 && len + max_linkhdr <= m->m_len) m->m_data += max_linkhdr; m->m_len = len; } else len = m->m_len; } memcpy(mtod(m, void *), cp, (size_t)len); cp += len; *mp = m; mp = &m->m_next; totlen -= len; if (cp == epkt) cp = buf; } return top; } /* * Copy data from a buffer back into the indicated mbuf chain, * starting "off" bytes from the beginning, extending the mbuf * chain if necessary. */ void m_copyback(struct mbuf *m0, int off, int len, const void *cp) { #if defined(DEBUG) struct mbuf *origm = m0; int error; #endif if (m0 == NULL) return; #if defined(DEBUG) error = #endif m_copyback_internal(&m0, off, len, cp, CB_COPYBACK|CB_EXTEND, M_DONTWAIT); #if defined(DEBUG) if (error != 0 || (m0 != NULL && origm != m0)) panic("m_copyback"); #endif } struct mbuf * m_copyback_cow(struct mbuf *m0, int off, int len, const void *cp, int how) { int error; /* don't support chain expansion */ KASSERT(len != M_COPYALL); KDASSERT(off + len <= m_length(m0)); error = m_copyback_internal(&m0, off, len, cp, CB_COPYBACK|CB_COW, how); if (error) { /* * no way to recover from partial success. * just free the chain. */ m_freem(m0); return NULL; } return m0; } int m_makewritable(struct mbuf **mp, int off, int len, int how) { int error; #if defined(DEBUG) int origlen = m_length(*mp); #endif error = m_copyback_internal(mp, off, len, NULL, CB_PRESERVE|CB_COW, how); if (error) return error; #if defined(DEBUG) int reslen = 0; for (struct mbuf *n = *mp; n; n = n->m_next) reslen += n->m_len; if (origlen != reslen) panic("m_makewritable: length changed"); if (((*mp)->m_flags & M_PKTHDR) != 0 && reslen != (*mp)->m_pkthdr.len) panic("m_makewritable: inconsist"); #endif return 0; } static int m_copyback_internal(struct mbuf **mp0, int off, int len, const void *vp, int flags, int how) { int mlen; struct mbuf *m, *n; struct mbuf **mp; int totlen = 0; const char *cp = vp; KASSERT(mp0 != NULL); KASSERT(*mp0 != NULL); KASSERT((flags & CB_PRESERVE) == 0 || cp == NULL); KASSERT((flags & CB_COPYBACK) == 0 || cp != NULL); if (len == M_COPYALL) len = m_length(*mp0) - off; /* * we don't bother to update "totlen" in the case of CB_COW, * assuming that CB_EXTEND and CB_COW are exclusive. */ KASSERT((~flags & (CB_EXTEND|CB_COW)) != 0); mp = mp0; m = *mp; while (off > (mlen = m->m_len)) { off -= mlen; totlen += mlen; if (m->m_next == NULL) { int tspace; extend: if ((flags & CB_EXTEND) == 0) goto out; /* * try to make some space at the end of "m". */ mlen = m->m_len; if (off + len >= MINCLSIZE && (m->m_flags & M_EXT) == 0 && m->m_len == 0) { MCLGET(m, how); } tspace = M_TRAILINGSPACE(m); if (tspace > 0) { tspace = uimin(tspace, off + len); KASSERT(tspace > 0); memset(mtod(m, char *) + m->m_len, 0, uimin(off, tspace)); m->m_len += tspace; off += mlen; totlen -= mlen; continue; } /* * need to allocate an mbuf. */ if (off + len >= MINCLSIZE) { n = m_getcl(how, m->m_type, 0); } else { n = m_get(how, m->m_type); } if (n == NULL) { goto out; } n->m_len = uimin(M_TRAILINGSPACE(n), off + len); memset(mtod(n, char *), 0, uimin(n->m_len, off)); m->m_next = n; } mp = &m->m_next; m = m->m_next; } while (len > 0) { mlen = m->m_len - off; if (mlen != 0 && M_READONLY(m)) { /* * This mbuf is read-only. Allocate a new