/*	$NetBSD: sbdsp.c,v 1.141 2019/06/08 08:02:38 isaki Exp $	*/

/*-
 * Copyright (c) 1999, 2008 The NetBSD Foundation, Inc.
 * All rights reserved.
 *
 * This code is derived from software contributed to The NetBSD Foundation
 * by Charles M. Hannum.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * Copyright (c) 1991-1993 Regents of the University of California.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the Computer Systems
 *	Engineering Group at Lawrence Berkeley Laboratory.
 * 4. Neither the name of the University nor of the Laboratory may be used
 *    to endorse or promote products derived from this software without
 *    specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 */

/*
 * SoundBlaster Pro code provided by John Kohl, based on lots of
 * information he gleaned from Steve Haehnichen <steve@vigra.com>'s
 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
 * <sachs@meibm15.cen.uiuc.edu>.
 * Lots of rewrites by Lennart Augustsson <augustss@cs.chalmers.se>
 * with information from SB "Hardware Programming Guide" and the
 * Linux drivers.
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: sbdsp.c,v 1.141 2019/06/08 08:02:38 isaki Exp $");

#include "midi.h"
#include "mpu.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/syslog.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/malloc.h>
#include <sys/cpu.h>
#include <sys/intr.h>
#include <sys/bus.h>

#include <sys/audioio.h>
#include <dev/audio/audio_if.h>
#include <dev/audio/linear.h>
#include <dev/midi_if.h>

#include <dev/isa/isavar.h>
#include <dev/isa/isadmavar.h>

#include <dev/isa/sbreg.h>
#include <dev/isa/sbdspvar.h>


#ifdef AUDIO_DEBUG
#define DPRINTF(x)	if (sbdspdebug) printf x
#define DPRINTFN(n,x)	if (sbdspdebug >= (n)) printf x
int	sbdspdebug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif

#ifndef SBDSP_NPOLL
#define SBDSP_NPOLL 3000
#endif

struct {
	int wdsp;
	int rdsp;
	int wmidi;
} sberr;

/*
 * Time constant routines follow.  See SBK, section 12.
 * Although they don't come out and say it (in the docs),
 * the card clearly uses a 1MHz countdown timer, as the
 * low-speed formula (p. 12-4) is:
 *	tc = 256 - 10^6 / sr
 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
 * and a 256MHz clock is used:
 *	tc = 65536 - 256 * 10^ 6 / sr
 * Since we can only use the upper byte of the HS TC, the two formulae
 * are equivalent.  (Why didn't they say so?)  E.g.,
 *	(65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
 *
 * The crossover point (from low- to high-speed modes) is different
 * for the SBPRO and SB20.  The table on p. 12-5 gives the following data:
 *
 *				SBPRO			SB20
 *				-----			--------
 * input ls min			4	kHz		4	kHz
 * input ls max			23	kHz		13	kHz
 * input hs max			44.1	kHz		15	kHz
 * output ls min		4	kHz		4	kHz
 * output ls max		23	kHz		23	kHz
 * output hs max		44.1	kHz		44.1	kHz
 */
/* XXX Should we round the tc?
#define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
*/
#define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
#define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))

struct sbmode {
	short	model;
	u_char	channels;
	u_char	precision;
	u_short	lowrate, highrate;
	u_char	cmd;
	u_char	halt, cont;
	u_char	cmdchan;
};
static struct sbmode sbpmodes[] = {
 { SB_1,   1, 8, 4000,22727,SB_DSP_WDMA     ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
 { SB_20,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
 { SB_2x,  1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
 { SB_2x,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
 { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
 { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
 { SB_16,  1, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
 { SB_16,  2, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
#define PLAY16 15 /* must be the index of the next entry in the table */
 { SB_16,  1,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
 { SB_16,  2,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
 { .model = -1 }
};
static struct sbmode sbrmodes[] = {
 { SB_1,   1, 8, 4000,12987,SB_DSP_RDMA     ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
 { SB_20,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
 { SB_2x,  1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
 { SB_2x,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
 { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
 { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
 { SB_16,  1, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
 { SB_16,  2, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT, 0, },
 { SB_16,  1,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
 { SB_16,  2,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT, 0, },
 { .model = -1 }
};

/*
 * We actually can specify any value within the frequency range defined
 * above.  But according to definition of SB_RATE_TO_TC macro, only some
 * of them are dividable (it's preferable, not mandatory).  There are 9
 * values in the range that satisfy this condition but it's too much.
 */
static const int sbdsp_rates[] = {
	4000,
	/* 5000, */
	/* 6250, */
	/* 10000, */
	12500,
	/* 15625, */
	20000,
	/* 25000, */
	31250,
};

void	sbversion(struct sbdsp_softc *);
void	sbdsp_jazz16_probe(struct sbdsp_softc *);
void	sbdsp_sbmode2format(struct audio_format *, const struct sbmode *, int);
int	sbdsp_set_format16(struct sbdsp_softc *, int,
	    const audio_params_t *, const audio_params_t *,
	    audio_filter_reg_t *, audio_filter_reg_t *);
int	sbdsp_set_format8(struct sbdsp_softc *, int,
	    const audio_params_t *, const audio_params_t *,
	    audio_filter_reg_t *, audio_filter_reg_t *);
void	sbdsp_init_format(struct sbdsp_softc *);
void	sbdsp_set_mixer_gain(struct sbdsp_softc *, int);
void	sbdsp_pause(struct sbdsp_softc *);
int	sbdsp_set_timeconst(struct sbdsp_softc *, int);
int	sbdsp16_set_rate(struct sbdsp_softc *, int, int);
int	sbdsp_set_in_ports(struct sbdsp_softc *, int);
void	sbdsp_set_ifilter(void *, int);
int	sbdsp_get_ifilter(void *);

int	sbdsp_block_output(void *);
int	sbdsp_block_input(void *);
static	int sbdsp_adjust(int, int);

int	sbdsp_midi_intr(void *);

static bool	sbdsp_resume(device_t, const pmf_qual_t *);

#ifdef AUDIO_DEBUG
void	sb_printsc(struct sbdsp_softc *);

void
sb_printsc(struct sbdsp_softc *sc)
{
	int i;

	printf("open %d DMA chan %d/%d %d/%d iobase 0x%x irq %d\n",
	    (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
	    sc->sc_drq8, sc->sc_drq16,
	    sc->sc_iobase, sc->sc_irq);
	printf("irate %d itc %x orate %d otc %x\n",
	    sc->sc_i.rate, sc->sc_i.tc,
	    sc->sc_o.rate, sc->sc_o.tc);
	printf("spkron %u nintr %lu\n",
	    sc->spkr_state, sc->sc_interrupts);
	printf("intr8 %p intr16 %p\n",
	    sc->sc_intr8, sc->sc_intr16);
	printf("gain:");
	for (i = 0; i < SB_NDEVS; i++)
		printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
	printf("\n");
}
#endif /* AUDIO_DEBUG */

/*
 * Probe / attach routines.
 */

/*
 * Probe for the soundblaster hardware.
 */
int
sbdsp_probe(struct sbdsp_softc *sc, cfdata_t match)
{

	if (sbdsp_reset(sc) < 0) {
		DPRINTF(("sbdsp: couldn't reset card\n"));
		return 0;
	}
	/* if flags set, go and probe the jazz16 stuff */
	if (match->cf_flags & 1)
		sbdsp_jazz16_probe(sc);
	else
		sbversion(sc);
	if (sc->sc_model == SB_UNK) {
		/* Unknown SB model found. */
		DPRINTF(("sbdsp: unknown SB model found\n"));
		return 0;
	}
	return 1;
}

/*
 * Try add-on stuff for Jazz16.
 */
void
sbdsp_jazz16_probe(struct sbdsp_softc *sc)
{
	static u_char jazz16_irq_conf[16] = {
	    -1, -1, 0x02, 0x03,
	    -1, 0x01, -1, 0x04,
	    -1, 0x02, 0x05, -1,
	    -1, -1, -1, 0x06};
	static u_char jazz16_drq_conf[8] = {
	    -1, 0x01, -1, 0x02,
	    -1, 0x03, -1, 0x04};

	bus_space_tag_t iot;
	bus_space_handle_t ioh;

	iot = sc->sc_iot;
	sbversion(sc);

	DPRINTF(("jazz16 probe\n"));

	if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
		DPRINTF(("bus map failed\n"));
		return;
	}

	if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
	    jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
		DPRINTF(("drq/irq check failed\n"));
		goto done;		/* give up, we can't do it. */
	}

	bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
	delay(10000);			/* delay 10 ms */
	bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
	bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);

	if (sbdsp_reset(sc) < 0) {
		DPRINTF(("sbdsp_reset check failed\n"));
		goto done;		/* XXX? what else could we do? */
	}

	if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
		DPRINTF(("read16 setup failed\n"));
		goto done;
	}

	if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
		DPRINTF(("read16 failed\n"));
		goto done;
	}

