/* $NetBSD: piixpm.c,v 1.67.4.1 2023/01/23 16:02:49 martin Exp $ */ /* $OpenBSD: piixpm.c,v 1.39 2013/10/01 20:06:02 sf Exp $ */ /* * Copyright (c) 2005, 2006 Alexander Yurchenko * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Intel PIIX and compatible Power Management controller driver. */ #include __KERNEL_RCSID(0, "$NetBSD: piixpm.c,v 1.67.4.1 2023/01/23 16:02:49 martin Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef PIIXPM_DEBUG #define DPRINTF(x) printf x #else #define DPRINTF(x) #endif #define PIIXPM_IS_CSB5(sc) \ (PCI_VENDOR((sc)->sc_id) == PCI_VENDOR_SERVERWORKS && \ PCI_PRODUCT((sc)->sc_id) == PCI_PRODUCT_SERVERWORKS_CSB5) #define PIIXPM_DELAY 200 #define PIIXPM_TIMEOUT 1 #define PIIXPM_IS_SB800GRP(sc) \ ((PCI_VENDOR((sc)->sc_id) == PCI_VENDOR_ATI) && \ ((PCI_PRODUCT((sc)->sc_id) == PCI_PRODUCT_ATI_SB600_SMB) && \ ((sc)->sc_rev >= 0x40))) #define PIIXPM_IS_HUDSON(sc) \ ((PCI_VENDOR((sc)->sc_id) == PCI_VENDOR_AMD) && \ (PCI_PRODUCT((sc)->sc_id) == PCI_PRODUCT_AMD_HUDSON_SMB)) #define PIIXPM_IS_KERNCZ(sc) \ ((PCI_VENDOR((sc)->sc_id) == PCI_VENDOR_AMD) && \ (PCI_PRODUCT((sc)->sc_id) == PCI_PRODUCT_AMD_KERNCZ_SMB)) #define PIIXPM_IS_FCHGRP(sc) (PIIXPM_IS_HUDSON(sc) || PIIXPM_IS_KERNCZ(sc)) #define PIIX_SB800_TIMEOUT 500 struct piixpm_smbus { int sda; int sda_save; struct piixpm_softc *softc; }; struct piixpm_softc { device_t sc_dev; bus_space_tag_t sc_iot; bus_space_tag_t sc_sb800_bt; bus_space_handle_t sc_pm_ioh; bus_space_handle_t sc_sb800_bh; bus_space_handle_t sc_smb_ioh; void * sc_smb_ih; int sc_poll; bool sc_sb800_mmio; /* Use MMIO access */ bool sc_sb800_selen; /* Use SMBUS0SEL */ pci_chipset_tag_t sc_pc; pcitag_t sc_pcitag; pcireg_t sc_id; pcireg_t sc_rev; int sc_numbusses; device_t sc_i2c_device[4]; struct piixpm_smbus sc_busses[4]; struct i2c_controller sc_i2c_tags[4]; kmutex_t sc_exec_lock; kcondvar_t sc_exec_wait; struct { i2c_op_t op; void * buf; size_t len; int flags; int error; bool done; } sc_i2c_xfer; pcireg_t sc_devact[2]; }; static int piixpm_match(device_t, cfdata_t, void *); static void piixpm_attach(device_t, device_t, void *); static int piixpm_rescan(device_t, const char *, const int *); static void piixpm_chdet(device_t, device_t); static bool piixpm_suspend(device_t, const pmf_qual_t *); static bool piixpm_resume(device_t, const pmf_qual_t *); static uint8_t piixpm_sb800_pmread(struct piixpm_softc *, bus_size_t); static int piixpm_sb800_init(struct piixpm_softc *); static void piixpm_csb5_reset(void *); static int piixpm_i2c_sb800_acquire_bus(void *, int); static void piixpm_i2c_sb800_release_bus(void *, int); static int piixpm_i2c_exec(void *, i2c_op_t, i2c_addr_t, const void *, size_t, void *, size_t, int); static int piixpm_intr(void *); CFATTACH_DECL3_NEW(piixpm, sizeof(struct piixpm_softc), piixpm_match, piixpm_attach, NULL, NULL, piixpm_rescan, piixpm_chdet, 0); static int piixpm_match(device_t