//===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This provides a class for OpenMP runtime code generation. // //===----------------------------------------------------------------------===// #include "CGOpenMPRuntime.h" #include "CGCXXABI.h" #include "CGCleanup.h" #include "CGRecordLayout.h" #include "CodeGenFunction.h" #include "clang/AST/APValue.h" #include "clang/AST/Attr.h" #include "clang/AST/Decl.h" #include "clang/AST/OpenMPClause.h" #include "clang/AST/StmtOpenMP.h" #include "clang/AST/StmtVisitor.h" #include "clang/Basic/BitmaskEnum.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/OpenMPKinds.h" #include "clang/Basic/SourceManager.h" #include "clang/CodeGen/ConstantInitBuilder.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SetOperations.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Bitcode/BitcodeReader.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/Value.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace clang; using namespace CodeGen; using namespace llvm::omp; namespace { /// Base class for handling code generation inside OpenMP regions. class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo { public: /// Kinds of OpenMP regions used in codegen. enum CGOpenMPRegionKind { /// Region with outlined function for standalone 'parallel' /// directive. ParallelOutlinedRegion, /// Region with outlined function for standalone 'task' directive. TaskOutlinedRegion, /// Region for constructs that do not require function outlining, /// like 'for', 'sections', 'atomic' etc. directives. InlinedRegion, /// Region with outlined function for standalone 'target' directive. TargetRegion, }; CGOpenMPRegionInfo(const CapturedStmt &CS, const CGOpenMPRegionKind RegionKind, const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind, bool HasCancel) : CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {} CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind, const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind, bool HasCancel) : CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {} /// Get a variable or parameter for storing global thread id /// inside OpenMP construct. virtual const VarDecl *getThreadIDVariable() const = 0; /// Emit the captured statement body. void EmitBody(CodeGenFunction &CGF, const Stmt *S) override; /// Get an LValue for the current ThreadID variable. /// \return LValue for thread id variable. This LValue always has type int32*. virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF); virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {} CGOpenMPRegionKind getRegionKind() const { return RegionKind; } OpenMPDirectiveKind getDirectiveKind() const { return Kind; } bool hasCancel() const { return HasCancel; } static bool classof(const CGCapturedStmtInfo *Info) { return Info->getKind() == CR_OpenMP; } ~CGOpenMPRegionInfo() override = default; protected: CGOpenMPRegionKind RegionKind; RegionCodeGenTy CodeGen; OpenMPDirectiveKind Kind; bool HasCancel; }; /// API for captured statement code generation in OpenMP constructs. class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo { public: CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar, const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind, bool HasCancel, StringRef HelperName) : CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind, HasCancel), ThreadIDVar(ThreadIDVar), HelperName(HelperName) { assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region."); } /// Get a variable or parameter for storing global thread id /// inside OpenMP construct. const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; } /// Get the name of the capture helper. StringRef getHelperName() const override { return HelperName; } static bool classof(const CGCapturedStmtInfo *Info) { return CGOpenMPRegionInfo::classof(Info) && cast(Info)->getRegionKind() == ParallelOutlinedRegion; } private: /// A variable or parameter storing global thread id for OpenMP /// constructs. const VarDecl *ThreadIDVar; StringRef HelperName; }; /// API for captured statement code generation in OpenMP constructs. class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo { public: class UntiedTaskActionTy final : public PrePostActionTy { bool Untied; const VarDecl *PartIDVar; const RegionCodeGenTy UntiedCodeGen; llvm::SwitchInst *UntiedSwitch = nullptr; public: UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar, const RegionCodeGenTy &UntiedCodeGen) : Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {} void Enter(CodeGenFunction &CGF) override { if (Untied) { // Emit task switching point. LValue PartIdLVal = CGF.EmitLoadOfPointerLValue( CGF.GetAddrOfLocalVar(PartIDVar), PartIDVar->getType()->castAs()); llvm::Value *Res = CGF.EmitLoadOfScalar(PartIdLVal, PartIDVar->getLocation()); llvm::BasicBlock *DoneBB = CGF.createBasicBlock(".untied.done."); UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB); CGF.EmitBlock(DoneBB); CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp.")); UntiedSwitch->addCase(CGF.Builder.getInt32(0), CGF.Builder.GetInsertBlock()); emitUntiedSwitch(CGF); } } void emitUntiedSwitch(CodeGenFunction &CGF) const { if (Untied) { LValue PartIdLVal = CGF.EmitLoadOfPointerLValue( CGF.GetAddrOfLocalVar(PartIDVar), PartIDVar->getType()->castAs()); CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()), PartIdLVal); UntiedCodeGen(CGF); CodeGenFunction::JumpDest CurPoint = CGF.getJumpDestInCurrentScope(".untied.next."); CGF.EmitBranch(CGF.ReturnBlock.getBlock()); CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp.")); UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()), CGF.Builder.GetInsertBlock()); CGF.EmitBranchThroughCleanup(CurPoint); CGF.EmitBlock(CurPoint.getBlock()); } } unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); } }; CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar, const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind, bool HasCancel, const UntiedTaskActionTy &Action) : CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel), ThreadIDVar(ThreadIDVar), Action(Action) { assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region."); } /// Get a variable or parameter for storing global thread id /// inside OpenMP construct. const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; } /// Get an LValue for the current ThreadID variable. LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override; /// Get the name of the capture helper. StringRef getHelperName() const override { return ".omp_outlined."; } void emitUntiedSwitch(CodeGenFunction &CGF) override { Action.emitUntiedSwitch(CGF); } static bool classof(const CGCapturedStmtInfo *Info) { return CGOpenMPRegionInfo::classof(Info) && cast(Info)->getRegionKind() == TaskOutlinedRegion; } private: /// A variable or parameter storing global thread id for OpenMP /// constructs. const VarDecl *ThreadIDVar; /// Action for emitting code for untied tasks. const UntiedTaskActionTy &Action; }; /// API for inlined captured statement code generation in OpenMP /// constructs. class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo { public: CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI, const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind, bool HasCancel) : CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel), OldCSI(OldCSI), OuterRegionInfo(dyn_cast_or_null(OldCSI)) {} // Retrieve the value of the context parameter. llvm::Value *getContextValue() const override { if (OuterRegionInfo) return OuterRegionInfo->getContextValue(); llvm_unreachable("No context value for inlined OpenMP region"); } void setContextValue(llvm::Value *V) override { if (OuterRegionInfo) { OuterRegionInfo->setContextValue(V); return; } llvm_unreachable("No context value for inlined OpenMP region"); } /// Lookup the captured field decl for a variable. const FieldDecl *lookup(const VarDecl *VD) const override { if (OuterRegionInfo) return OuterRegionInfo->lookup(VD); // If there is no outer outlined region,no need to lookup in a list of // captured variables, we can use the original one. return nullptr; } FieldDecl *getThisFieldDecl() const override { if (OuterRegionInfo) return OuterRegionInfo->getThisFieldDecl(); return nullptr; } /// Get a variable or parameter for storing global thread id /// inside OpenMP construct. const VarDecl *getThreadIDVariable() const override { if (OuterRegionInfo) return OuterRegionInfo->getThreadIDVariable(); return nullptr; } /// Get an LValue for the current ThreadID variable. LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override { if (OuterRegionInfo) return OuterRegionInfo->getThreadIDVariableLValue(CGF); llvm_unreachable("No LValue for inlined OpenMP construct"); } /// Get the name of the capture helper. StringRef getHelperName() const override { if (auto *OuterRegionInfo = getOldCSI()) return OuterRegionInfo->getHelperName(); llvm_unreachable("No helper name for inlined OpenMP construct"); } void emitUntiedSwitch(CodeGenFunction &CGF) override { if (OuterRegionInfo) OuterRegionInfo->emitUntiedSwitch(CGF); } CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; } static bool classof(const CGCapturedStmtInfo *Info) { return CGOpenMPRegionInfo::classof(Info) && cast(Info)->getRegionKind() == InlinedRegion; } ~CGOpenMPInlinedRegionInfo() override = default; private: /// CodeGen info about outer OpenMP region. CodeGenFunction::CGCapturedStmtInfo *OldCSI; CGOpenMPRegionInfo *OuterRegionInfo; }; /// API for captured statement code generation in OpenMP target /// constructs. For this captures, implicit parameters are used instead of the /// captured fields. The name of the target region has to be unique in a given /// application so it is provided by the client, because only the client has /// the information to generate that. class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo { public: CGOpenMPTargetRegionInfo(const CapturedStmt &CS, const RegionCodeGenTy &CodeGen, StringRef HelperName) : CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target, /*HasCancel=*/false), HelperName(HelperName) {} /// This is unused for target regions because each starts executing /// with a single thread. const VarDecl *getThreadIDVariable() const override { return nullptr; } /// Get the name of the capture helper. StringRef getHelperName() const override { return HelperName; } static bool classof(const CGCapturedStmtInfo *Info) { return CGOpenMPRegionInfo::classof(Info) && cast(Info)->getRegionKind() == TargetRegion; } private: StringRef HelperName; }; static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) { llvm_unreachable("No codegen for expressions"); } /// API for generation of expressions captured in a innermost OpenMP /// region. class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo { public: CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS) : CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen, OMPD_unknown, /*HasCancel=*/false), PrivScope(CGF) { // Make sure the globals captured in the provided statement are local by // using the privatization logic. We assume the same variable is not // captured more than once. for (const auto &C : CS.captures()) { if (!C.capturesVariable() && !C.capturesVariableByCopy()) continue; const VarDecl *VD = C.getCapturedVar(); if (VD->isLocalVarDeclOrParm()) continue; DeclRefExpr DRE(CGF.getContext(), const_cast(VD), /*RefersToEnclosingVariableOrCapture=*/false, VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); PrivScope.addPrivate( VD, [&CGF, &DRE]() { return CGF.EmitLValue(&DRE).getAddress(CGF); }); } (void)PrivScope.Privatize(); } /// Lookup the captured field decl for a variable. const FieldDecl *lookup(const VarDecl *VD) const override { if (const FieldDecl *FD = CGOpenMPInlinedRegionInfo::lookup(VD)) return FD; return nullptr; } /// Emit the captured statement body. void EmitBody(CodeGenFunction &CGF, const Stmt *S) override { llvm_unreachable("No body for expressions"); } /// Get a variable or parameter for storing global thread id /// inside OpenMP construct. const VarDecl *getThreadIDVariable() const override { llvm_unreachable("No thread id for expressions"); } /// Get the name of the capture helper. StringRef getHelperName() const override { llvm_unreachable("No helper name for expressions"); } static bool classof(const CGCapturedStmtInfo *Info) { return false; } private: /// Private scope to capture global