	/* XXX set both 8 & 16-bit drq to same channel, it works fine. */
	sc->sc_drq16 = sc->sc_drq8;
	if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
	    (sc->sc_drq16 >= 0 &&
	    sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
		jazz16_drq_conf[sc->sc_drq8])) ||
	    sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
		DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
	} else {
		DPRINTF(("jazz16 detected!\n"));
		sc->sc_model = SB_JAZZ;
		sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
	}

done:
	bus_space_unmap(iot, ioh, 1);
}

/*
 * Attach hardware to driver, attach hardware driver to audio
 * pseudo-device driver .
 */
void
sbdsp_attach(struct sbdsp_softc *sc)
{
	int i, error;
	u_int v;

	mutex_enter(&sc->sc_lock);
	mutex_spin_enter(&sc->sc_intr_lock);

	sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);

	if (sc->sc_mixer_model != SBM_NONE) {
		/* Reset the mixer.*/
		sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
		/* And set our own default values */
		for (i = 0; i < SB_NDEVS; i++) {
			switch(i) {
			case SB_MIC_VOL:
			case SB_LINE_IN_VOL:
				v = 0;
				break;
			case SB_BASS:
			case SB_TREBLE:
				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
				break;
			case SB_CD_IN_MUTE:
			case SB_MIC_IN_MUTE:
			case SB_LINE_IN_MUTE:
			case SB_MIDI_IN_MUTE:
			case SB_CD_SWAP:
			case SB_MIC_SWAP:
			case SB_LINE_SWAP:
			case SB_MIDI_SWAP:
			case SB_CD_OUT_MUTE:
			case SB_MIC_OUT_MUTE:
			case SB_LINE_OUT_MUTE:
				v = 0;
				break;
			default:
				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
				break;
			}
			sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
			sbdsp_set_mixer_gain(sc, i);
		}
		sc->in_filter = 0;	/* no filters turned on, please */
	}

	mutex_spin_exit(&sc->sc_intr_lock);
	mutex_exit(&sc->sc_lock);

	aprint_naive("\n");
	aprint_normal(": dsp v%d.%02d%s\n",
	       SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
	       sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");

	if (sc->sc_drq8 != -1) {
		sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic,
		    sc->sc_drq8);
		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
		    sc->sc_drq8_maxsize, BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW);
		if (error) {
			aprint_error_dev(sc->sc_dev,
			    "can't create map for drq %d\n", sc->sc_drq8);
			return;
		}
	}

	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
		sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic,
		    sc->sc_drq16);
		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
		    sc->sc_drq16_maxsize, BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW);
		if (error) {
			aprint_error_dev(sc->sc_dev,
			    "can't create map for drq %d\n", sc->sc_drq16);
			isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
			return;
		}
	}

	/* Construct sc_formats from model */
	sbdsp_init_format(sc);
	if (sc->sc_nformats == 0) {
		aprint_error_dev(sc->sc_dev,
		    "No available formats; model mismatch?\n");
		return;
	}

	if (!pmf_device_register(sc->sc_dev, NULL, sbdsp_resume))
		aprint_error_dev(sc->sc_dev,
		    "couldn't establish power handler\n");
}

static bool
sbdsp_resume(device_t dv, const pmf_qual_t *qual)
{
	struct sbdsp_softc *sc = device_private(dv);

	/* Reset the mixer. */
	mutex_enter(&sc->sc_lock);
	mutex_spin_enter(&sc->sc_intr_lock);
	sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
	mutex_spin_exit(&sc->sc_intr_lock);
	mutex_exit(&sc->sc_lock);

	return true;
}

void
sbdsp_mix_write(struct sbdsp_softc *sc, int mixerport, int val)
{
	bus_space_tag_t iot;
	bus_space_handle_t ioh;

	iot = sc->sc_iot;
	ioh = sc->sc_ioh;
	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
	delay(20);
	bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
	delay(30);
}

int
sbdsp_mix_read(struct sbdsp_softc *sc, int mixerport)
{
	bus_space_tag_t iot;
	bus_space_handle_t ioh;
	int val;

	iot = sc->sc_iot;
	ioh = sc->sc_ioh;
	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
	delay(20);
	val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
	delay(30);
	return val;
}

void
sbdsp_sbmode2format(struct audio_format *f, const struct sbmode *m, int mode)
{
	memset(f, 0, sizeof(*f));
	f->mode = mode;
	if (m->precision == 8) {
		/* ulinear8 is always native endian */
		f->encoding = AUDIO_ENCODING_ULINEAR_NE;
		f->validbits = 8;
		f->precision = 8;
	} else {
		f->encoding = AUDIO_ENCODING_SLINEAR_LE;
		f->validbits = 16;
		f->precision = 16;
	}
	f->channels = m->channels;
	f->channel_mask = (m->channels == 1) ? AUFMT_MONAURAL : AUFMT_STEREO;
	f->frequency_type = 0;
	f->frequency[0] = m->lowrate;
	f->frequency[1] = m->highrate;
}

/*
 * Create sc_formats[] array from sbpmodes[], sbrmodes[].
 */
void
sbdsp_init_format(struct sbdsp_softc *sc)
{
	struct audio_format dp[4];
	struct audio_format dr[4];
	struct audio_format *dbase;
	struct audio_format *d;
	struct audio_format tmp;
	struct sbmode *sbmodes;
	struct sbmode *m;
	int mode;
	int minrate;
	int maxrate;
	int idx;
	int model;
	int i;
	int j;
	int n;

	/* Later models work like SB16. */
	model = uimin(sc->sc_model, SB_16);

	memset(&dp, 0, sizeof(dp));
	memset(&dr, 0, sizeof(dr));

	/*
	 * Step1. Extract elements corresponding to this model.
	 */
	for (i = 0; i < 2; i++) {
		if (i == 0) {
			mode = AUMODE_PLAY;
			sbmodes = sbpmodes;
			dbase = dp;
		} else {
			mode = AUMODE_RECORD;
			sbmodes = sbrmodes;
			dbase = dr;
		}
		for (m = sbmodes; m->model != -1; m++) {
			if (m->model != model)
				continue;

			sbdsp_sbmode2format(&tmp, m, mode);
			/*
			 * [0] 8bit mono
			 * [1] 8bit st
			 * [2] 16bit mono
			 * [3] 16bit st
			 */
			idx = (m->precision / 16) * 2 + (m->channels - 1);
			d = &dbase[idx];
			if (d->mode == 0) {
				/* The first element of this room */
				*d = tmp;
				continue;
			}

			/* Otherwise merge frequency */
			/*
			 * Currently the frequency of multiple elements in
			 * the same model are all contiguous.
			 */
			if (tmp.frequency[0] == d->frequency[1]) {
				d->frequency[1] = tmp.frequency[1];
			} else if (tmp.frequency[1] == d->frequency[0]) {
				d->frequency[0] = tmp.frequency[0];
			} else {
				panic("frequency range must be contiguous. "
				    "model=%d\n", model);
			}
			DPRINTF(("%s: 1 [%d] mode=%d freq={ %d, %d }\n",
			    __func__, idx, d->mode,
			    d->frequency[0], d->frequency[1]));
		}
	}

	/*
	 * Step2. Merge dr into dp.
	 */
	for (i = 0; i < __arraycount(dp); i++) {
		if (dp[i].mode == 0 && dr[i].mode == 0)
			continue;
		/* Currently all entries in sb[pr]modes are PLAY|REC */
		if (dp[i].mode == 0 || dr[i].mode == 0)
			panic("invalid sb[pr]mode table?. model=%d\n", model);
		dp[i].mode |= dr[i].mode;

		/*
		 * Usually, the recording range is the same or smaller than
		 * the playback range.  So extract the common range.
		 */
		if (dp[i].frequency[0] < dr[i].frequency[0])
			dp[i].frequency[0] = dr[i].frequency[0];
		if (dp[i].frequency[1] > dr[i].frequency[1])
			dp[i].frequency[1] = dr[i].frequency[1];

		DPRINTF(("%s: 2 [%d] mode=%d freq={ %d, %d }\n",
		    __func__, i, dp[i].mode,
		    dp[i].frequency[0], dp[i].frequency[1]));
	}

	/*
	 * Step3. Prior to SB16, use fixed frequencies rather than raw
	 * frequency range.
	 */
	if (!ISSB16CLASS(sc)) {
		for (i = 0; i < __arraycount(dp); i++) {
			if (dp[i].mode == 0)
				continue;
			minrate = dp[i].frequency[0];
			maxrate = dp[i].frequency[1];
			n = 0;
			for (j = 0; j < __arraycount(sbdsp_rates); j++) {
				if (minrate <= sbdsp_rates[j] &&
				    sbdsp_rates[j] <= maxrate) {
					dp[i].frequency[n++] = sbdsp_rates[j];
				}
			}
			dp[i].frequency_type = n;
			if (n == 0) {
				/* this should not happened */
				dp[i].frequency[0] = minrate;
				dp[i].frequency[1] = maxrate;
			}