parent, cfdata_t match, void *aux) { struct pci_attach_args *pa; pa = (struct pci_attach_args *)aux; switch (PCI_VENDOR(pa->pa_id)) { case PCI_VENDOR_INTEL: switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_INTEL_82371AB_PMC: case PCI_PRODUCT_INTEL_82440MX_PMC: return 1; } break; case PCI_VENDOR_ATI: switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_ATI_SB200_SMB: case PCI_PRODUCT_ATI_SB300_SMB: case PCI_PRODUCT_ATI_SB400_SMB: case PCI_PRODUCT_ATI_SB600_SMB: /* matches SB600/SB700/SB800 */ return 1; } break; case PCI_VENDOR_SERVERWORKS: switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_SERVERWORKS_OSB4: case PCI_PRODUCT_SERVERWORKS_CSB5: case PCI_PRODUCT_SERVERWORKS_CSB6: case PCI_PRODUCT_SERVERWORKS_HT1000SB: case PCI_PRODUCT_SERVERWORKS_HT1100SB: return 1; } break; case PCI_VENDOR_AMD: switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_AMD_HUDSON_SMB: case PCI_PRODUCT_AMD_KERNCZ_SMB: return 1; } break; } return 0; } static void piixpm_attach(device_t parent, device_t self, void *aux) { struct piixpm_softc *sc = device_private(self); struct pci_attach_args *pa = aux; pcireg_t base, conf; pcireg_t pmmisc; pci_intr_handle_t ih; bool usesmi = false; const char *intrstr = NULL; int i; char intrbuf[PCI_INTRSTR_LEN]; sc->sc_dev = self; sc->sc_iot = pa->pa_iot; sc->sc_id = pa->pa_id; sc->sc_rev = PCI_REVISION(pa->pa_class); sc->sc_pc = pa->pa_pc; sc->sc_pcitag = pa->pa_tag; sc->sc_numbusses = 1; pci_aprint_devinfo(pa, NULL); mutex_init(&sc->sc_exec_lock, MUTEX_DEFAULT, IPL_BIO); cv_init(&sc->sc_exec_wait, device_xname(self)); if (!pmf_device_register(self, piixpm_suspend, piixpm_resume)) aprint_error_dev(self, "couldn't establish power handler\n"); if ((PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL) || (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_INTEL_82371AB_PMC)) goto nopowermanagement; /* check whether I/O access to PM regs is enabled */ pmmisc = pci_conf_read(pa->pa_pc, pa->pa_tag, PIIX_PMREGMISC); if (!(pmmisc & 1)) goto nopowermanagement; /* Map I/O space */ base = pci_conf_read(pa->pa_pc, pa->pa_tag, PIIX_PM_BASE); if (base == 0 || bus_space_map(sc->sc_iot, PCI_MAPREG_IO_ADDR(base), PIIX_PM_SIZE, 0, &sc->sc_pm_ioh)) { aprint_error_dev(self, "can't map power management I/O space\n"); goto nopowermanagement; } /* * Revision 0 and 1 are PIIX4, 2 is PIIX4E, 3 is PIIX4M. * PIIX4 and PIIX4E have a bug in the timer latch, see Errata #20 * in the "Specification update" (document #297738). */ acpipmtimer_attach(self, sc->sc_iot, sc->sc_pm_ioh, PIIX_PM_PMTMR, (PCI_REVISION(pa->pa_class) < 3) ? ACPIPMT_BADLATCH : 0); nopowermanagement: /* SB800 rev 0x40+, AMD HUDSON and newer need special initialization */ if (PIIXPM_IS_FCHGRP(sc) || PIIXPM_IS_SB800GRP(sc)) { /* Newer chips don't support I/O access */ if (PIIXPM_IS_KERNCZ(sc) && (sc->sc_rev >= 0x51)) { sc->sc_sb800_mmio = true; sc->sc_sb800_bt = pa->pa_memt; } else { sc->sc_sb800_mmio = false; sc->sc_sb800_bt = pa->pa_iot; } if (piixpm_sb800_init(sc) == 0) { /* Read configuration */ conf = bus_space_read_1(sc->sc_iot, sc->sc_smb_ioh, SB800_SMB_HOSTC); usesmi = ((conf & SB800_SMB_HOSTC_IRQ) == 0); goto setintr; } aprint_normal_dev(self, "SMBus initialization failed\n"); return; } /* Read configuration */ conf = pci_conf_read(pa->pa_pc, pa->pa_tag, PIIX_SMB_HOSTC); DPRINTF(("%s: conf 0x%08x\n", device_xname(self), conf)); if ((conf & PIIX_SMB_HOSTC_HSTEN) == 0) { aprint_normal_dev(self, "SMBus disabled\n"); return; } usesmi = (conf & PIIX_SMB_HOSTC_INTMASK) == PIIX_SMB_HOSTC_SMI; /* Map I/O space */ base = pci_conf_read(pa->pa_pc, pa->pa_tag, PIIX_SMB_BASE) & 0xffff; if (base == 0 || bus_space_map(sc->sc_iot, PCI_MAPREG_IO_ADDR(base), PIIX_SMB_SIZE, 0, &sc->sc_smb_ioh)) { aprint_error_dev(self, "can't map smbus I/O space\n"); return; } setintr: sc->sc_poll = 1; aprint_normal_dev(self, ""); if (usesmi) { /* No PCI IRQ */ aprint_normal("interrupting at SMI, "); } else { if ((conf & PIIX_SMB_HOSTC_INTMASK) == PIIX_SMB_HOSTC_IRQ) { /* Install interrupt handler */ if (pci_intr_map(pa, &ih) == 0) { intrstr = pci_intr_string(pa->pa_pc, ih, intrbuf, sizeof(intrbuf)); pci_intr_setattr(pa->pa_pc, &ih, PCI_INTR_MPSAFE, true); sc->sc_smb_ih = pci_intr_establish_xname( pa->pa_pc, ih, IPL_BIO, piixpm_intr, sc, device_xname(sc->sc_dev)); if (sc->sc_smb_ih != NULL) { aprint_normal("interrupting at %s", intrstr); sc->sc_poll = 0; } } } if (sc->sc_poll) aprint_normal("polling"); } aprint_normal("\n"); for (i = 0; i < sc->sc_numbusses; i++) sc->sc_i2c_device[i] = NULL; piixpm_rescan(self, NULL, NULL); } static int piixpm_iicbus_print(void *aux, const char *pnp) { struct i2cbus_attach_args *iba = aux; struct i2c_controller *tag = iba->iba_tag; struct piixpm_smbus *bus = tag->ic_cookie; struct piixpm_softc *sc = bus->softc; iicbus_print(aux, pnp); if (sc->sc_numbusses != 0) aprint_normal(" port %d", bus->sda); return UNCONF; } static int piixpm_rescan(device_t self, const char *ifattr, const int *locators) { struct piixpm_softc *sc = device_private(self); struct i2cbus_attach_args iba; int i; /* Attach I2C bus */ for (i = 0; i < sc->sc_numbusses; i++) { struct i2c_controller *tag = &sc->sc_i2c_tags[i]; if (sc->sc_i2c_device[i] != NULL) continue; sc->sc_busses[i].sda = i; sc->sc_busses[i].softc = sc; iic_tag_init(tag); tag->ic_cookie = &sc->sc_busses[i]; if (PIIXPM_IS_SB800GRP(sc) || PIIXPM_IS_FCHGRP(sc)) { tag->ic_acquire_bus = piixpm_i2c_sb800_acquire_bus; tag->ic_release_bus = piixpm_i2c_sb800_release_bus; } else { tag->ic_acquire_bus = NULL; tag->ic_release_bus = NULL; } tag->ic_exec = piixpm_i2c_exec; memset(&iba, 0, sizeof(iba)); iba.iba_tag = tag; sc->sc_i2c_device[i] = config_found(self, &iba, piixpm_iicbus_print, CFARGS_NONE); if (sc->sc_i2c_device[i] == NULL) iic_tag_fini(tag); } return 0; } static void