variables. CodeGenFunction::OMPPrivateScope PrivScope; }; /// RAII for emitting code of OpenMP constructs. class InlinedOpenMPRegionRAII { CodeGenFunction &CGF; llvm::DenseMap LambdaCaptureFields; FieldDecl *LambdaThisCaptureField = nullptr; const CodeGen::CGBlockInfo *BlockInfo = nullptr; bool NoInheritance = false; public: /// Constructs region for combined constructs. /// \param CodeGen Code generation sequence for combined directives. Includes /// a list of functions used for code generation of implicitly inlined /// regions. InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind, bool HasCancel, bool NoInheritance = true) : CGF(CGF), NoInheritance(NoInheritance) { // Start emission for the construct. CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo( CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel); if (NoInheritance) { std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields); LambdaThisCaptureField = CGF.LambdaThisCaptureField; CGF.LambdaThisCaptureField = nullptr; BlockInfo = CGF.BlockInfo; CGF.BlockInfo = nullptr; } } ~InlinedOpenMPRegionRAII() { // Restore original CapturedStmtInfo only if we're done with code emission. auto *OldCSI = cast(CGF.CapturedStmtInfo)->getOldCSI(); delete CGF.CapturedStmtInfo; CGF.CapturedStmtInfo = OldCSI; if (NoInheritance) { std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields); CGF.LambdaThisCaptureField = LambdaThisCaptureField; CGF.BlockInfo = BlockInfo; } } }; /// Values for bit flags used in the ident_t to describe the fields. /// All enumeric elements are named and described in accordance with the code /// from https://github.com/llvm/llvm-project/blob/main/openmp/runtime/src/kmp.h enum OpenMPLocationFlags : unsigned { /// Use trampoline for internal microtask. OMP_IDENT_IMD = 0x01, /// Use c-style ident structure. OMP_IDENT_KMPC = 0x02, /// Atomic reduction option for kmpc_reduce. OMP_ATOMIC_REDUCE = 0x10, /// Explicit 'barrier' directive. OMP_IDENT_BARRIER_EXPL = 0x20, /// Implicit barrier in code. OMP_IDENT_BARRIER_IMPL = 0x40, /// Implicit barrier in 'for' directive. OMP_IDENT_BARRIER_IMPL_FOR = 0x40, /// Implicit barrier in 'sections' directive. OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0, /// Implicit barrier in 'single' directive. OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140, /// Call of __kmp_for_static_init for static loop. OMP_IDENT_WORK_LOOP = 0x200, /// Call of __kmp_for_static_init for sections. OMP_IDENT_WORK_SECTIONS = 0x400, /// Call of __kmp_for_static_init for distribute. OMP_IDENT_WORK_DISTRIBUTE = 0x800, LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_IDENT_WORK_DISTRIBUTE) }; namespace { LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); /// Values for bit flags for marking which requires clauses have been used. enum OpenMPOffloadingRequiresDirFlags : int64_t { /// flag undefined. OMP_REQ_UNDEFINED = 0x000, /// no requires clause present. OMP_REQ_NONE = 0x001, /// reverse_offload clause. OMP_REQ_REVERSE_OFFLOAD = 0x002, /// unified_address clause. OMP_REQ_UNIFIED_ADDRESS = 0x004, /// unified_shared_memory clause. OMP_REQ_UNIFIED_SHARED_MEMORY = 0x008, /// dynamic_allocators clause. OMP_REQ_DYNAMIC_ALLOCATORS = 0x010, LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_REQ_DYNAMIC_ALLOCATORS) }; enum OpenMPOffloadingReservedDeviceIDs { /// Device ID if the device was not defined, runtime should get it /// from environment variables in the spec. OMP_DEVICEID_UNDEF = -1, }; } // anonymous namespace /// Describes ident structure that describes a source location. /// All descriptions are taken from /// https://github.com/llvm/llvm-project/blob/main/openmp/runtime/src/kmp.h /// Original structure: /// typedef struct ident { /// kmp_int32 reserved_1; /**< might be used in Fortran; /// see above */ /// kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags; /// KMP_IDENT_KMPC identifies this union /// member */ /// kmp_int32 reserved_2; /**< not really used in Fortran any more; /// see above */ ///#if USE_ITT_BUILD /// /* but currently used for storing /// region-specific ITT */ /// /* contextual information. */ ///#endif /* USE_ITT_BUILD */ /// kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for /// C++ */ /// char const *psource; /**< String describing the source location. /// The string is composed of semi-colon separated // fields which describe the source file, /// the function and a pair of line numbers that /// delimit the construct. /// */ /// } ident_t; enum IdentFieldIndex { /// might be used in Fortran IdentField_Reserved_1, /// OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member. IdentField_Flags, /// Not really used in Fortran any more IdentField_Reserved_2, /// Source[4] in Fortran, do not use for C++ IdentField_Reserved_3, /// String describing the source location. The string is composed of /// semi-colon separated fields which describe the source file, the function /// and a pair of line numbers that delimit the construct. IdentField_PSource }; /// Schedule types for 'omp for' loops (these enumerators are taken from /// the enum sched_type in kmp.h). enum OpenMPSchedType { /// Lower bound for default (unordered) versions. OMP_sch_lower = 32, OMP_sch_static_chunked = 33, OMP_sch_static = 34, OMP_sch_dynamic_chunked = 35, OMP_sch_guided_chunked = 36, OMP_sch_runtime = 37, OMP_sch_auto = 38, /// static with chunk adjustment (e.g., simd) OMP_sch_static_balanced_chunked = 45, /// Lower bound for 'ordered' versions. OMP_ord_lower = 64, OMP_ord_static_chunked = 65, OMP_ord_static = 66, OMP_ord_dynamic_chunked = 67, OMP_ord_guided_chunked = 68, OMP_ord_runtime = 69, OMP_ord_auto = 70, OMP_sch_default = OMP_sch_static, /// dist_schedule types OMP_dist_sch_static_chunked = 91, OMP_dist_sch_static = 92, /// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. /// Set if the monotonic schedule modifier was present. OMP_sch_modifier_monotonic = (1 << 29), /// Set if the nonmonotonic schedule modifier was present. OMP_sch_modifier_nonmonotonic = (1 << 30), }; /// A basic class for pre|post-action for advanced codegen sequence for OpenMP /// region. class CleanupTy final : public EHScopeStack::Cleanup { PrePostActionTy *Action; public: explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {} void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { if (!CGF.HaveInsertPoint()) return; Action->Exit(CGF); } }; } // anonymous namespace void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const { CodeGenFunction::RunCleanupsScope Scope(CGF); if (PrePostAction) { CGF.EHStack.pushCleanup(NormalAndEHCleanup, PrePostAction); Callback(CodeGen, CGF, *PrePostAction); } else { PrePostActionTy Action; Callback(CodeGen, CGF, Action); } } /// Check if the combiner is a call to UDR combiner and if it is so return the /// UDR decl used for reduction. static const OMPDeclareReductionDecl * getReductionInit(const Expr *ReductionOp) { if (const auto *CE = dyn_cast(ReductionOp)) if (const auto *OVE = dyn_cast(CE->getCallee())) if (const auto *DRE = dyn_cast(OVE->getSourceExpr()->IgnoreImpCasts())) if (const auto *DRD = dyn_cast(DRE->getDecl())) return DRD; return nullptr; } static void emitInitWithReductionInitializer(CodeGenFunction &CGF, const OMPDeclareReductionDecl *DRD, const Expr *InitOp, Address Private, Address Original, QualType Ty) { if (DRD->getInitializer()) { std::pair Reduction = CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD); const auto *CE = cast(InitOp); const auto *OVE = cast(CE->getCallee()); const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts(); const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts(); const auto *LHSDRE = cast(cast(LHS)->getSubExpr()); const auto *RHSDRE = cast(cast(RHS)->getSubExpr()); CodeGenFunction::OMPPrivateScope PrivateScope(CGF); PrivateScope.addPrivate(cast(LHSDRE->getDecl()), [=]() { return Private; }); PrivateScope.addPrivate(cast(RHSDRE->getDecl()), [=]() { return Original; }); (void)PrivateScope.Privatize(); RValue Func = RValue::get(Reduction.second); CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func); CGF.EmitIgnoredExpr(InitOp); } else { llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty); std::string Name = CGF.CGM.getOpenMPRuntime().getName({"init"}); auto *GV = new llvm::GlobalVariable( CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name); LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty); RValue InitRVal; switch (CGF.getEvaluationKind(Ty)) { case TEK_Scalar: InitRVal = CGF.EmitLoadOfLValue(LV, DRD->getLocation()); break; case TEK_Complex: InitRVal = RValue::getComplex(CGF.EmitLoadOfComplex(LV, DRD->getLocation())); break; case TEK_Aggregate: { OpaqueValueExpr OVE(DRD->getLocation(), Ty, VK_LValue); CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, LV); CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(), /*IsInitializer=*/false); return; } } OpaqueValueExpr OVE(DRD->getLocation(), Ty, VK_RValue); CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal); CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(), /*IsInitializer=*/false); } } /// Emit initialization of arrays of complex types. /// \param DestAddr Address of the array. /// \param Type Type of array. /// \param Init Initial expression of array. /// \param SrcAddr Address of the original array. static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr, QualType Type, bool EmitDeclareReductionInit, const Expr *Init, const OMPDeclareReductionDecl *DRD, Address SrcAddr = Address::invalid()) { // Perform element-by-element initialization. QualType ElementTy; // Drill down to the base element type on both arrays. const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe(); llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr); DestAddr = CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType()); if (DRD) SrcAddr = CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); llvm::Value *SrcBegin = nullptr; if (DRD) SrcBegin = SrcAddr.getPointer(); llvm::Value *DestBegin = DestAddr.getPointer(); // Cast from pointer to array type to pointer to single element. llvm::Value *DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements); // The basic structure here is a while-do loop. llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arrayinit.body"); llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arrayinit.done"); llvm::Value *IsEmpty = CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty"); CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); // Enter the loop body, making that address the current address. llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock(); CGF.EmitBlock(BodyBB); CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy); llvm::PHINode *SrcElementPHI = nullptr; Address SrcElementCurrent = Address::invalid(); if (DRD) { SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); SrcElementPHI->addIncoming(SrcBegin, EntryBB); SrcElementCurrent = Address(SrcElementPHI, SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); } llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI( DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); DestElementPHI->addIncoming(DestBegin, EntryBB); Address DestElementCurrent = Address(DestElementPHI, DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); // Emit copy. { CodeGenFunction::RunCleanupsScope InitScope(CGF); if (EmitDeclareReductionInit) { emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent, SrcElementCurrent, ElementTy); } else CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(), /*IsInitializer=*/false); } if (DRD) { // Shift the address forward by one element. llvm::Value *SrcElementNext = CGF.Builder.CreateConstGEP1_32( SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock()); } // Shift the address forward by one element. llvm::Value *DestElementNext = CGF.Builder.CreateConstGEP1_32( DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); // Check whether we've reached the end. llvm::Value *Done = CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB); DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock()); // Done. CGF.EmitBlock(DoneBB, /*IsFinished=*/true); } LValue ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, const Expr *E) { return CGF.EmitOMPSharedLValue(E); } LValue ReductionCodeGen::emitSharedLValueUB(CodeGenFunction &CGF, const Expr *E) { if (const auto *OASE = dyn_cast(E)) return CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false); return