			DPRINTF(("%s: 3 [%d] mode=%d freq={ ",
			    __func__, i, dp[i].mode));
			for (j = 0; j < dp[i].frequency_type; j++) {
				DPRINTF(("%s%d", (j == 0) ? "" : ", ",
				    dp[i].frequency[j]));
			}
			DPRINTF((" }\n"));
		}
	}

	/*
	 * Step4. Copy merged dp to sc_formats.
	 */
	n = 0;
	for (i = 0; i < __arraycount(dp); i++) {
		if (dp[i].mode)
			sc->sc_formats[n++] = dp[i];
	}
	sc->sc_nformats = n;
}

/*
 * Various routines to interface to higher level audio driver
 */

int
sbdsp_query_format(void *addr, audio_format_query_t *afp)
{
	struct sbdsp_softc *sc;

	sc = addr;
	return audio_query_format(sc->sc_formats, sc->sc_nformats, afp);
}

static struct sbmode *
sbdsp_find_mode(struct sbmode *sbmodes, int model, const audio_params_t *p)
{
	struct sbmode *m;

	for (m = sbmodes; m->model != -1; m++) {
		if (model == m->model &&
		    p->channels == m->channels &&
		    p->precision == m->precision &&
		    p->sample_rate >= m->lowrate &&
		    p->sample_rate <= m->highrate)
			return m;
	}
	return NULL;
}

int
sbdsp_set_format(void *addr, int setmode,
	const audio_params_t *play, const audio_params_t *rec,
	audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
{
	struct sbdsp_softc *sc;
	int error;

	sc = addr;

	if (sc->sc_open == SB_OPEN_MIDI)
		return EBUSY;

	if (ISSB16CLASS(sc)) {
		/* Later models work like SB16. */
		error = sbdsp_set_format16(sc, setmode, play, rec, pfil, rfil);
	} else {
		error = sbdsp_set_format8(sc, setmode, play, rec, pfil, rfil);
	}
	if (error)
		return error;

	DPRINTF(("%s ichan=%d, ochan=%d\n", __func__,
	    sc->sc_i.dmachan, sc->sc_o.dmachan));
	return 0;
}

/* set_format for SB_16 or later */
int
sbdsp_set_format16(struct sbdsp_softc *sc, int setmode,
	const audio_params_t *play, const audio_params_t *rec,
	audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
{
	struct sbmode *sbmodes;
	struct sbmode *m;
	struct sbdsp_state *io;
	const audio_params_t *p;
	u_int bmode;
	int mode;

	/* Set first record info, then play info */
	for (mode = AUMODE_RECORD; mode != -1;
	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
		if ((setmode & mode) == 0)
			continue;

		p = NULL; /* XXX shut up gcc */
		if (mode == AUMODE_PLAY) {
			p = play;
			sbmodes = sbpmodes;
			io = &sc->sc_o;
		} else {
			p = rec;
			sbmodes = sbrmodes;
			io = &sc->sc_i;
		}
		/* Locate proper commands */
		m = sbdsp_find_mode(sbmodes, SB_16, p);
		if (m == NULL)
			return EINVAL;

		bmode = SB_BMODE_UNSIGNED;
		if (p->precision == 16) {
			/* 16bit is slinear16_le */
			bmode = SB_BMODE_SIGNED;
		} else {
			/* 8bit is ulinear8_ne */
			if (mode == AUMODE_PLAY)
				pfil->codec = audio_internal_to_linear8;
			else
				rfil->codec = audio_linear8_to_internal;
		}
		if (p->channels == 2)
			bmode |= SB_BMODE_STEREO;

		io->rate = p->sample_rate;
		io->tc = 1;
		io->modep = m;
		io->bmode = bmode;
		io->dmachan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;

		DPRINTF(("%s: model=%d, mode=%d, "
		    "rate=%u, prec=%d, chan=%d, enc=%d -> "
		    "cmd=%02x, bmode=%02x, cmdchan=%02x\n",
		    __func__, sc->sc_model, mode,
		    p->sample_rate, p->precision, p->channels, p->encoding,
		    m->cmd, bmode, m->cmdchan));
	}
	return 0;
}

/* set_format for prior to SB_16 */
int
sbdsp_set_format8(struct sbdsp_softc *sc, int setmode,
	const audio_params_t *play, const audio_params_t *rec,
	audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
{
	struct sbmode *mp;
	struct sbmode *mr;
	u_int tc;
	int chan;

	/* *play and *rec are the identical because !AUDIO_PROP_INDEPENDENT. */

	/* Locate proper commands */
	mp = sbdsp_find_mode(sbpmodes, sc->sc_model, play);
	if (mp == NULL)
		return EINVAL;
	mr = sbdsp_find_mode(sbrmodes, sc->sc_model, rec);
	if (mr == NULL)
		return EINVAL;

	tc = SB_RATE_TO_TC(play->sample_rate * play->channels);
	chan = mp->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;

	sc->sc_o.rate = play->sample_rate;
	sc->sc_o.tc = tc;
	sc->sc_o.modep = mp;
	sc->sc_o.bmode = -1;
	sc->sc_o.dmachan = chan;

	sc->sc_i.rate = rec->sample_rate;
	sc->sc_i.tc = tc;
	sc->sc_i.modep = mr;
	sc->sc_i.bmode = -1;
	sc->sc_i.dmachan = chan;

	if (mp->precision == 8) {
		pfil->codec = audio_internal_to_linear8;
		rfil->codec = audio_linear8_to_internal;
	}

	DPRINTF(("%s: model=%d, "
	    "rate=%u, prec=%d, chan=%d, enc=%d -> "
	    "tc=%02x, cmd=%02x, cmdchan=%02x\n",
	    __func__, sc->sc_model,
	    play->sample_rate, play->precision, play->channels, play->encoding,
	    tc, mp->cmd, mp->cmdchan));

	return 0;
}

void
sbdsp_set_ifilter(void *addr, int which)
{
	struct sbdsp_softc *sc;
	int mixval;

	sc = addr;

	mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
	switch (which) {
	case 0:
		mixval |= SBP_FILTER_OFF;
		break;
	case SB_TREBLE:
		mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
		break;
	case SB_BASS:
		mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
		break;
	default:
		return;
	}
	sc->in_filter = mixval & SBP_IFILTER_MASK;
	sbdsp_mix_write(sc, SBP_INFILTER, mixval);
}

int
sbdsp_get_ifilter(void *addr)
{
	struct sbdsp_softc *sc;

	sc = addr;
	sc->in_filter =
		sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
	switch (sc->in_filter) {
	case SBP_FILTER_ON|SBP_IFILTER_HIGH:
		return SB_TREBLE;
	case SBP_FILTER_ON|SBP_IFILTER_LOW:
		return SB_BASS;
	default:
		return 0;
	}
}

int
sbdsp_set_in_ports(struct sbdsp_softc *sc, int mask)
{
	int bitsl, bitsr;
	int sbport;

	KASSERT(mutex_owned(&sc->sc_lock));
	KASSERT(mutex_owned(&sc->sc_intr_lock));

	if (sc->sc_open == SB_OPEN_MIDI)
		return EBUSY;

	DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
		 sc->sc_mixer_model, mask));

	switch(sc->sc_mixer_model) {
	case SBM_NONE:
		return EINVAL;
	case SBM_CT1335:
		if (mask != (1 << SB_MIC_VOL))
			return EINVAL;
		break;
	case SBM_CT1345:
		switch (mask) {
		case 1 << SB_MIC_VOL:
			sbport = SBP_FROM_MIC;
			break;
		case 1 << SB_LINE_IN_VOL:
			sbport = SBP_FROM_LINE;
			break;
		case 1 << SB_CD_VOL:
			sbport = SBP_FROM_CD;
			break;
		default:
			return EINVAL;
		}
		sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
		break;
	case SBM_CT1XX5:
	case SBM_CT1745:
		if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
			     (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
			return EINVAL;
		bitsr = 0;
		if (mask & (1<<SB_MIDI_VOL))    bitsr |= SBP_MIDI_SRC_R;
		if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
		if (mask & (1<<SB_CD_VOL))      bitsr |= SBP_CD_SRC_R;
		bitsl = SB_SRC_R_TO_L(bitsr);
		if (mask & (1<<SB_MIC_VOL)) {
			bitsl |= SBP_MIC_SRC;
			bitsr |= SBP_MIC_SRC;
		}
		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
		break;
	}
	sc->in_mask = mask;

	return 0;
}

int
sbdsp_speaker_ctl(void *addr, int newstate)
{
	struct sbdsp_softc *sc;

	sc = addr;
	if (sc->sc_open == SB_OPEN_MIDI)
		return EBUSY;

	if ((newstate == SPKR_ON) &&
	    (sc->spkr_state == SPKR_OFF)) {
		sbdsp_spkron(sc);
		sc->spkr_state = SPKR_ON;
	}
	if ((newstate == SPKR_OFF) &&
	    (sc->spkr_state == SPKR_ON)) {
		sbdsp_spkroff(sc);
		sc->spkr_state = SPKR_OFF;
	}
	return 0;
}

int
sbdsp_round_blocksize(void *addr, int blk, int mode,
    const audio_params_t *param)
{
	return blk & -4;	/* round to biggest sample size */
}

int
sbdsp_open(void *addr, int flags)
{
	struct sbdsp_softc *sc;
	int error, state;

	sc = addr;
	DPRINTF(("sbdsp_open: sc=%p\n", sc));

	if (sc->sc_open != SB_CLOSED)
		return EBUSY;
	sc->sc_open = SB_OPEN_AUDIO;
	state = 0;

	if (sc->sc_drq8 != -1) {
		error = isa_drq_alloc(sc->sc_ic, sc->sc_drq8);
		if (error != 0)
			goto bad;
		state |= 1;
	}