writable * mbuf and try again. */ char *datap; int eatlen; KASSERT((flags & CB_COW) != 0); /* * if we're going to write into the middle of * a mbuf, split it first. */ if (off > 0) { n = m_split_internal(m, off, how, false); if (n == NULL) goto enobufs; m->m_next = n; mp = &m->m_next; m = n; off = 0; continue; } /* * XXX TODO coalesce into the trailingspace of * the previous mbuf when possible. */ /* * allocate a new mbuf. copy packet header if needed. */ n = m_get(how, m->m_type); if (n == NULL) goto enobufs; MCLAIM(n, m->m_owner); if (off == 0 && (m->m_flags & M_PKTHDR) != 0) { m_move_pkthdr(n, m); n->m_len = MHLEN; } else { if (len >= MINCLSIZE) MCLGET(n, M_DONTWAIT); n->m_len = (n->m_flags & M_EXT) ? MCLBYTES : MLEN; } if (n->m_len > len) n->m_len = len; /* * free the region which has been overwritten. * copying data from old mbufs if requested. */ if (flags & CB_PRESERVE) datap = mtod(n, char *); else datap = NULL; eatlen = n->m_len; while (m != NULL && M_READONLY(m) && n->m_type == m->m_type && eatlen > 0) { mlen = uimin(eatlen, m->m_len); if (datap) { m_copydata(m, 0, mlen, datap); datap += mlen; } m->m_data += mlen; m->m_len -= mlen; eatlen -= mlen; if (m->m_len == 0) *mp = m = m_free(m); } if (eatlen > 0) n->m_len -= eatlen; n->m_next = m; *mp = m = n; continue; } mlen = uimin(mlen, len); if (flags & CB_COPYBACK) { memcpy(mtod(m, char *) + off, cp, (unsigned)mlen); cp += mlen; } len -= mlen; mlen += off; off = 0; totlen += mlen; if (len == 0) break; if (m->m_next == NULL) { goto extend; } mp = &m->m_next; m = m->m_next; } out: if (((m = *mp0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) { KASSERT((flags & CB_EXTEND) != 0); m->m_pkthdr.len = totlen; } return 0; enobufs: return SET_ERROR(ENOBUFS); } /* * Compress the mbuf chain. Return the new mbuf chain on success, NULL on * failure. The first mbuf is preserved, and on success the pointer returned * is the same as the one passed. */ struct mbuf * m_defrag(struct mbuf *m, int how) { struct mbuf *m0, *mn, *n; int sz; KASSERT((m->m_flags & M_PKTHDR) != 0); if (m->m_next == NULL) return m; /* Defrag to single mbuf if at all possible */ if ((m->m_flags & M_EXT) == 0 && m->m_pkthdr.len <= MCLBYTES) { if (m->m_pkthdr.len <= MHLEN) { if (M_TRAILINGSPACE(m) < (m->m_pkthdr.len - m->m_len)) { KASSERTMSG(M_LEADINGSPACE(m) + M_TRAILINGSPACE(m) >= (m->m_pkthdr.len - m->m_len), "too small leading %d trailing %d ro? %d" " pkthdr.len %d mlen %d", (int)M_LEADINGSPACE(m), (int)M_TRAILINGSPACE(m), M_READONLY(m), m->m_pkthdr.len, m->m_len); memmove(m->m_pktdat, m->m_data, m->m_len); m->m_data = m->m_pktdat; KASSERT(M_TRAILINGSPACE(m) >= (m->m_pkthdr.len - m->m_len)); } } else { /* Must copy data before adding cluster */ m0 = m_get(how, MT_DATA); if (m0 == NULL) return NULL; KASSERTMSG(m->m_len <= MHLEN, "m=%p m->m_len=%d MHLEN=%u", m, m->m_len, (unsigned)MHLEN); m_copydata(m, 0, m->m_len, mtod(m0, void *)); MCLGET(m, how); if ((m->m_flags & M_EXT) == 0) { m_free(m0); return NULL; } memcpy(m->m_data, mtod(m0, void *), m->m_len); m_free(m0); } KASSERTMSG(M_TRAILINGSPACE(m) >= (m->m_pkthdr.len - m->m_len), "m=%p M_TRAILINGSPACE(m)=%zd m->m_pkthdr.len=%d" " m->m_len=%d", m, M_TRAILINGSPACE(m), m->m_pkthdr.len, m->m_len); m_copydata(m->m_next, 