LValue(); } void ReductionCodeGen::emitAggregateInitialization( CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal, const OMPDeclareReductionDecl *DRD) { // Emit VarDecl with copy init for arrays. // Get the address of the original variable captured in current // captured region. const auto *PrivateVD = cast(cast(ClausesData[N].Private)->getDecl()); bool EmitDeclareReductionInit = DRD && (DRD->getInitializer() || !PrivateVD->hasInit()); EmitOMPAggregateInit(CGF, PrivateAddr, PrivateVD->getType(), EmitDeclareReductionInit, EmitDeclareReductionInit ? ClausesData[N].ReductionOp : PrivateVD->getInit(), DRD, SharedLVal.getAddress(CGF)); } ReductionCodeGen::ReductionCodeGen(ArrayRef Shareds, ArrayRef Origs, ArrayRef Privates, ArrayRef ReductionOps) { ClausesData.reserve(Shareds.size()); SharedAddresses.reserve(Shareds.size()); Sizes.reserve(Shareds.size()); BaseDecls.reserve(Shareds.size()); const auto *IOrig = Origs.begin(); const auto *IPriv = Privates.begin(); const auto *IRed = ReductionOps.begin(); for (const Expr *Ref : Shareds) { ClausesData.emplace_back(Ref, *IOrig, *IPriv, *IRed); std::advance(IOrig, 1); std::advance(IPriv, 1); std::advance(IRed, 1); } } void ReductionCodeGen::emitSharedOrigLValue(CodeGenFunction &CGF, unsigned N) { assert(SharedAddresses.size() == N && OrigAddresses.size() == N && "Number of generated lvalues must be exactly N."); LValue First = emitSharedLValue(CGF, ClausesData[N].Shared); LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Shared); SharedAddresses.emplace_back(First, Second); if (ClausesData[N].Shared == ClausesData[N].Ref) { OrigAddresses.emplace_back(First, Second); } else { LValue First = emitSharedLValue(CGF, ClausesData[N].Ref); LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Ref); OrigAddresses.emplace_back(First, Second); } } void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N) { const auto *PrivateVD = cast(cast(ClausesData[N].Private)->getDecl()); QualType PrivateType = PrivateVD->getType(); bool AsArraySection = isa(ClausesData[N].Ref); if (!PrivateType->isVariablyModifiedType()) { Sizes.emplace_back( CGF.getTypeSize(OrigAddresses[N].first.getType().getNonReferenceType()), nullptr); return; } llvm::Value *Size; llvm::Value *SizeInChars; auto *ElemType = cast(OrigAddresses[N].first.getPointer(CGF)->getType()) ->getElementType(); auto *ElemSizeOf = llvm::ConstantExpr::getSizeOf(ElemType); if (AsArraySection) { Size = CGF.Builder.CreatePtrDiff(OrigAddresses[N].second.getPointer(CGF), OrigAddresses[N].first.getPointer(CGF)); Size = CGF.Builder.CreateNUWAdd( Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1)); SizeInChars = CGF.Builder.CreateNUWMul(Size, ElemSizeOf); } else { SizeInChars = CGF.getTypeSize(OrigAddresses[N].first.getType().getNonReferenceType()); Size = CGF.Builder.CreateExactUDiv(SizeInChars, ElemSizeOf); } Sizes.emplace_back(SizeInChars, Size); CodeGenFunction::OpaqueValueMapping OpaqueMap( CGF, cast( CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()), RValue::get(Size)); CGF.EmitVariablyModifiedType(PrivateType); } void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N, llvm::Value *Size) { const auto *PrivateVD = cast(cast(ClausesData[N].Private)->getDecl()); QualType PrivateType = PrivateVD->getType(); if (!PrivateType->isVariablyModifiedType()) { assert(!Size && !Sizes[N].second && "Size should be nullptr for non-variably modified reduction " "items."); return; } CodeGenFunction::OpaqueValueMapping OpaqueMap( CGF, cast( CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()), RValue::get(Size)); CGF.EmitVariablyModifiedType(PrivateType); } void ReductionCodeGen::emitInitialization( CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal, llvm::function_ref DefaultInit) { assert(SharedAddresses.size() > N && "No variable was generated"); const auto *PrivateVD = cast(cast(ClausesData[N].Private)->getDecl()); const OMPDeclareReductionDecl *DRD = getReductionInit(ClausesData[N].ReductionOp); QualType PrivateType = PrivateVD->getType(); PrivateAddr = CGF.Builder.CreateElementBitCast( PrivateAddr, CGF.ConvertTypeForMem(PrivateType)); QualType SharedType = SharedAddresses[N].first.getType(); SharedLVal = CGF.MakeAddrLValue( CGF.Builder.CreateElementBitCast(SharedLVal.getAddress(CGF), CGF.ConvertTypeForMem(SharedType)), SharedType, SharedAddresses[N].first.getBaseInfo(), CGF.CGM.getTBAAInfoForSubobject(SharedAddresses[N].first, SharedType)); if (CGF.getContext().getAsArrayType(PrivateVD->getType())) { if (DRD && DRD->getInitializer()) (void)DefaultInit(CGF); emitAggregateInitialization(CGF, N, PrivateAddr, SharedLVal, DRD); } else if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) { (void)DefaultInit(CGF); emitInitWithReductionInitializer(CGF, DRD, ClausesData[N].ReductionOp, PrivateAddr, SharedLVal.getAddress(CGF), SharedLVal.getType()); } else if (!DefaultInit(CGF) && PrivateVD->hasInit() && !CGF.isTrivialInitializer(PrivateVD->getInit())) { CGF.EmitAnyExprToMem(PrivateVD->getInit(), PrivateAddr, PrivateVD->getType().getQualifiers(), /*IsInitializer=*/false); } } bool ReductionCodeGen::needCleanups(unsigned N) { const auto *PrivateVD = cast(cast(ClausesData[N].Private)->getDecl()); QualType PrivateType = PrivateVD->getType(); QualType::DestructionKind DTorKind = PrivateType.isDestructedType(); return DTorKind != QualType::DK_none; } void ReductionCodeGen::emitCleanups(CodeGenFunction &CGF, unsigned N, Address PrivateAddr) { const auto *PrivateVD = cast(cast(ClausesData[N].Private)->getDecl()); QualType PrivateType = PrivateVD->getType(); QualType::DestructionKind DTorKind = PrivateType.isDestructedType(); if (needCleanups(N)) { PrivateAddr = CGF.Builder.CreateElementBitCast( PrivateAddr, CGF.ConvertTypeForMem(PrivateType)); CGF.pushDestroy(DTorKind, PrivateAddr, PrivateType); } } static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy, LValue BaseLV) { BaseTy = BaseTy.getNonReferenceType(); while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) && !CGF.getContext().hasSameType(BaseTy, ElTy)) { if (const auto *PtrTy = BaseTy->getAs()) { BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(CGF), PtrTy); } else { LValue RefLVal = CGF.MakeAddrLValue(BaseLV.getAddress(CGF), BaseTy); BaseLV = CGF.EmitLoadOfReferenceLValue(RefLVal); } BaseTy = BaseTy->getPointeeType(); } return CGF.MakeAddrLValue( CGF.Builder.CreateElementBitCast(BaseLV.getAddress(CGF), CGF.ConvertTypeForMem(ElTy)), BaseLV.getType(), BaseLV.getBaseInfo(), CGF.CGM.getTBAAInfoForSubobject(BaseLV, BaseLV.getType())); } static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy, llvm::Type *BaseLVType, CharUnits BaseLVAlignment, llvm::Value *Addr) { Address Tmp = Address::invalid(); Address TopTmp = Address::invalid(); Address MostTopTmp = Address::invalid(); BaseTy = BaseTy.getNonReferenceType(); while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) && !CGF.getContext().hasSameType(BaseTy, ElTy)) { Tmp = CGF.CreateMemTemp(BaseTy); if (TopTmp.isValid()) CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp); else MostTopTmp = Tmp; TopTmp = Tmp; BaseTy = BaseTy->getPointeeType(); } llvm::Type *Ty = BaseLVType; if (Tmp.isValid()) Ty = Tmp.getElementType(); Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty); if (Tmp.isValid()) { CGF.Builder.CreateStore(Addr, Tmp); return MostTopTmp; } return Address(Addr, BaseLVAlignment); } static const VarDecl *getBaseDecl(const Expr *Ref, const DeclRefExpr *&DE) { const VarDecl *OrigVD = nullptr; if (const auto *OASE = dyn_cast(Ref)) { const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); while (const auto *TempOASE = dyn_cast(Base)) Base = TempOASE->getBase()->IgnoreParenImpCasts(); while (const auto *TempASE = dyn_cast(Base)) Base = TempASE->getBase()->IgnoreParenImpCasts(); DE = cast(Base); OrigVD = cast(DE->getDecl()); } else if (const auto *ASE = dyn_cast(Ref)) { const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); while (const auto *TempASE = dyn_cast(Base)) Base = TempASE->getBase()->IgnoreParenImpCasts(); DE = cast(Base); OrigVD = cast(DE->getDecl()); } return OrigVD; } Address ReductionCodeGen::adjustPrivateAddress(CodeGenFunction &CGF, unsigned N, Address PrivateAddr) { const DeclRefExpr *DE; if (const VarDecl *OrigVD = ::getBaseDecl(ClausesData[N].Ref, DE)) { BaseDecls.emplace_back(OrigVD); LValue OriginalBaseLValue = CGF.EmitLValue(DE); LValue BaseLValue = loadToBegin(CGF, OrigVD->getType(), SharedAddresses[N].first.getType(), OriginalBaseLValue); llvm::Value *Adjustment = CGF.Builder.CreatePtrDiff( BaseLValue.getPointer(CGF), SharedAddresses[N].first.getPointer(CGF)); llvm::Value *PrivatePointer = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( PrivateAddr.getPointer(), SharedAddresses[N].first.getAddress(CGF).getType()); llvm::Value *Ptr = CGF.Builder.CreateGEP(PrivatePointer, Adjustment); return castToBase(CGF, OrigVD->getType(), SharedAddresses[N].first.getType(), OriginalBaseLValue.getAddress(CGF).getType(), OriginalBaseLValue.getAlignment(), Ptr); } BaseDecls.emplace_back( cast(cast(ClausesData[N].Ref)->getDecl())); return PrivateAddr; } bool ReductionCodeGen::usesReductionInitializer(unsigned N) const { const OMPDeclareReductionDecl *DRD = getReductionInit(ClausesData[N].ReductionOp); return DRD && DRD->getInitializer(); } LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) { return CGF.EmitLoadOfPointerLValue( CGF.GetAddrOfLocalVar(getThreadIDVariable()), getThreadIDVariable()->getType()->castAs()); } void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt *S) { if (!CGF.HaveInsertPoint()) return; // 1.2.2 OpenMP Language Terminology // Structured block - An executable statement with a single entry at the // top and a single exit at the bottom. // The point of exit cannot be a branch out of the structured block. // longjmp() and throw() must not violate the entry/exit criteria. CGF.EHStack.pushTerminate(); if (S) CGF.incrementProfileCounter(S); CodeGen(CGF); CGF.EHStack.popTerminate(); } LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue( CodeGenFunction &CGF) { return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()), getThreadIDVariable()->getType(), AlignmentSource::Decl); } static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC, QualType FieldTy) { auto *Field = FieldDecl::Create( C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy, C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()), /*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit); Field->setAccess(AS_public); DC->addDecl(Field); return Field; } CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM, StringRef FirstSeparator, StringRef Separator) : CGM(CGM), FirstSeparator(FirstSeparator), Separator(Separator), OMPBuilder(CGM.getModule()), OffloadEntriesInfoManager(CGM) { KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8); // Initialize Types used in OpenMPIRBuilder from OMPKinds.def OMPBuilder.initialize(); loadOffloadInfoMetadata(); } void CGOpenMPRuntime::clear() { InternalVars.clear(); // Clean non-target variable declarations possibly used only in debug info. for (const auto &Data : EmittedNonTargetVariables) { if (!Data.getValue().pointsToAliveValue()) continue; auto *GV = dyn_cast(Data.getValue()); if (!GV) continue; if (!GV->isDeclaration() || GV->getNumUses() > 0) continue; GV->eraseFromParent(); } } std::string CGOpenMPRuntime::getName(ArrayRef Parts) const { SmallString<128> Buffer; llvm::raw_svector_ostream OS(Buffer); StringRef Sep = FirstSeparator; for (StringRef Part : Parts) { OS << Sep << Part; Sep = Separator; } return std::string(OS.str()); } static llvm::Function * emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty, const Expr *CombinerInitializer, const VarDecl *In, const VarDecl *Out, bool IsCombiner) { // void .omp_combiner.