	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
		error = isa_drq_alloc(sc->sc_ic, sc->sc_drq16);
		if (error != 0)
			goto bad;
		state |= 2;
	}


	if (sbdsp_reset(sc) != 0) {
		error = EIO;
		goto bad;
	}

	if (ISSBPRO(sc) &&
	    sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
		DPRINTF(("sbdsp_open: can't set mono mode\n"));
		/* we'll readjust when it's time for DMA. */
	}

	/*
	 * Leave most things as they were; users must change things if
	 * the previous process didn't leave it they way they wanted.
	 * Looked at another way, it's easy to set up a configuration
	 * in one program and leave it for another to inherit.
	 */
	DPRINTF(("sbdsp_open: opened\n"));

	return 0;

bad:
	if (state & 1)
		isa_drq_free(sc->sc_ic, sc->sc_drq8);
	if (state & 2)
		isa_drq_free(sc->sc_ic, sc->sc_drq16);

	sc->sc_open = SB_CLOSED;
	return error;
}

void
sbdsp_close(void *addr)
{
	struct sbdsp_softc *sc;

	sc = addr;
	DPRINTF(("sbdsp_close: sc=%p\n", sc));

	sbdsp_spkroff(sc);
	sc->spkr_state = SPKR_OFF;

	sc->sc_intr8 = 0;
	sc->sc_intr16 = 0;

	if (sc->sc_drq8 != -1)
		isa_drq_free(sc->sc_ic, sc->sc_drq8);
	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
		isa_drq_free(sc->sc_ic, sc->sc_drq16);

	sc->sc_open = SB_CLOSED;
	DPRINTF(("sbdsp_close: closed\n"));
}

/*
 * Lower-level routines
 */

/*
 * Reset the card.
 * Return non-zero if the card isn't detected.
 */
int
sbdsp_reset(struct sbdsp_softc *sc)
{
	bus_space_tag_t iot;
	bus_space_handle_t ioh;

	iot = sc->sc_iot;
	ioh = sc->sc_ioh;
	sc->sc_intr8 = 0;
	sc->sc_intr16 = 0;
	sc->sc_intrm = 0;

	/*
	 * See SBK, section 11.3.
	 * We pulse a reset signal into the card.
	 * Gee, what a brilliant hardware design.
	 */
	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
	delay(10);
	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
	delay(30);
	if (sbdsp_rdsp(sc) != SB_MAGIC)
		return -1;

	return 0;
}

/*
 * Write a byte to the dsp.
 * We are at the mercy of the card as we use a
 * polling loop and wait until it can take the byte.
 */
int
sbdsp_wdsp(struct sbdsp_softc *sc, int v)
{
	bus_space_tag_t iot;
	bus_space_handle_t ioh;
	int i;
	u_char x;

	iot = sc->sc_iot;
	ioh = sc->sc_ioh;
	for (i = SBDSP_NPOLL; --i >= 0; ) {
		x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
		delay(10);
		if ((x & SB_DSP_BUSY) == 0) {
			bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
			delay(10);
			return 0;
		}
	}
	++sberr.wdsp;
	return -1;
}

/*
 * Read a byte from the DSP, using polling.
 */
int
sbdsp_rdsp(struct sbdsp_softc *sc)
{
	bus_space_tag_t iot;
	bus_space_handle_t ioh;
	int i;
	u_char x;

	iot = sc->sc_iot;
	ioh = sc->sc_ioh;
	for (i = SBDSP_NPOLL; --i >= 0; ) {
		x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
		delay(10);
		if (x & SB_DSP_READY) {
			x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
			delay(10);
			return x;
		}
	}
	++sberr.rdsp;
	return -1;
}

void
sbdsp_pause(struct sbdsp_softc *sc)
{

	KASSERT(mutex_owned(&sc->sc_intr_lock));
	mutex_spin_exit(&sc->sc_intr_lock);
	(void)kpause("sbpause", false, hz/8, &sc->sc_lock);
	mutex_spin_enter(&sc->sc_intr_lock);
}

/*
 * Turn on the speaker.  The SBK documention says this operation
 * can take up to 1/10 of a second.  Higher level layers should
 * probably let the task sleep for this amount of time after
 * calling here.  Otherwise, things might not work (because
 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
 *
 * These engineers had their heads up their ass when
 * they designed this card.
 */
void
sbdsp_spkron(struct sbdsp_softc *sc)
{

	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
	sbdsp_pause(sc);
}

/*
 * Turn off the speaker; see comment above.
 */
void
sbdsp_spkroff(struct sbdsp_softc *sc)
{

	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
	sbdsp_pause(sc);
}

/*
 * Read the version number out of the card.
 * Store version information in the softc.
 */
void
sbversion(struct sbdsp_softc *sc)
{
	int v;

	sc->sc_model = SB_UNK;
	sc->sc_version = 0;
	if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
		return;
	v = sbdsp_rdsp(sc) << 8;
	v |= sbdsp_rdsp(sc);
	if (v < 0)
		return;
	sc->sc_version = v;
	switch(SBVER_MAJOR(v)) {
	case 1:
		sc->sc_mixer_model = SBM_NONE;
		sc->sc_model = SB_1;
		break;
	case 2:
		/* Some SB2 have a mixer, some don't. */
		sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
		sbdsp_mix_write(sc, SBP_1335_MIDI_VOL,   0x06);
		/* Check if we can read back the mixer values. */
		if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
		    (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL)   & 0x0e) == 0x06)
			sc->sc_mixer_model = SBM_CT1335;
		else
			sc->sc_mixer_model = SBM_NONE;
		if (SBVER_MINOR(v) == 0)
			sc->sc_model = SB_20;
		else
			sc->sc_model = SB_2x;
		break;
	case 3:
		sc->sc_mixer_model = SBM_CT1345;
		sc->sc_model = SB_PRO;
		break;
	case 4:
#if 0
/* XXX This does not work */
		/* Most SB16 have a tone controls, but some don't. */
		sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
		/* Check if we can read back the mixer value. */
		if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
			sc->sc_mixer_model = SBM_CT1745;
		else
			sc->sc_mixer_model = SBM_CT1XX5;
#else
		sc->sc_mixer_model = SBM_CT1745;
#endif
#if 0
/* XXX figure out a good way of determining the model */
		/* XXX what about SB_32 */
		if (SBVER_MINOR(v) == 16)
			sc->sc_model = SB_64;
		else
#endif
			sc->sc_model = SB_16;
		break;
	}
}

int
sbdsp_set_timeconst(struct sbdsp_softc *sc, int tc)
{

	DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
	if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
	    sbdsp_wdsp(sc, tc) < 0)
		return EIO;
	return 0;
}

int
sbdsp16_set_rate(struct sbdsp_softc *sc, int cmd, int rate)
{

	DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd,
	    rate));
	if (sbdsp_wdsp(sc, cmd) < 0 ||
	    sbdsp_wdsp(sc, rate >> 8) < 0 ||
	    sbdsp_wdsp(sc, rate) < 0)
		return EIO;
	return 0;
}

int
sbdsp_trigger_input(
	void *addr,
	void *start, void *end,
	int blksize,
	void (*intr)(void *),
	void *arg,
	const audio_params_t *param)
{
	struct sbdsp_softc *sc;
	int stereo;
	int width;
	int filter;

	sc = addr;
	stereo = param->channels == 2;
	width = param->precision;
#ifdef DIAGNOSTIC
	if (stereo && (blksize & 1)) {
		DPRINTF(("stereo record odd bytes (%d)\n", blksize));
		return EIO;
	}
	if (sc->sc_i.run != SB_NOTRUNNING)
		printf("sbdsp_trigger_input: already running\n");
#endif

	sc->sc_intrr = intr;
	sc->sc_argr = arg;

	if (width == 8) {
#ifdef DIAGNOSTIC
		if (sc->sc_i.dmachan != sc->sc_drq8) {
			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
			    width, sc->sc_i.dmachan);
			return EIO;
		}
#endif
		sc->sc_intr8 = sbdsp_block_input;
	} else {
#ifdef DIAGNOSTIC
		if (sc->sc_i.dmachan != sc->sc_drq16) {
			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
			    width, sc->sc_i.dmachan);
			return EIO;
		}
#endif
		sc->sc_intr16 = sbdsp_block_input;
	}