piixpm_chdet(device_t self, device_t child) { struct piixpm_softc *sc = device_private(self); int i; for (i = 0; i < sc->sc_numbusses; i++) { if (sc->sc_i2c_device[i] == child) { struct i2c_controller *tag = &sc->sc_i2c_tags[i]; iic_tag_fini(tag); sc->sc_i2c_device[i] = NULL; break; } } } static bool piixpm_suspend(device_t dv, const pmf_qual_t *qual) { struct piixpm_softc *sc = device_private(dv); sc->sc_devact[0] = pci_conf_read(sc->sc_pc, sc->sc_pcitag, PIIX_DEVACTA); sc->sc_devact[1] = pci_conf_read(sc->sc_pc, sc->sc_pcitag, PIIX_DEVACTB); return true; } static bool piixpm_resume(device_t dv, const pmf_qual_t *qual) { struct piixpm_softc *sc = device_private(dv); pci_conf_write(sc->sc_pc, sc->sc_pcitag, PIIX_DEVACTA, sc->sc_devact[0]); pci_conf_write(sc->sc_pc, sc->sc_pcitag, PIIX_DEVACTB, sc->sc_devact[1]); return true; } static uint8_t piixpm_sb800_pmread(struct piixpm_softc *sc, bus_size_t offset) { bus_space_tag_t sbt = sc->sc_sb800_bt; bus_space_handle_t sbh = sc->sc_sb800_bh; uint8_t val; if (sc->sc_sb800_mmio) val = bus_space_read_1(sbt, sbh, offset); else { bus_space_write_1(sbt, sbh, SB800_INDIRECTIO_INDEX, offset); val = bus_space_read_1(sbt, sbh, SB800_INDIRECTIO_DATA); } return val; } /* * Extract SMBus base address from SB800 Power Management (PM) registers. * The PM registers can be accessed either through indirect I/O (CD6/CD7) or * direct mapping if AcpiMMioDecodeEn is enabled. Newer devices support MMIO * access only. */ static int piixpm_sb800_init(struct piixpm_softc *sc) { bus_space_tag_t sbt = sc->sc_sb800_bt; bus_space_handle_t sbh; /* indirect memory or I/O handle */ int rv; uint16_t base_addr; uint8_t lo, hi; bool enabled; if (PIIXPM_IS_KERNCZ(sc) || (PIIXPM_IS_HUDSON(sc) && (sc->sc_rev >= 0x1f))) sc->sc_numbusses = 2; else sc->sc_numbusses = 4; /* Check SMBus enable bit and Fetch SMB base address */ if (sc->sc_sb800_mmio) rv = bus_space_map(sbt, SB800_FCH_PM_BASE, SB800_FCH_PM_SIZE, 0, &sbh); else rv = bus_space_map(sbt, SB800_INDIRECTIO_BASE, SB800_INDIRECTIO_SIZE, 0, &sbh); if (rv != 0) { device_printf(sc->sc_dev, "couldn't map indirect space\n"); return EBUSY; } sc->sc_sb800_bh = sbh; if (PIIXPM_IS_FCHGRP(sc)) { lo = piixpm_sb800_pmread(sc, AMDFCH41_PM_DECODE_EN0); enabled = lo & AMDFCH41_SMBUS_EN; if (!enabled) return ENOENT; hi = piixpm_sb800_pmread(sc, AMDFCH41_PM_DECODE_EN1); base_addr = (uint16_t)hi << 8; } else { uint8_t data; lo = piixpm_sb800_pmread(sc, SB800_PM_SMBUS0EN_LO); enabled = lo & SB800_PM_SMBUS0EN_ENABLE; if (!enabled) return ENOENT; hi = piixpm_sb800_pmread(sc, SB800_PM_SMBUS0EN_HI); base_addr = ((uint16_t)hi << 8) & SB800_PM_SMBUS0EN_BADDR; bus_space_write_1(sbt, sbh, SB800_INDIRECTIO_INDEX, SB800_PM_SMBUS0SELEN); data = bus_space_read_1(sbt, sbh, SB800_INDIRECTIO_DATA); if ((data & SB800_PM_USE_SMBUS0SEL) != 0) sc->sc_sb800_selen = true; } aprint_debug_dev(sc->sc_dev, "SMBus %s access @ 