(Ty *in, Ty *out); ASTContext &C = CGM.getContext(); QualType PtrTy = C.getPointerType(Ty).withRestrict(); FunctionArgList Args; ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(), /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other); ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(), /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other); Args.push_back(&OmpOutParm); Args.push_back(&OmpInParm); const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo); std::string Name = CGM.getOpenMPRuntime().getName( {IsCombiner ? "omp_combiner" : "omp_initializer", ""}); auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule()); CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo); if (CGM.getLangOpts().Optimize) { Fn->removeFnAttr(llvm::Attribute::NoInline); Fn->removeFnAttr(llvm::Attribute::OptimizeNone); Fn->addFnAttr(llvm::Attribute::AlwaysInline); } CodeGenFunction CGF(CGM); // Map "T omp_in;" variable to "*omp_in_parm" value in all expressions. // Map "T omp_out;" variable to "*omp_out_parm" value in all expressions. CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, In->getLocation(), Out->getLocation()); CodeGenFunction::OMPPrivateScope Scope(CGF); Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm); Scope.addPrivate(In, [&CGF, AddrIn, PtrTy]() { return CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs()) .getAddress(CGF); }); Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm); Scope.addPrivate(Out, [&CGF, AddrOut, PtrTy]() { return CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs()) .getAddress(CGF); }); (void)Scope.Privatize(); if (!IsCombiner && Out->hasInit() && !CGF.isTrivialInitializer(Out->getInit())) { CGF.EmitAnyExprToMem(Out->getInit(), CGF.GetAddrOfLocalVar(Out), Out->getType().getQualifiers(), /*IsInitializer=*/true); } if (CombinerInitializer) CGF.EmitIgnoredExpr(CombinerInitializer); Scope.ForceCleanup(); CGF.FinishFunction(); return Fn; } void CGOpenMPRuntime::emitUserDefinedReduction( CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) { if (UDRMap.count(D) > 0) return; llvm::Function *Combiner = emitCombinerOrInitializer( CGM, D->getType(), D->getCombiner(), cast(cast(D->getCombinerIn())->getDecl()), cast(cast(D->getCombinerOut())->getDecl()), /*IsCombiner=*/true); llvm::Function *Initializer = nullptr; if (const Expr *Init = D->getInitializer()) { Initializer = emitCombinerOrInitializer( CGM, D->getType(), D->getInitializerKind() == OMPDeclareReductionDecl::CallInit ? Init : nullptr, cast(cast(D->getInitOrig())->getDecl()), cast(cast(D->getInitPriv())->getDecl()), /*IsCombiner=*/false); } UDRMap.try_emplace(D, Combiner, Initializer); if (CGF) { auto &Decls = FunctionUDRMap.FindAndConstruct(CGF->CurFn); Decls.second.push_back(D); } } std::pair CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) { auto I = UDRMap.find(D); if (I != UDRMap.end()) return I->second; emitUserDefinedReduction(/*CGF=*/nullptr, D); return UDRMap.lookup(D); } namespace { // Temporary RAII solution to perform a push/pop stack event on the OpenMP IR // Builder if one is present. struct PushAndPopStackRAII { PushAndPopStackRAII(llvm::OpenMPIRBuilder *OMPBuilder, CodeGenFunction &CGF, bool HasCancel, llvm::omp::Directive Kind) : OMPBuilder(OMPBuilder) { if (!OMPBuilder) return; // The following callback is the crucial part of clangs cleanup process. // // NOTE: // Once the OpenMPIRBuilder is used to create parallel regions (and // similar), the cancellation destination (Dest below) is determined via // IP. That means if we have variables to finalize we split the block at IP, // use the new block (=BB) as destination to build a JumpDest (via // getJumpDestInCurrentScope(BB)) which then is fed to // EmitBranchThroughCleanup. Furthermore, there will not be the need // to push & pop an FinalizationInfo object. // The FiniCB will still be needed but at the point where the // OpenMPIRBuilder is asked to construct a parallel (or similar) construct. auto FiniCB = [&CGF](llvm::OpenMPIRBuilder::InsertPointTy IP) { assert(IP.getBlock()->end() == IP.getPoint() && "Clang CG should cause non-terminated block!"); CGBuilderTy::InsertPointGuard IPG(CGF.Builder); CGF.Builder.restoreIP(IP); CodeGenFunction::JumpDest Dest = CGF.getOMPCancelDestination(OMPD_parallel); CGF.EmitBranchThroughCleanup(Dest); }; // TODO: Remove this once we emit parallel regions through the // OpenMPIRBuilder as it can do this setup internally. llvm::OpenMPIRBuilder::FinalizationInfo FI({FiniCB, Kind, HasCancel}); OMPBuilder->pushFinalizationCB(std::move(FI)); } ~PushAndPopStackRAII() { if (OMPBuilder) OMPBuilder->popFinalizationCB(); } llvm::OpenMPIRBuilder *OMPBuilder; }; } // namespace static llvm::Function *emitParallelOrTeamsOutlinedFunction( CodeGenModule &CGM, const OMPExecutableDirective &D, const CapturedStmt *CS, const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind, const StringRef OutlinedHelperName, const RegionCodeGenTy &CodeGen) { assert(ThreadIDVar->getType()->isPointerType() && "thread id variable must be of type kmp_int32 *"); CodeGenFunction CGF(CGM, true); bool HasCancel = false; if (const auto *OPD = dyn_cast(&D)) HasCancel = OPD->hasCancel(); else if (const auto *OPD = dyn_cast(&D)) HasCancel = OPD->hasCancel(); else if (const auto *OPSD = dyn_cast(&D)) HasCancel = OPSD->hasCancel(); else if (const auto *OPFD = dyn_cast(&D)) HasCancel = OPFD->hasCancel(); else if (const auto *OPFD = dyn_cast(&D)) HasCancel = OPFD->hasCancel(); else if (const auto *OPFD = dyn_cast(&D)) HasCancel = OPFD->hasCancel(); else if (const auto *OPFD = dyn_cast(&D)) HasCancel = OPFD->hasCancel(); else if (const auto *OPFD = dyn_cast(&D)) HasCancel = OPFD->hasCancel(); // TODO: Temporarily inform the OpenMPIRBuilder, if any, about the new // parallel region to make cancellation barriers work properly. llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); PushAndPopStackRAII PSR(&OMPBuilder, CGF, HasCancel, InnermostKind); CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind, HasCancel, OutlinedHelperName); CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); return CGF.GenerateOpenMPCapturedStmtFunction(*CS, D.getBeginLoc()); } llvm::Function *CGOpenMPRuntime::emitParallelOutlinedFunction( const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { const CapturedStmt *CS = D.getCapturedStmt(OMPD_parallel); return emitParallelOrTeamsOutlinedFunction( CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen); } llvm::Function *CGOpenMPRuntime::emitTeamsOutlinedFunction( const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { const CapturedStmt *CS = D.getCapturedStmt(OMPD_teams); return emitParallelOrTeamsOutlinedFunction( CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen); } llvm::Function *CGOpenMPRuntime::emitTaskOutlinedFunction( const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, const