	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
		blksize >>= 1;
	--blksize;
	sc->sc_i.blksize = blksize;

	if (ISSBPRO(sc)) {
		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
			return EIO;
		filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
		sbdsp_mix_write(sc, SBP_INFILTER,
		    (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
		    filter);
	}

	if (ISSB16CLASS(sc)) {
		if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
			DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
				 sc->sc_i.rate));
			return EIO;
		}
	} else {
		if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
			DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
				 sc->sc_i.rate));
			return EIO;
		}
	}

	DPRINTF(("sbdsp: DMA start loop input start=%p end=%p chan=%d\n",
	    start, end, sc->sc_i.dmachan));
	isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
	    (char *)end - (char *)start, NULL,
	    DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);

	return sbdsp_block_input(addr);
}

int
sbdsp_block_input(void *addr)
{
	struct sbdsp_softc *sc;
	int cc;

	sc = addr;
	cc = sc->sc_i.blksize;
	DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));

	if (sc->sc_i.run != SB_NOTRUNNING)
		sc->sc_intrr(sc->sc_argr);

	if (sc->sc_model == SB_1) {
		/* Non-looping mode, start DMA */
		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
		    sbdsp_wdsp(sc, cc) < 0 ||
		    sbdsp_wdsp(sc, cc >> 8) < 0) {
			DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
			return EIO;
		}
		sc->sc_i.run = SB_RUNNING;
	} else if (sc->sc_i.run == SB_NOTRUNNING) {
		/* Initialize looping PCM */
		if (ISSB16CLASS(sc)) {
			DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
			    sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
			    sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
			    sbdsp_wdsp(sc, cc) < 0 ||
			    sbdsp_wdsp(sc, cc >> 8) < 0) {
				DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
				return EIO;
			}
		} else {
			DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
			    sbdsp_wdsp(sc, cc) < 0 ||
			    sbdsp_wdsp(sc, cc >> 8) < 0) {
				DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
				return EIO;
			}
			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
				DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
				return EIO;
			}
		}
		sc->sc_i.run = SB_LOOPING;
	}

	return 0;
}

int
sbdsp_trigger_output(
	void *addr,
	void *start, void *end,
	int blksize,
	void (*intr)(void *),
	void *arg,
	const audio_params_t *param)
{
	struct sbdsp_softc *sc;
	int stereo;
	int width;
	int cmd;

	sc = addr;
	stereo = param->channels == 2;
	width = param->precision;
#ifdef DIAGNOSTIC
	if (stereo && (blksize & 1)) {
		DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
		return EIO;
	}
	if (sc->sc_o.run != SB_NOTRUNNING)
		printf("sbdsp_trigger_output: already running\n");
#endif

	sc->sc_intrp = intr;
	sc->sc_argp = arg;

	if (width == 8) {
#ifdef DIAGNOSTIC
		if (sc->sc_o.dmachan != sc->sc_drq8) {
			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
			    width, sc->sc_o.dmachan);
			return EIO;
		}
#endif
		sc->sc_intr8 = sbdsp_block_output;
	} else {
#ifdef DIAGNOSTIC
		if (sc->sc_o.dmachan != sc->sc_drq16) {
			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
			    width, sc->sc_o.dmachan);
			return EIO;
		}
#endif
		sc->sc_intr16 = sbdsp_block_output;
	}

	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
		blksize >>= 1;
	--blksize;
	sc->sc_o.blksize = blksize;

	if (ISSBPRO(sc)) {
		/* make sure we re-set stereo mixer bit when we start output. */
		sbdsp_mix_write(sc, SBP_STEREO,
		    (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
		    (stereo ?  SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
		cmd = sc->sc_o.modep->cmdchan;
		if (cmd && sbdsp_wdsp(sc, cmd) < 0)
			return EIO;
	}

	if (ISSB16CLASS(sc)) {
		if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
			DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
				 sc->sc_o.rate));
			return EIO;
		}
	} else {
		if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
			DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
				 sc->sc_o.rate));
			return EIO;
		}
	}

	DPRINTF(("sbdsp: DMA start loop output start=%p end=%p chan=%d\n",
	    start, end, sc->sc_o.dmachan));
	isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
	    (char *)end - (char *)start, NULL,
	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);

	return sbdsp_block_output(addr);
}

int
sbdsp_block_output(void *addr)
{
	struct sbdsp_softc *sc;
	int cc;

	sc = addr;
	cc = sc->sc_o.blksize;
	DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));

	if (sc->sc_o.run != SB_NOTRUNNING)
		sc->sc_intrp(sc->sc_argp);

	if (sc->sc_model == SB_1) {
		/* Non-looping mode, initialized. Start DMA and PCM */
		if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
		    sbdsp_wdsp(sc, cc) < 0 ||
		    sbdsp_wdsp(sc, cc >> 8) < 0) {
			DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
			return EIO;
		}
		sc->sc_o.run = SB_RUNNING;
	} else if (sc->sc_o.run == SB_NOTRUNNING) {
		/* Initialize looping PCM */
		if (ISSB16CLASS(sc)) {
			DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
			    sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
			    sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
			    sbdsp_wdsp(sc, cc) < 0 ||
			    sbdsp_wdsp(sc, cc >> 8) < 0) {
				DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
				return EIO;
			}
		} else {
			DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
			    sbdsp_wdsp(sc, cc) < 0 ||
			    sbdsp_wdsp(sc, cc >> 8) < 0) {
				DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
				return EIO;
			}
			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
				DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
				return EIO;
			}
		}
		sc->sc_o.run = SB_LOOPING;
	}

	return 0;
}

int
sbdsp_halt_output(void *addr)
{
	struct sbdsp_softc *sc;

	sc = addr;
	if (sc->sc_o.run != SB_NOTRUNNING) {
		if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
			printf("sbdsp_halt_output: failed to halt\n");
		isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
		sc->sc_o.run = SB_NOTRUNNING;
	}
	return 0;
}

int
sbdsp_halt_input(void *addr)
{
	struct sbdsp_softc *sc;

	sc = addr;
	if (sc->sc_i.run != SB_NOTRUNNING) {
		if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
			printf("sbdsp_halt_input: failed to halt\n");
		isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
		sc->sc_i.run = SB_NOTRUNNING;
	}
	return 0;
}

/*
 * Only the DSP unit on the sound blaster generates interrupts.
 * There are three cases of interrupt: reception of a midi byte
 * (when mode is enabled), completion of DMA transmission, or
 * completion of a DMA reception.
 *
 * If there is interrupt sharing or a spurious interrupt occurs
 * there is no way to distinguish this on an SB2.  So if you have
 * an SB2 and experience problems, buy an SB16 (it's only $40).
 */
int
sbdsp_intr(void *arg)
{
	struct sbdsp_softc *sc = arg;
#if NMPU > 0
	struct mpu_softc *sc_mpu = device_private(sc->sc_mpudev);
#endif
	u_char irq;

	DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
		   sc->sc_intr8, sc->sc_intr16));

	mutex_spin_enter(&sc->sc_intr_lock);
	if (ISSB16CLASS(sc)) {
		irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
		if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401))
		    == 0) {
			mutex_spin_exit(&sc->sc_intr_lock);
			DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
			return 0;
		}
	} else {
		/* XXXX CHECK FOR INTERRUPT */
		irq = SBP_IRQ_DMA8;
	}

	sc->sc_interrupts++;
	delay(10);		/* XXX why? */

	/* clear interrupt */
	if (irq & SBP_IRQ_DMA8) {
		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
		if (sc->sc_intr8)
			sc->sc_intr8(arg);
	}
	if (irq & SBP_IRQ_DMA16) {
		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
		if (sc->sc_intr16)
			sc->sc_intr16(arg);
	}
#if NMPU > 0
	if ((irq & SBP_IRQ_MPU401) && sc_mpu) {
		mpu_intr(sc_mpu);
	}
#endif

	mutex_spin_exit(&sc->sc_intr_lock);
	return 1;
}

/* Like val & mask, but make sure the result is correctly rounded. */
#define MAXVAL 256
static int
sbdsp_adjust(int val, int mask)
{

	val += (MAXVAL - mask) >> 1;
	if (val >= MAXVAL)
		val = MAXVAL-1;
	return val & mask;
}

void
sbdsp_set_mixer_gain(struct sbdsp_softc *sc, int port)
{
	int src, gain;