0x%04x\n", sc->sc_sb800_mmio ? "memory" : "I/O", base_addr); if (bus_space_map(sc->sc_iot, PCI_MAPREG_IO_ADDR(base_addr), SB800_SMB_SIZE, 0, &sc->sc_smb_ioh)) { aprint_error_dev(sc->sc_dev, "can't map smbus I/O space\n"); return EBUSY; } return 0; } static void piixpm_csb5_reset(void *arg) { struct piixpm_softc *sc = arg; pcireg_t base, hostc, pmbase; base = pci_conf_read(sc->sc_pc, sc->sc_pcitag, PIIX_SMB_BASE); hostc = pci_conf_read(sc->sc_pc, sc->sc_pcitag, PIIX_SMB_HOSTC); pmbase = pci_conf_read(sc->sc_pc, sc->sc_pcitag, PIIX_PM_BASE); pmbase |= PIIX_PM_BASE_CSB5_RESET; pci_conf_write(sc->sc_pc, sc->sc_pcitag, PIIX_PM_BASE, pmbase); pmbase &= ~PIIX_PM_BASE_CSB5_RESET; pci_conf_write(sc->sc_pc, sc->sc_pcitag, PIIX_PM_BASE, pmbase); pci_conf_write(sc->sc_pc, sc->sc_pcitag, PIIX_SMB_BASE, base); pci_conf_write(sc->sc_pc, sc->sc_pcitag, PIIX_SMB_HOSTC, hostc); (void) tsleep(&sc, PRIBIO, "csb5reset", hz/2); } static int piixpm_i2c_sb800_acquire_bus(void *cookie, int flags) { struct piixpm_smbus *smbus = cookie; struct piixpm_softc *sc = smbus->softc; uint8_t sctl, old_sda, index, mask, reg; int i; sctl = bus_space_read_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_SC); for (i = 0; i < PIIX_SB800_TIMEOUT; i++) { /* Try to acquire the host semaphore */ sctl &= ~PIIX_SMB_SC_SEMMASK; bus_space_write_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_SC, sctl | PIIX_SMB_SC_HOSTSEM); sctl = bus_space_read_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_SC); if ((sctl & PIIX_SMB_SC_HOSTSEM) != 0) break; delay(1000); } if (i >= PIIX_SB800_TIMEOUT) { device_printf(sc->sc_dev, "Failed to acquire the host semaphore\n"); return -1; } if (PIIXPM_IS_KERNCZ(sc) || (PIIXPM_IS_HUDSON(sc) && (sc->sc_rev >= 0x1f))) { index = AMDFCH41_PM_PORT_INDEX; mask = AMDFCH41_SMBUS_PORTMASK; } else if (sc->sc_sb800_selen) { index = SB800_PM_SMBUS0SEL; mask = SB800_PM_SMBUS0_MASK_E; } else { index = SB800_PM_SMBUS0EN_LO; mask = SB800_PM_SMBUS0_MASK_C; } reg = piixpm_sb800_pmread(sc, index); old_sda = __SHIFTOUT(reg, mask); if (smbus->sda != old_sda) { reg &= ~mask; reg |= __SHIFTIN(smbus->sda, mask); /* * SB800_INDIRECTIO_INDEX is already set on I/O access, * so it's not required to write it again. */ bus_space_write_1(sc->sc_sb800_bt, sc->sc_sb800_bh, sc->sc_sb800_mmio ? index : SB800_INDIRECTIO_DATA, reg); } /* Save the old port number */ smbus->sda_save = old_sda; return 0; } static void piixpm_i2c_sb800_release_bus(void *cookie, int flags) { struct piixpm_smbus *smbus = cookie; struct piixpm_softc *sc = smbus->softc; uint8_t sctl, index, mask, reg; if (PIIXPM_IS_KERNCZ(sc) || (PIIXPM_IS_HUDSON(sc) && (sc->sc_rev >= 0x1f))) { index = AMDFCH41_PM_PORT_INDEX; mask = AMDFCH41_SMBUS_PORTMASK; } else if (sc->sc_sb800_selen) { index = SB800_PM_SMBUS0SEL; mask = SB800_PM_SMBUS0_MASK_E; } else { index = SB800_PM_SMBUS0EN_LO; mask = SB800_PM_SMBUS0_MASK_C; } if (smbus->sda != smbus->sda_save) { /* Restore the port number */ reg = piixpm_sb800_pmread(sc, index); reg &= ~mask; reg |= __SHIFTIN(smbus->sda_save, mask); /* * SB800_INDIRECTIO_INDEX is already set on I/O access, * so it's not required to write it again. */ bus_space_write_1(sc->sc_sb800_bt, sc->sc_sb800_bh, sc->sc_sb800_mmio ? index : SB800_INDIRECTIO_DATA, reg); } /* Release the host semaphore */ sctl = bus_space_read_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_SC); sctl &= ~PIIX_SMB_SC_SEMMASK; bus_space_write_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_SC, sctl | PIIX_SMB_SC_CLRHOSTSEM); } static int piixpm_i2c_exec(void *cookie, i2c_op_t op, i2c_addr_t addr, const void *cmdbuf, size_t cmdlen, void *buf, size_t len, int flags) { struct piixpm_smbus *smbus = cookie; struct piixpm_softc *sc = smbus->softc; const uint8_t *b; uint8_t ctl = 0, st; int retries; DPRINTF(("%s: exec: op %d, addr 0x%02x, cmdlen %zu, len %zu, " "flags 0x%x\n", device_xname(sc->sc_dev), op, addr, cmdlen, len, flags)); mutex_enter(&sc->sc_exec_lock); /* Clear status bits */ bus_space_write_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_HS, PIIX_SMB_HS_INTR | PIIX_SMB_HS_DEVERR | PIIX_SMB_HS_BUSERR | PIIX_SMB_HS_FAILED); bus_space_barrier(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_HS, 1, BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); /* Wait for bus to be idle */ for (retries = 100; retries > 0; retries--) { st = bus_space_read_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_HS); if (!(st & PIIX_SMB_HS_BUSY)) break; DELAY(PIIXPM_DELAY); } DPRINTF(("%s: exec: st %#x\n", device_xname(sc->sc_dev), st & 0xff)); if (st & PIIX_SMB_HS_BUSY) { mutex_exit(&sc->sc_exec_lock); return (EBUSY); } if (sc->sc_poll) flags |= I2C_F_POLL; if (!I2C_OP_STOP_P(op) || cmdlen > 1 || len > 2 || (cmdlen == 0 && len > 1)) { mutex_exit(&sc->sc_exec_lock); return (EINVAL); } /* Setup transfer */ sc->sc_i2c_xfer.op = op; sc->sc_i2c_xfer.buf = buf; sc->sc_i2c_xfer.len = len; sc->sc_i2c_xfer.flags = flags; sc->sc_i2c_xfer.error = 0; sc->sc_i2c_xfer.done = false; /* Set slave address and transfer direction */ bus_space_write_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_TXSLVA, PIIX_SMB_TXSLVA_ADDR(addr) | (I2C_OP_READ_P(op) ? PIIX_SMB_TXSLVA_READ : 0)); b = cmdbuf; if (cmdlen > 0) /* Set command byte */ bus_space_write_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_HCMD, b[0]); if (I2C_OP_WRITE_P(op)) { /* Write data */ b = buf; if (cmdlen == 0 && len == 1) bus_space_write_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_HCMD, b[0]); else if (len > 0) bus_space_write_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_HD0, b[0]); if (len > 1) bus_space_write_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_HD1, b[1]); } /* Set SMBus command */ if (cmdlen == 0) { if (len == 0) ctl = PIIX_SMB_HC_CMD_QUICK; else ctl = PIIX_SMB_HC_CMD_BYTE; } else