0, m->m_pkthdr.len - m->m_len, mtod(m, char *) + m->m_len); m->m_len = m->m_pkthdr.len; m_freem(m->m_next); m->m_next = NULL; return m; } m0 = m_get(how, MT_DATA); if (m0 == NULL) return NULL; mn = m0; sz = m->m_pkthdr.len - m->m_len; KASSERT(sz >= 0); do { if (sz > MLEN) { MCLGET(mn, how); if ((mn->m_flags & M_EXT) == 0) { m_freem(m0); return NULL; } } mn->m_len = MIN(sz, MCLBYTES); m_copydata(m, m->m_pkthdr.len - sz, mn->m_len, mtod(mn, void *)); sz -= mn->m_len; if (sz > 0) { /* need more mbufs */ n = m_get(how, MT_DATA); if (n == NULL) { m_freem(m0); return NULL; } mn->m_next = n; mn = n; } } while (sz > 0); m_freem(m->m_next); m->m_next = m0; return m; } void m_remove_pkthdr(struct mbuf *m) { KASSERT(m->m_flags & M_PKTHDR); m_tag_delete_chain(m); m->m_flags &= ~M_PKTHDR; memset(&m->m_pkthdr, 0, sizeof(m->m_pkthdr)); } void m_copy_pkthdr(struct mbuf *to, struct mbuf *from) { KASSERT((to->m_flags & M_EXT) == 0); KASSERT((to->m_flags & M_PKTHDR) == 0 || SLIST_FIRST(&to->m_pkthdr.tags) == NULL); KASSERT((from->m_flags & M_PKTHDR) != 0); to->m_pkthdr = from->m_pkthdr; to->m_flags = from->m_flags & M_COPYFLAGS; to->m_data = to->m_pktdat; SLIST_INIT(&to->m_pkthdr.tags); m_tag_copy_chain(to, from); } void m_move_pkthdr(struct mbuf *to, struct mbuf *from) { KASSERT((to->m_flags & M_EXT) == 0); KASSERT((to->m_flags & M_PKTHDR) == 0 || SLIST_FIRST(&to->m_pkthdr.tags) == NULL); KASSERT((from->m_flags & M_PKTHDR) != 0); to->m_pkthdr = from->m_pkthdr; to->m_flags = from->m_flags & M_COPYFLAGS; to->m_data = to->m_pktdat; from->m_flags &= ~M_PKTHDR; } /* * Set the m_data pointer of a newly-allocated mbuf to place an object of the * specified size at the end of the mbuf, longword aligned. */ void m_align(struct mbuf *m, int len) { int buflen, adjust; KASSERT(len != M_COPYALL); KASSERTMSG(M_LEADINGSPACE(m) == 0, "m=%p M_LEADINGSPACE(m)=%zd", m, M_LEADINGSPACE(m)); buflen = M_BUFSIZE(m); KASSERTMSG(len <= buflen, "m=%p len=%d buflen=%d", m, len, buflen); adjust = buflen - len; m->m_data += adjust &~ (sizeof(long)-1); } /* * Apply function f to the data in an mbuf chain starting "off" bytes from the * beginning, continuing for "len" bytes. */ int m_apply(struct mbuf *m, int off, int len, int (*f)(void *, void *, unsigned int), void *arg) { unsigned int count; int rval; KASSERT(len != M_COPYALL); KASSERT(len >= 0); KASSERT(off >= 0); while (off > 0) { KASSERT(m != NULL); if (off < m->m_len) break; off -= m->m_len; m = m->m_next; } while (len > 0) { KASSERT(m != NULL); count = uimin(m->m_len - off, len); rval = (*f)(arg, mtod(m, char *) + off, count); if (rval) return rval; len -= count; off = 0; m = m->m_next; } return 0; } /* * Return a pointer to mbuf/offset of location in mbuf chain. */ struct mbuf * m_getptr(struct mbuf *m, int loc, int *off) { while (loc >= 0) { /* Normal end of search */ if (m->m_len > loc) { *off = loc; return m; } loc -= m->m_len; if (m->m_next == NULL) { if (loc == 0) { /* Point at the end of valid data */ *off = m->m_len; return m; } return NULL; } else { m = m->m_next; } } return NULL; } /* * Release a reference to the mbuf external storage. * * => free the mbuf m itself as well. */ static void