	KASSERT(mutex_owned(&sc->sc_lock));
	KASSERT(mutex_owned(&sc->sc_intr_lock));

	switch(sc->sc_mixer_model) {
	case SBM_NONE:
		return;
	case SBM_CT1335:
		gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
		switch(port) {
		case SB_MASTER_VOL:
			src = SBP_1335_MASTER_VOL;
			break;
		case SB_MIDI_VOL:
			src = SBP_1335_MIDI_VOL;
			break;
		case SB_CD_VOL:
			src = SBP_1335_CD_VOL;
			break;
		case SB_VOICE_VOL:
			src = SBP_1335_VOICE_VOL;
			gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
			break;
		default:
			return;
		}
		sbdsp_mix_write(sc, src, gain);
		break;
	case SBM_CT1345:
		gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
				      sc->gain[port][SB_RIGHT]);
		switch (port) {
		case SB_MIC_VOL:
			src = SBP_MIC_VOL;
			gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
			break;
		case SB_MASTER_VOL:
			src = SBP_MASTER_VOL;
			break;
		case SB_LINE_IN_VOL:
			src = SBP_LINE_VOL;
			break;
		case SB_VOICE_VOL:
			src = SBP_VOICE_VOL;
			break;
		case SB_MIDI_VOL:
			src = SBP_MIDI_VOL;
			break;
		case SB_CD_VOL:
			src = SBP_CD_VOL;
			break;
		default:
			return;
		}
		sbdsp_mix_write(sc, src, gain);
		break;
	case SBM_CT1XX5:
	case SBM_CT1745:
		switch (port) {
		case SB_MIC_VOL:
			src = SB16P_MIC_L;
			break;
		case SB_MASTER_VOL:
			src = SB16P_MASTER_L;
			break;
		case SB_LINE_IN_VOL:
			src = SB16P_LINE_L;
			break;
		case SB_VOICE_VOL:
			src = SB16P_VOICE_L;
			break;
		case SB_MIDI_VOL:
			src = SB16P_MIDI_L;
			break;
		case SB_CD_VOL:
			src = SB16P_CD_L;
			break;
		case SB_INPUT_GAIN:
			src = SB16P_INPUT_GAIN_L;
			break;
		case SB_OUTPUT_GAIN:
			src = SB16P_OUTPUT_GAIN_L;
			break;
		case SB_TREBLE:
			src = SB16P_TREBLE_L;
			break;
		case SB_BASS:
			src = SB16P_BASS_L;
			break;
		case SB_PCSPEAKER:
			sbdsp_mix_write(sc, SB16P_PCSPEAKER,
			    sc->gain[port][SB_LEFT]);
			return;
		default:
			return;
		}
		sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
		sbdsp_mix_write(sc, SB16P_L_TO_R(src),
		    sc->gain[port][SB_RIGHT]);
		break;
	}
}

int
sbdsp_mixer_set_port(void *addr, mixer_ctrl_t *cp)
{
	struct sbdsp_softc *sc;
	int lgain, rgain;
	int mask, bits;
	int lmask, rmask, lbits, rbits;
	int mute, swap;
	int error;

	sc = addr;

	KASSERT(mutex_owned(&sc->sc_lock));

	if (sc->sc_open == SB_OPEN_MIDI)
		return EBUSY;

	DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
	    cp->un.value.num_channels));

	if (sc->sc_mixer_model == SBM_NONE)
		return EINVAL;

	mutex_spin_enter(&sc->sc_intr_lock);
	error = 0;

	switch (cp->dev) {
	case SB_TREBLE:
	case SB_BASS:
		if (sc->sc_mixer_model == SBM_CT1345 ||
		    sc->sc_mixer_model == SBM_CT1XX5) {
			if (cp->type != AUDIO_MIXER_ENUM) {
				mutex_spin_exit(&sc->sc_intr_lock);
				return EINVAL;
			}
			switch (cp->dev) {
			case SB_TREBLE:
				sbdsp_set_ifilter(addr,
				    cp->un.ord ? SB_TREBLE : 0);
				mutex_spin_exit(&sc->sc_intr_lock);
				return 0;
			case SB_BASS:
				sbdsp_set_ifilter(addr,
				    cp->un.ord ? SB_BASS : 0);
				mutex_spin_exit(&sc->sc_intr_lock);
				return 0;
			}
		}
		/* FALLTHROUGH */
	case SB_PCSPEAKER:
	case SB_INPUT_GAIN:
	case SB_OUTPUT_GAIN:
		if (!ISSBM1745(sc)) {
			error = EINVAL;
			break;
		}
		/* FALLTHROUGH */
	case SB_MIC_VOL:
	case SB_LINE_IN_VOL:
		if (sc->sc_mixer_model == SBM_CT1335) {
			error = EINVAL;
			break;
		}
		/* FALLTHROUGH */
	case SB_VOICE_VOL:
	case SB_MIDI_VOL:
	case SB_CD_VOL:
	case SB_MASTER_VOL:
		if (cp->type != AUDIO_MIXER_VALUE) {
			error = EINVAL;
			break;
		}

		/*
		 * All the mixer ports are stereo except for the microphone.
		 * If we get a single-channel gain value passed in, then we
		 * duplicate it to both left and right channels.
		 */

		switch (cp->dev) {
		case SB_MIC_VOL:
			if (cp->un.value.num_channels != 1) {
				error = EINVAL;
				break;
			}

			lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
			break;
		case SB_PCSPEAKER:
			if (cp->un.value.num_channels != 1) {
				error = EINVAL;
				break;
			}
			/* FALLTHROUGH */
		case SB_INPUT_GAIN:
		case SB_OUTPUT_GAIN:
			lgain = rgain = SB_ADJUST_2_GAIN(sc,
			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
			break;
		default:
			switch (cp->un.value.num_channels) {
			case 1:
				lgain = rgain = SB_ADJUST_GAIN(sc,
				    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
				break;
			case 2:
				if (sc->sc_mixer_model == SBM_CT1335) {
					error = EINVAL;
					break;
				}
				lgain = SB_ADJUST_GAIN(sc,
				    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
				rgain = SB_ADJUST_GAIN(sc,
				    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
				break;
			default:
				error = EINVAL;
				break;
			}
			break;
		}
		if (error == 0) {
			sc->gain[cp->dev][SB_LEFT]  = lgain;
			sc->gain[cp->dev][SB_RIGHT] = rgain;
			sbdsp_set_mixer_gain(sc, cp->dev);
		}
		break;

	case SB_RECORD_SOURCE:
		if (ISSBM1745(sc)) {
			if (cp->type != AUDIO_MIXER_SET)
				error = EINVAL;
			else
				error = sbdsp_set_in_ports(sc, cp->un.mask);
		} else {
			if (cp->type != AUDIO_MIXER_ENUM)
				error = EINVAL;
			else {
				sc->in_port = cp->un.ord;
				error = sbdsp_set_in_ports(sc, 1 << cp->un.ord);
			}
		}
		break;

	case SB_AGC:
		if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
			error = EINVAL;
		else
			sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
		break;

	case SB_CD_OUT_MUTE:
		mask = SB16P_SW_CD;
		goto omute;
	case SB_MIC_OUT_MUTE:
		mask = SB16P_SW_MIC;
		goto omute;
	case SB_LINE_OUT_MUTE:
		mask = SB16P_SW_LINE;
	omute:
		if (cp->type != AUDIO_MIXER_ENUM) {
			error = EINVAL;
			break;
		}
		bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
		if (cp->un.ord)
			bits = bits & ~mask;
		else
			bits = bits | mask;
		sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
		break;

	case SB_MIC_IN_MUTE:
	case SB_MIC_SWAP:
		lmask = rmask = SB16P_SW_MIC;
		goto imute;
	case SB_CD_IN_MUTE:
	case SB_CD_SWAP:
		lmask = SB16P_SW_CD_L;
		rmask = SB16P_SW_CD_R;
		goto imute;
	case SB_LINE_IN_MUTE:
	case SB_LINE_SWAP:
		lmask = SB16P_SW_LINE_L;
		rmask = SB16P_SW_LINE_R;
		goto imute;
	case SB_MIDI_IN_MUTE:
	case SB_MIDI_SWAP:
		lmask = SB16P_SW_MIDI_L;
		rmask = SB16P_SW_MIDI_R;
	imute:
		if (cp->type != AUDIO_MIXER_ENUM) {
			error = EINVAL;
			break;
		}
		mask = lmask | rmask;
		lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
		rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
		if (SB_IS_IN_MUTE(cp->dev)) {
			mute = cp->dev;
			swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
		} else {
			swap = cp->dev;
			mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
		}
		if (sc->gain[swap][SB_LR]) {
			mask = lmask;
			lmask = rmask;
			rmask = mask;
		}
		if (!sc->gain[mute][SB_LR]) {
			lbits = lbits | lmask;
			rbits = rbits | rmask;
		}
		sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
		sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
		break;

	default:
		error = EINVAL;
		break;
	}

	mutex_spin_exit(&sc->sc_intr_lock);
	return error;
}

int
sbdsp_mixer_get_port(void *addr, mixer_ctrl_t *cp)
{
	struct sbdsp_softc *sc;

	sc = addr;

	KASSERT(mutex_owned(&sc->sc_lock));

	if (sc->sc_open == SB_OPEN_MIDI)
		return EBUSY;

	DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));

	if (sc->sc_mixer_model == SBM_NONE)
		return EINVAL;

	mutex_spin_enter(&sc->sc_intr_lock);

	switch (cp->dev) {
	case SB_TREBLE:
	case SB_BASS:
		if (sc->sc_mixer_model == SBM_CT1345 ||
		    sc->sc_mixer_model == SBM_CT1XX5) {
			switch (cp->dev) {
			case SB_TREBLE:
				cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
				mutex_spin_exit(&sc->sc_intr_lock);
				return 0;
			case SB_BASS:
				cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
				mutex_spin_exit(&sc->sc_intr_lock);
				return 0;
			}
		}
		/* FALLTHROUGH */
	case SB_PCSPEAKER:
	case SB_INPUT_GAIN:
	case SB_OUTPUT_GAIN:
		if (!ISSBM1745(sc)) {
			mutex_spin_exit(&sc->sc_intr_lock);
			return EINVAL;
		}
		/* FALLTHROUGH */
	case SB_MIC_VOL:
	case SB_LINE_IN_VOL:
		if (sc->sc_mixer_model == SBM_CT1335) {
			mutex_spin_exit(&sc->sc_intr_lock);
			return EINVAL;
		}
		/* FALLTHROUGH */
	case SB_VOICE_VOL:
	case SB_MIDI_VOL:
	case SB_CD_VOL:
	case SB_MASTER_VOL:
		switch (cp->dev) {
		case SB_MIC_VOL:
		case SB_PCSPEAKER:
			if (cp->un.value.num_channels != 1) {
				mutex_spin_exit(&sc->sc_intr_lock);
				return EINVAL;
			}
			/* FALLTHROUGH */
		default:
			switch (cp->un.value.num_channels) {
			case 1:
				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
				    sc->gain[cp->dev][SB_LEFT];
				break;
			case 2:
				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
				    sc->gain[cp->dev][SB_LEFT];
				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
				    sc->gain[cp->dev][SB_RIGHT];
				break;
			default:
				mutex_spin_exit(&sc->sc_intr_lock);
				return EINVAL;
			}
			break;
		}
		break;

	case SB_RECORD_SOURCE:
		if (ISSBM1745(sc))
			cp->un.mask = sc->in_mask;
		else
			cp->un.ord = sc->in_port;
		break;

	case SB_AGC:
		if (!ISSBM1745(sc)) {
			mutex_spin_exit(&sc->sc_intr_lock);
			return EINVAL;
		}
		cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
		break;

	case SB_CD_IN_MUTE:
	case SB_MIC_IN_MUTE:
	case SB_LINE_IN_MUTE:
	case SB_MIDI_IN_MUTE:
	case SB_CD_SWAP:
	case SB_MIC_SWAP:
	case SB_LINE_SWAP:
	case SB_MIDI_SWAP:
	case SB_CD_OUT_MUTE:
	case SB_MIC_OUT_MUTE:
	case SB_LINE_OUT_MUTE:
		cp->un.ord = sc->gain[cp->dev][SB_LR];
		break;

	default:
		mutex_spin_exit(&sc->sc_intr_lock);
		return EINVAL;
	}

	mutex_spin_exit(&sc->sc_intr_lock);

	return 0;
}

int
sbdsp_mixer_query_devinfo(void *addr, mixer_devinfo_t *dip)
{
	struct sbdsp_softc *sc = addr;
	int chan, class, is1745;

	sc = addr;
	DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
		 sc->sc_mixer_model, dip->index));

	KASSERT(mutex_owned(&sc->sc_lock));

	if (sc->sc_mixer_model == SBM_NONE)
		return ENXIO;

	chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
	is1745 = ISSBM1745(sc);
	class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;

	switch (dip->index) {
	case SB_MASTER_VOL:
		dip->type = AUDIO_MIXER_VALUE;
		dip->mixer_class = SB_OUTPUT_CLASS;
		dip->prev = dip->next = AUDIO_MIXER_LAST;
		strcpy(dip->label.name, AudioNmaster);
		dip->un.v.num_channels = chan;
		strcpy(dip->un.v.units.name, AudioNvolume);
		return 0;
	case SB_MIDI_VOL:
		dip->type = AUDIO_MIXER_VALUE;
		dip->mixer_class = class;
		dip->prev = AUDIO_MIXER_LAST;
		dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
		strcpy(dip->label.name, AudioNfmsynth);
		dip->un.v.num_channels = chan;
		strcpy(dip->un.v.units.name, AudioNvolume);
		return 0;
	case SB_CD_VOL:
		dip->type = AUDIO_MIXER_VALUE;
		dip->mixer_class = class;
		dip->prev = AUDIO_MIXER_LAST;
		dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
		strcpy(dip->label.name, AudioNcd);
		dip->un.v.num_channels = chan;
		strcpy(dip->un.v.units.name, AudioNvolume);
		return 0;
	case SB_VOICE_VOL:
		dip->type = AUDIO_MIXER_VALUE;
		dip->mixer_class = class;
		dip->prev = AUDIO_MIXER_LAST;
		dip->next = AUDIO_MIXER_LAST;
		strcpy(dip->label.name, AudioNdac);
		dip->un.v.num_channels = chan;
		strcpy(dip->un.v.units.name, AudioNvolume);
		return 0;
	case SB_OUTPUT_CLASS:
		dip->type = AUDIO_MIXER_CLASS;
		dip->mixer_class = SB_OUTPUT_CLASS;
		dip->next = dip->prev = AUDIO_MIXER_LAST;
		strcpy(dip->label.name, AudioCoutputs);
		return 0;
	}

	if (sc->sc_mixer_model == SBM_CT1335)
		return ENXIO;

	switch (dip->index) {
	case SB_MIC_VOL:
		dip->type = AUDIO_MIXER_VALUE;
		dip->mixer_class = class;
		dip->prev = AUDIO_MIXER_LAST;
		dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
		strcpy(dip->label.name, AudioNmicrophone);
		dip->un.v.num_channels = 1;
		strcpy(dip->un.v.units.name, AudioNvolume);
		return 0;

	case SB_LINE_IN_VOL:
		dip->type = AUDIO_MIXER_VALUE;
		dip->mixer_class = class;
		dip->prev = AUDIO_MIXER_LAST;
		dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
		strcpy(dip->label.name, AudioNline);
		dip->un.v.num_channels = 2;
		strcpy(dip->un.v.units.name, AudioNvolume);
		return 0;

	case SB_RECORD_SOURCE:
		dip->mixer_class = SB_RECORD_CLASS;
		dip->prev = dip->next = AUDIO_MIXER_LAST;
		strcpy(dip->label.name, AudioNsource);
		if (ISSBM1745(sc)) {
			dip->type = AUDIO_MIXER_SET;
			dip->un.s.num_mem = 4;
			strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
			dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
			strcpy(dip->un.s.member[1].label.name, AudioNcd);
			dip->un.s.member[1].mask = 1 << SB_CD_VOL;
			strcpy(dip->un.s.member[2].label.name, AudioNline);
			dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
			strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
			dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
		} else {
			dip->type = AUDIO_MIXER_ENUM;
			dip->un.e.num_mem = 3;
			strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
			dip->un.e.member[0].ord = SB_MIC_VOL;
			strcpy(dip->un.e.member[1].label.name, AudioNcd);
			dip->un.e.member[1].ord = SB_CD_VOL;
			strcpy(dip->un.e.member[2].label.name, AudioNline);
			dip->un.e.member[2].ord = SB_LINE_IN_VOL;
		}
		return 0;

	case SB_BASS:
		dip->prev = dip->next = AUDIO_MIXER_LAST;
		strcpy(dip->label.name, AudioNbass);
		if (sc->sc_mixer_model == SBM_CT1745) {
			dip->type = AUDIO_MIXER_VALUE;
			dip->mixer_class = SB_EQUALIZATION_CLASS;
			dip->un.v.num_channels = 2;
			strcpy(dip->un.v.units.name, AudioNbass);
		} else {
			dip->type = AUDIO_MIXER_ENUM;
			dip->mixer_class = SB_INPUT_CLASS;
			dip->un.e.num_mem = 2;
			strcpy(dip->un.e.member[0].label.name, AudioNoff);
			dip->un.e.member[0].ord = 0;
			strcpy(dip->un.e.member[1].label.name, AudioNon);
			dip->un.e.member[1].ord = 1;
		}
		return 0;

	case SB_TREBLE:
		dip->prev = dip->next = AUDIO_MIXER_LAST;
		strcpy(dip->label.name, AudioNtreble);
		if (sc->sc_mixer_model == SBM_CT1745) {
			dip->type = AUDIO_MIXER_VALUE;
			dip->mixer_class = SB_EQUALIZATION_CLASS;
			dip->un.v.num_channels = 2;
			strcpy(dip->un.v.units.name, AudioNtreble);
		} else {
			dip->type = AUDIO_MIXER_ENUM;
			dip->mixer_class = SB_INPUT_CLASS;
			dip->un.e.num_mem = 2;
			strcpy(dip->un.e.member[0].label.name, AudioNoff);
			dip->un.e.member[0].ord = 0;
			strcpy(dip->un.e.member[1].label.name, AudioNon);
			dip->un.e.member[1].ord = 1;
		}
		return 0;

	case SB_RECORD_CLASS:			/* record source class */
		dip->type = AUDIO_MIXER_CLASS;
		dip->mixer_class = SB_RECORD_CLASS;
		dip->next = dip->prev = AUDIO_MIXER_LAST;
		strcpy(dip->label.name, AudioCrecord);
		return 0;

	case SB_INPUT_CLASS:
		dip->type = AUDIO_MIXER_CLASS;
		dip->mixer_class = SB_INPUT_CLASS;
		dip->next = dip->prev = AUDIO_MIXER_LAST;
		strcpy(dip->label.name, AudioCinputs);
		return 0;