if (len == 1) ctl = PIIX_SMB_HC_CMD_BDATA; else if (len == 2) ctl = PIIX_SMB_HC_CMD_WDATA; else panic("%s: unexpected len %zu", __func__, len); if ((flags & I2C_F_POLL) == 0) ctl |= PIIX_SMB_HC_INTREN; /* Start transaction */ ctl |= PIIX_SMB_HC_START; bus_space_write_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_HC, ctl); if (flags & I2C_F_POLL) { /* Poll for completion */ if (PIIXPM_IS_CSB5(sc)) DELAY(2*PIIXPM_DELAY); else DELAY(PIIXPM_DELAY); for (retries = 1000; retries > 0; retries--) { st = bus_space_read_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_HS); if ((st & PIIX_SMB_HS_BUSY) == 0) break; DELAY(PIIXPM_DELAY); } if (st & PIIX_SMB_HS_BUSY) goto timeout; piixpm_intr(sc); } else { /* Wait for interrupt */ while (! sc->sc_i2c_xfer.done) { if (cv_timedwait(&sc->sc_exec_wait, &sc->sc_exec_lock, PIIXPM_TIMEOUT * hz)) goto timeout; } } int error = sc->sc_i2c_xfer.error; mutex_exit(&sc->sc_exec_lock); return (error); timeout: /* * Transfer timeout. Kill the transaction and clear status bits. */ aprint_error_dev(sc->sc_dev, "timeout, status 0x%x\n", st); bus_space_write_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_HC, PIIX_SMB_HC_KILL); DELAY(PIIXPM_DELAY); st = bus_space_read_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_HS); if ((st & PIIX_SMB_HS_FAILED) == 0) aprint_error_dev(sc->sc_dev, "transaction abort failed, status 0x%x\n", st); bus_space_write_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_HS, st); /* * CSB5 needs hard reset to unlock the smbus after timeout. */ if (PIIXPM_IS_CSB5(sc)) piixpm_csb5_reset(sc); mutex_exit(&sc->sc_exec_lock); return (ETIMEDOUT); } static int piixpm_intr(void *arg) { struct piixpm_softc *sc = arg; uint8_t st; uint8_t *b; size_t len; /* Read status */ st = bus_space_read_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_HS); if ((st & PIIX_SMB_HS_BUSY) != 0 || (st & (PIIX_SMB_HS_INTR | PIIX_SMB_HS_DEVERR | PIIX_SMB_HS_BUSERR | PIIX_SMB_HS_FAILED)) == 0) /* Interrupt was not for us */ return (0); DPRINTF(("%s: intr st %#x\n", device_xname(sc->sc_dev), st & 0xff)); if ((sc->sc_i2c_xfer.flags & I2C_F_POLL) == 0) mutex_enter(&sc->sc_exec_lock); /* Clear status bits */ bus_space_write_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_HS, st); /* Check for errors */ if (st & (PIIX_SMB_HS_DEVERR | PIIX_SMB_HS_BUSERR | PIIX_SMB_HS_FAILED)) { sc->sc_i2c_xfer.error = EIO; goto done; } if (st & PIIX_SMB_HS_INTR) { if (I2C_OP_WRITE_P(sc->sc_i2c_xfer.op)) goto done; /* Read data */ b = sc->sc_i2c_xfer.buf; len = sc->sc_i2c_xfer.len; if (len > 0) b[0] = bus_space_read_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_HD0); if (len > 1) b[1] = bus_space_read_1(sc->sc_iot, sc->sc_smb_ioh, PIIX_SMB_HD1); } done: sc->sc_i2c_xfer.done = true; if ((sc->sc_i2c_xfer.flags & I2C_F_POLL) == 0) { cv_signal(&sc->sc_exec_wait); mutex_exit(&sc->sc_exec_lock); } return (1); }