m_ext_free(struct mbuf *m) { const bool embedded = MEXT_ISEMBEDDED(m); bool dofree = true; u_int refcnt; KASSERT((m->m_flags & M_EXT) != 0); KASSERT(MEXT_ISEMBEDDED(m->m_ext_ref)); KASSERT((m->m_ext_ref->m_flags & M_EXT) != 0); KASSERT((m->m_flags & M_EXT_CLUSTER) == (m->m_ext_ref->m_flags & M_EXT_CLUSTER)); if (__predict_false(m->m_type == MT_FREE)) { panic("mbuf %p already freed", m); } if (__predict_true(m->m_ext.ext_refcnt == 1)) { refcnt = m->m_ext.ext_refcnt = 0; } else { membar_release(); refcnt = atomic_dec_uint_nv(&m->m_ext.ext_refcnt); } if (refcnt > 0) { if (embedded) { /* * other mbuf's m_ext_ref still points to us. */ dofree = false; } else { m->m_ext_ref = m; } } else { /* * dropping the last reference */ membar_acquire(); if (!embedded) { m->m_ext.ext_refcnt++; /* XXX */ m_ext_free(m->m_ext_ref); m->m_ext_ref = m; } else if ((m->m_flags & M_EXT_CLUSTER) != 0) { pool_cache_put_paddr(mcl_cache, m->m_ext.ext_buf, m->m_ext.ext_paddr); } else if (m->m_ext.ext_free) { (*m->m_ext.ext_free)(m, m->m_ext.ext_buf, m->m_ext.ext_size, m->m_ext.ext_arg); /* * 'm' is already freed by the ext_free callback. */ dofree = false; } else { free(m->m_ext.ext_buf, 0); } } if (dofree) { m->m_type = MT_FREE; m->m_data = NULL; pool_cache_put(mb_cache, m); } } /* * Free a single mbuf and associated external storage. Return the * successor, if any. */ struct mbuf * m_free(struct mbuf *m) { struct mbuf *n; mowner_revoke(m, 1, m->m_flags); mbstat_type_add(m->m_type, -1); if (m->m_flags & M_PKTHDR) m_tag_delete_chain(m); n = m->m_next; if (m->m_flags & M_EXT) { m_ext_free(m); } else { if (__predict_false(m->m_type == MT_FREE)) { panic("mbuf %p already freed", m); } m->m_type = MT_FREE; m->m_data = NULL; pool_cache_put(mb_cache, m); } return n; } void m_freem(struct mbuf *m) { if (m == NULL) return; do { m = m_free(m); } while (m); } #if defined(DDB) void m_print(const struct mbuf *m, const char *modif, void (*pr)(const char *, ...)) { char ch; bool opt_c = false; bool opt_d = false; #if NETHER > 0 bool opt_v = false; const struct mbuf *m0 = NULL; #endif int no = 0; char buf[512]; while ((ch = *(modif++)) != '\0') { switch (ch) { case 'c': opt_c = true; break; case 'd': opt_d = true; break; #if NETHER > 0 case 'v': opt_v = true; m0 = m; break; #endif default: break; } } nextchain: (*pr)("MBUF(%d) %p\n", no, m); snprintb(buf, sizeof(buf), M_FLAGS_BITS, (u_int)m->m_flags); (*pr)(" data=%p, len=%d, type=%d, flags=%s\n", m->m_data, m->m_len, m->m_type, buf); if (opt_d) { int i; unsigned char *p = m->m_data; (*pr)(" data:"); for (i = 0; i < m->m_len; i++) { if (i % 16 == 0) (*pr)("\n"); (*pr)(" %02x", p[i]); } (*pr)("\n"); } (*pr)(" owner=%p, next=%p, nextpkt=%p\n", m->m_owner, m->m_next, m->m_nextpkt); (*pr)(" leadingspace=%u, trailingspace=%u, readonly=%u\n", (int)M_LEADINGSPACE(m), (int)M_TRAILINGSPACE(m), (int)M_READONLY(m)); if ((m->m_flags & M_PKTHDR) != 0) { snprintb(buf, sizeof(buf), M_CSUM_BITS, m->m_pkthdr.csum_flags); (*pr)(" pktlen=%d, rcvif=%p, csum_flags=%s, csum_data=0x%" PRIx32 ", segsz=%u\n", m->m_pkthdr.len, m_get_rcvif_NOMPSAFE(m), buf, m->m_pkthdr.csum_data, m->m_pkthdr.segsz); } if ((m->m_flags & M_EXT)) { (*pr)(" ext_refcnt=%u, ext_buf=%p, ext_size=%zd, " "ext_free=%p, ext_arg=%p\n", m->m_ext.ext_refcnt, m->m_ext.ext_buf, m->m_ext.ext_size, m->m_ext.ext_free, m->m_ext.ext_arg); } if ((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0) { vaddr_t sva = (vaddr_t)m->m_ext.ext_buf; vaddr_t eva = sva + m->m_ext.ext_size; int n = (round_page(eva) - trunc_page(sva)) >> PAGE_SHIFT; int i; (*pr)(" pages:"); for (i = 0; i < n; i ++) { (*pr)(" %p", m->m_ext.ext_pgs[i]); } (*pr)("\n"); } if (opt_c) { m = m->m_next; if (m != NULL) { no++; goto nextchain; } } #if NETHER > 0 if (opt_v && m0) m_examine(m0, AF_ETHER, modif, pr); #endif } #endif /* defined(DDB) */ #if defined(MBUFTRACE) void mowner_init_owner(struct mowner *mo, const char *name, const char *descr) { memset(mo, 0, sizeof(*mo)); strlcpy(mo->mo_name, name, sizeof(mo->mo_name)); strlcpy(mo->mo_descr, descr, sizeof(mo->mo_descr)); } void mowner_attach(struct mowner *mo) { KASSERT(mo->mo_counters == NULL); mo->mo_counters = percpu_alloc(sizeof(struct mowner_counter)); /* XXX lock */ LIST_INSERT_HEAD(&mowners, mo, mo_link); } void mowner_detach(struct mowner *mo) { KASSERT(mo->mo_counters != NULL); /* XXX lock */ LIST_REMOVE(mo, mo_link); percpu_free(mo->mo_counters, sizeof(struct mowner_counter)); mo->mo_counters = NULL; } void mowner_init(struct mbuf *m, int type) { struct mowner_counter *mc; struct mowner *mo; int s; m->m_owner = mo = &unknown_mowners[type]; s = splvm(); mc = percpu_getref(mo->mo_counters); mc->mc_counter[MOWNER_COUNTER_CLAIMS]++; percpu_putref(mo->mo_counters); splx(s); } void mowner_ref(struct mbuf *m, int flags) { struct mowner *mo = m->m_owner; struct mowner_counter *mc; int s; s = splvm(); mc = percpu_getref(mo->mo_counters); if ((flags & M_EXT) != 0) mc->mc_counter[MOWNER_COUNTER_EXT_CLAIMS]++; if ((flags & M_EXT_CLUSTER) != 0) mc->mc_counter[MOWNER_COUNTER_CLUSTER_CLAIMS]++; percpu_putref(mo->mo_counters); splx(s); } void mowner_revoke(struct mbuf *m, bool all, int flags) { struct mowner *mo = m->m_owner; struct mowner_counter *mc; int s; s = splvm(); mc = percpu_getref(mo->mo_counters); if ((flags & M_EXT) != 0) mc->mc_counter[MOWNER_COUNTER_EXT_RELEASES]++; if ((flags & M_EXT_CLUSTER) != 0) mc->mc_counter[MOWNER_COUNTER_CLUSTER_RELEASES]++; if (all) mc->mc_counter[MOWNER_COUNTER_RELEASES]++; percpu_putref(mo->mo_counters); splx(s); if (all) m->m_owner = &revoked_mowner; } static void mowner_claim(struct mbuf *m, struct mowner *mo) { struct mowner_counter *mc; int flags = m->m_flags; int s; s = splvm(); mc = percpu_getref(mo->mo_counters); mc->mc_counter[MOWNER_COUNTER_CLAIMS]++; if ((flags & M_EXT) != 0) mc->mc_counter[MOWNER_COUNTER_EXT_CLAIMS]++; if ((flags & M_EXT_CLUSTER) != 0) mc->mc_counter[MOWNER_COUNTER_CLUSTER_CLAIMS]++; percpu_putref(mo->mo_counters); splx(s); m->m_owner = mo; } void m_claim(struct mbuf *m, struct mowner *mo) { if (m->m_owner == mo || mo == NULL) return; mowner_revoke(m, true, m->m_flags); mowner_claim(m, mo); } void m_claimm(struct mbuf *m, struct mowner *mo) { for (; m != NULL; m = m->m_next) m_claim(m, mo); } #endif /* defined(MBUFTRACE) */ #ifdef DIAGNOSTIC /* * Verify that the mbuf chain is not malformed. Used only for diagnostic. * Panics on error. */ void m_verify_packet(struct mbuf *m) { struct