	}

	if (sc->sc_mixer_model == SBM_CT1345)
		return ENXIO;

	switch(dip->index) {
	case SB_PCSPEAKER:
		dip->type = AUDIO_MIXER_VALUE;
		dip->mixer_class = SB_INPUT_CLASS;
		dip->prev = dip->next = AUDIO_MIXER_LAST;
		strcpy(dip->label.name, "pc_speaker");
		dip->un.v.num_channels = 1;
		strcpy(dip->un.v.units.name, AudioNvolume);
		return 0;

	case SB_INPUT_GAIN:
		dip->type = AUDIO_MIXER_VALUE;
		dip->mixer_class = SB_INPUT_CLASS;
		dip->prev = dip->next = AUDIO_MIXER_LAST;
		strcpy(dip->label.name, AudioNinput);
		dip->un.v.num_channels = 2;
		strcpy(dip->un.v.units.name, AudioNvolume);
		return 0;

	case SB_OUTPUT_GAIN:
		dip->type = AUDIO_MIXER_VALUE;
		dip->mixer_class = SB_OUTPUT_CLASS;
		dip->prev = dip->next = AUDIO_MIXER_LAST;
		strcpy(dip->label.name, AudioNoutput);
		dip->un.v.num_channels = 2;
		strcpy(dip->un.v.units.name, AudioNvolume);
		return 0;

	case SB_AGC:
		dip->type = AUDIO_MIXER_ENUM;
		dip->mixer_class = SB_INPUT_CLASS;
		dip->prev = dip->next = AUDIO_MIXER_LAST;
		strcpy(dip->label.name, "agc");
		dip->un.e.num_mem = 2;
		strcpy(dip->un.e.member[0].label.name, AudioNoff);
		dip->un.e.member[0].ord = 0;
		strcpy(dip->un.e.member[1].label.name, AudioNon);
		dip->un.e.member[1].ord = 1;
		return 0;

	case SB_EQUALIZATION_CLASS:
		dip->type = AUDIO_MIXER_CLASS;
		dip->mixer_class = SB_EQUALIZATION_CLASS;
		dip->next = dip->prev = AUDIO_MIXER_LAST;
		strcpy(dip->label.name, AudioCequalization);
		return 0;

	case SB_CD_IN_MUTE:
		dip->prev = SB_CD_VOL;
		dip->next = SB_CD_SWAP;
		dip->mixer_class = SB_INPUT_CLASS;
		goto mute;

	case SB_MIC_IN_MUTE:
		dip->prev = SB_MIC_VOL;
		dip->next = SB_MIC_SWAP;
		dip->mixer_class = SB_INPUT_CLASS;
		goto mute;

	case SB_LINE_IN_MUTE:
		dip->prev = SB_LINE_IN_VOL;
		dip->next = SB_LINE_SWAP;
		dip->mixer_class = SB_INPUT_CLASS;
		goto mute;

	case SB_MIDI_IN_MUTE:
		dip->prev = SB_MIDI_VOL;
		dip->next = SB_MIDI_SWAP;
		dip->mixer_class = SB_INPUT_CLASS;
		goto mute;

	case SB_CD_SWAP:
		dip->prev = SB_CD_IN_MUTE;
		dip->next = SB_CD_OUT_MUTE;
		goto swap;

	case SB_MIC_SWAP:
		dip->prev = SB_MIC_IN_MUTE;
		dip->next = SB_MIC_OUT_MUTE;
		goto swap;

	case SB_LINE_SWAP:
		dip->prev = SB_LINE_IN_MUTE;
		dip->next = SB_LINE_OUT_MUTE;
		goto swap;

	case SB_MIDI_SWAP:
		dip->prev = SB_MIDI_IN_MUTE;
		dip->next = AUDIO_MIXER_LAST;
	swap:
		dip->mixer_class = SB_INPUT_CLASS;
		strcpy(dip->label.name, AudioNswap);
		goto mute1;

	case SB_CD_OUT_MUTE:
		dip->prev = SB_CD_SWAP;
		dip->next = AUDIO_MIXER_LAST;
		dip->mixer_class = SB_OUTPUT_CLASS;
		goto mute;

	case SB_MIC_OUT_MUTE:
		dip->prev = SB_MIC_SWAP;
		dip->next = AUDIO_MIXER_LAST;
		dip->mixer_class = SB_OUTPUT_CLASS;
		goto mute;

	case SB_LINE_OUT_MUTE:
		dip->prev = SB_LINE_SWAP;
		dip->next = AUDIO_MIXER_LAST;
		dip->mixer_class = SB_OUTPUT_CLASS;
	mute:
		strcpy(dip->label.name, AudioNmute);
	mute1:
		dip->type = AUDIO_MIXER_ENUM;
		dip->un.e.num_mem = 2;
		strcpy(dip->un.e.member[0].label.name, AudioNoff);
		dip->un.e.member[0].ord = 0;
		strcpy(dip->un.e.member[1].label.name, AudioNon);
		dip->un.e.member[1].ord = 1;
		return 0;

	}

	return ENXIO;
}

void *
sb_malloc(void *addr, int direction, size_t size)
{
	struct sbdsp_softc *sc;
	int drq;

	sc = addr;
	if (sc->sc_drq8 != -1)
		drq = sc->sc_drq8;
	else
		drq = sc->sc_drq16;
	return isa_malloc(sc->sc_ic, drq, size, M_DEVBUF, M_WAITOK);
}

void
sb_free(void *addr, void *ptr, size_t size)
{

	isa_free(ptr, M_DEVBUF);
}

size_t
sb_round_buffersize(void *addr, int direction, size_t size)
{
	struct sbdsp_softc *sc;
	bus_size_t maxsize;

	sc = addr;
	if (sc->sc_drq8 != -1)
		maxsize = sc->sc_drq8_maxsize;
	else
		maxsize = sc->sc_drq16_maxsize;

	if (size > maxsize)
		size = maxsize;
	return size;
}

int
sbdsp_get_props(void *addr)
{
	struct sbdsp_softc *sc;
	int prop;

	sc = addr;
	prop = AUDIO_PROP_PLAYBACK | AUDIO_PROP_CAPTURE;

	/* Prior to the SB16, it has only one clock */
	if (ISSB16CLASS(sc))
		prop |= AUDIO_PROP_INDEPENDENT;

	return prop;
}

void
sbdsp_get_locks(void *addr, kmutex_t **intr, kmutex_t **proc)
{
	struct sbdsp_softc *sc;

	sc = addr;
	*intr = &sc->sc_intr_lock;
	*proc = &sc->sc_lock;
}

#if NMPU > 0
/*
 * MIDI related routines.
 */

int
sbdsp_midi_open(void *addr, int flags, void (*iintr)(void *, int),
    void (*ointr)(void *), void *arg)
{
	struct sbdsp_softc *sc;

	sc = addr;
	DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));

	if (sc->sc_open != SB_CLOSED)
		return EBUSY;
	if (sbdsp_reset(sc) != 0)
		return EIO;

	sc->sc_open = SB_OPEN_MIDI;

	if (sc->sc_model >= SB_20)
		if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
			return EIO;

	sc->sc_intr8 = sbdsp_midi_intr;
	sc->sc_intrm = iintr;
	sc->sc_argm = arg;

	return 0;
}

void
sbdsp_midi_close(void *addr)
{
	struct sbdsp_softc *sc;

	sc = addr;
	DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));

	if (sc->sc_model >= SB_20)
		sbdsp_reset(sc); /* exit UART mode */

	sc->sc_intrm = 0;
	sc->sc_open = SB_CLOSED;
}

int
sbdsp_midi_output(void *addr, int d)
{
	struct sbdsp_softc *sc;

	sc = addr;
	if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
		return EIO;
	if (sbdsp_wdsp(sc, d))
		return EIO;
	return 0;
}

void
sbdsp_midi_getinfo(void *addr, struct midi_info *mi)
{
	struct sbdsp_softc *sc;

	sc = addr;
	mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
	mi->props = MIDI_PROP_CAN_INPUT;
}

int
sbdsp_midi_intr(void *addr)
{
	struct sbdsp_softc *sc;

	sc = addr;

	KASSERT(mutex_owned(&sc->sc_intr_lock));

	sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
	return (0);
}
#endif