mbuf *n = m; char *low, *high, *dat; int totlen = 0, len; if (__predict_false((m->m_flags & M_PKTHDR) == 0)) { panic("%s: mbuf doesn't have M_PKTHDR", __func__); } while (n != NULL) { if (__predict_false(n->m_type == MT_FREE)) { panic("%s: mbuf already freed (n = %p)", __func__, n); } #if 0 /* * This ought to be a rule of the mbuf API. Unfortunately, * many places don't respect that rule. */ if (__predict_false((n != m) && (n->m_flags & M_PKTHDR) != 0)) { panic("%s: M_PKTHDR set on secondary mbuf", __func__); } #endif if (__predict_false(n->m_nextpkt != NULL)) { panic("%s: m_nextpkt not null (m_nextpkt = %p)", __func__, n->m_nextpkt); } dat = n->m_data; len = n->m_len; if (__predict_false(len < 0)) { panic("%s: incorrect length (len = %d)", __func__, len); } low = M_BUFADDR(n); high = low + M_BUFSIZE(n); if (__predict_false((dat < low) || (dat + len > high))) { panic("%s: m_data not in packet" "(dat = %p, len = %d, low = %p, high = %p)", __func__, dat, len, low, high); } totlen += len; n = n->m_next; } if (__predict_false(totlen != m->m_pkthdr.len)) { panic("%s: inconsistent mbuf length (%d != %d)", __func__, totlen, m->m_pkthdr.len); } } #endif struct m_tag * m_tag_get(int type, int len, int wait) { struct m_tag *t; if (len < 0) return NULL; t = malloc(len + sizeof(struct m_tag), M_PACKET_TAGS, wait); if (t == NULL) return NULL; t->m_tag_id = type; t->m_tag_len = len; return t; } void m_tag_free(struct m_tag *t) { free(t, M_PACKET_TAGS); } void m_tag_prepend(struct mbuf *m, struct m_tag *t) { KASSERT((m->m_flags & M_PKTHDR) != 0); SLIST_INSERT_HEAD(&m->m_pkthdr.tags, t, m_tag_link); } void m_tag_unlink(struct mbuf *m, struct m_tag *t) { KASSERT((m->m_flags & M_PKTHDR) != 0); SLIST_REMOVE(&m->m_pkthdr.tags, t, m_tag, m_tag_link); } void m_tag_delete(struct mbuf *m, struct m_tag *t) { m_tag_unlink(m, t); m_tag_free(t); } void m_tag_delete_chain(struct mbuf *m) { struct m_tag *p, *q; KASSERT((m->m_flags & M_PKTHDR) != 0); p = SLIST_FIRST(&m->m_pkthdr.tags); if (p == NULL) return; while ((q = SLIST_NEXT(p, m_tag_link)) != NULL) m_tag_delete(m, q); m_tag_delete(m, p); } struct m_tag * m_tag_find(const struct mbuf *m, int type) { struct m_tag *p; KASSERT((m->m_flags & M_PKTHDR) != 0); p = SLIST_FIRST(&m->m_pkthdr.tags); while (p != NULL) { if (p->m_tag_id == type) return p; p = SLIST_NEXT(p, m_tag_link); } return NULL; } struct m_tag * m_tag_copy(struct m_tag *t) { struct m_tag *p; p = m_tag_get(t->m_tag_id, t->m_tag_len, M_NOWAIT); if (p == NULL) return NULL; memcpy(p + 1, t + 1, t->m_tag_len); return p; } /* * Copy two tag chains. The destination mbuf (to) loses any attached * tags even if the operation fails. This should not be a problem, as * m_tag_copy_chain() is typically called with a newly-allocated * destination mbuf. */ int m_tag_copy_chain(struct mbuf *to, struct mbuf *from) { struct m_tag *p, *t, *tprev = NULL; KASSERT((from->m_flags & M_PKTHDR) != 0); m_tag_delete_chain(to); SLIST_FOREACH(p, &from->m_pkthdr.tags, m_tag_link) { t = m_tag_copy(p); if (t == NULL) { m_tag_delete_chain(to); return 0; } if (tprev == NULL) SLIST_INSERT_HEAD(&to->m_pkthdr.tags, t, m_tag_link); else SLIST_INSERT_AFTER(tprev, t, m_tag_link); tprev = t; } return 1; }