VarDecl *PartIDVar, const VarDecl *TaskTVar, OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, bool Tied, unsigned &NumberOfParts) { auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF, PrePostActionTy &) { llvm::Value *ThreadID = getThreadID(CGF, D.getBeginLoc()); llvm::Value *UpLoc = emitUpdateLocation(CGF, D.getBeginLoc()); llvm::Value *TaskArgs[] = { UpLoc, ThreadID, CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar), TaskTVar->getType()->castAs()) .getPointer(CGF)}; CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_omp_task), TaskArgs); }; CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar, UntiedCodeGen); CodeGen.setAction(Action); assert(!ThreadIDVar->getType()->isPointerType() && "thread id variable must be of type kmp_int32 for tasks"); const OpenMPDirectiveKind Region = isOpenMPTaskLoopDirective(D.getDirectiveKind()) ? OMPD_taskloop : OMPD_task; const CapturedStmt *CS = D.getCapturedStmt(Region); bool HasCancel = false; if (const auto *TD = dyn_cast(&D)) HasCancel = TD->hasCancel(); else if (const auto *TD = dyn_cast(&D)) HasCancel = TD->hasCancel(); else if (const auto *TD = dyn_cast(&D)) HasCancel = TD->hasCancel(); else if (const auto *TD = dyn_cast(&D)) HasCancel = TD->hasCancel(); CodeGenFunction CGF(CGM, true); CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind, HasCancel, Action); CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); llvm::Function *Res = CGF.GenerateCapturedStmtFunction(*CS); if (!Tied) NumberOfParts = Action.getNumberOfParts(); return Res; } static void buildStructValue(ConstantStructBuilder &Fields, CodeGenModule &CGM, const RecordDecl *RD, const CGRecordLayout &RL, ArrayRef Data) { llvm::StructType *StructTy = RL.getLLVMType(); unsigned PrevIdx = 0; ConstantInitBuilder CIBuilder(CGM); auto DI = Data.begin(); for (const FieldDecl *FD : RD->fields()) { unsigned Idx = RL.getLLVMFieldNo(FD); // Fill the alignment. for (unsigned I = PrevIdx; I < Idx; ++I) Fields.add(llvm::Constant::getNullValue(StructTy->getElementType(I))); PrevIdx = Idx + 1; Fields.add(*DI); ++DI; } } template static llvm::GlobalVariable * createGlobalStruct(CodeGenModule &CGM, QualType Ty, bool IsConstant, ArrayRef Data, const Twine &Name, As &&... Args) { const auto *RD = cast(Ty->getAsTagDecl()); const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD); ConstantInitBuilder CIBuilder(CGM); ConstantStructBuilder Fields = CIBuilder.beginStruct(RL.getLLVMType()); buildStructValue(Fields, CGM, RD, RL, Data); return Fields.finishAndCreateGlobal( Name, CGM.getContext().getAlignOfGlobalVarInChars(Ty), IsConstant, std::forward(Args)...); } template static void createConstantGlobalStructAndAddToParent(CodeGenModule &CGM, QualType Ty, ArrayRef Data, T &Parent) { const auto *RD = cast(Ty->getAsTagDecl()); const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD); ConstantStructBuilder Fields = Parent.beginStruct(RL.getLLVMType()); buildStructValue(Fields, CGM, RD, RL, Data); Fields.finishAndAddTo(Parent); } void CGOpenMPRuntime::setLocThreadIdInsertPt(CodeGenFunction &CGF, bool AtCurrentPoint) { auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); assert(!Elem.second.ServiceInsertPt && "Insert point is set already."); llvm::Value *Undef = llvm::UndefValue::get(CGF.Int32Ty); if (AtCurrentPoint) { Elem.second.ServiceInsertPt = new llvm::BitCastInst( Undef, CGF.Int32Ty, "svcpt", CGF.Builder.GetInsertBlock()); } else { Elem.second.ServiceInsertPt = new llvm::BitCastInst(Undef, CGF.Int32Ty, "svcpt"); Elem.second.ServiceInsertPt->insertAfter(CGF.AllocaInsertPt); } } void CGOpenMPRuntime::clearLocThreadIdInsertPt(CodeGenFunction &CGF) { auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); if (Elem.second.ServiceInsertPt) { llvm::Instruction *Ptr = Elem.second.ServiceInsertPt; Elem.second.ServiceInsertPt = nullptr; Ptr->eraseFromParent(); } } static StringRef getIdentStringFromSourceLocation(CodeGenFunction &CGF, SourceLocation Loc, SmallString<128> &Buffer) { llvm::raw_svector_ostream OS(Buffer); // Build debug location PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc); OS << ";" << PLoc.getFilename() << ";"; if (const auto *FD = dyn_cast_or_null(CGF.CurFuncDecl)) OS << FD->getQualifiedNameAsString(); OS << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;"; return OS.str(); } llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF, SourceLocation Loc, unsigned Flags) { llvm::Constant *SrcLocStr; if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo || Loc.isInvalid()) { SrcLocStr = OMPBuilder.getOrCreateDefaultSrcLocStr(); } else { std::string FunctionName = ""; if (const auto *FD = dyn_cast_or_null(CGF.CurFuncDecl)) FunctionName = FD->getQualifiedNameAsString(); PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc); const char *FileName = PLoc.getFilename(); unsigned Line = PLoc.getLine(); unsigned Column = PLoc.getColumn(); SrcLocStr = OMPBuilder.getOrCreateSrcLocStr(FunctionName.c_str(), FileName, Line, Column); } unsigned Reserved2Flags = getDefaultLocationReserved2Flags(); return OMPBuilder.getOrCreateIdent(SrcLocStr, llvm::omp::IdentFlag(Flags), Reserved2Flags); } llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF, SourceLocation Loc) { assert(CGF.CurFn && "No function in current CodeGenFunction."); // If the OpenMPIRBuilder is used we need to use it for all thread id calls as // the clang invariants used below might be broken. if (CGM.getLangOpts().OpenMPIRBuilder) { SmallString<128> Buffer; OMPBuilder.updateToLocation(CGF.Builder.saveIP()); auto *SrcLocStr = OMPBuilder.getOrCreateSrcLocStr( getIdentStringFromSourceLocation(CGF, Loc, Buffer)); return OMPBuilder.getOrCreateThreadID( OMPBuilder.getOrCreateIdent(SrcLocStr)); } llvm::Value *ThreadID = nullptr; // Check whether we've already cached a load of the thread id in this // function. auto I = OpenMPLocThreadIDMap.find(CGF.CurFn); if (I != OpenMPLocThreadIDMap.end()) { ThreadID = I->second.ThreadID; if (ThreadID != nullptr) return ThreadID; } // If exceptions are enabled, do not use parameter to avoid possible crash. if (auto *OMPRegionInfo = dyn_cast_or_null(CGF.CapturedStmtInfo)) { if (OMPRegionInfo->getThreadIDVariable()) { // Check if this an outlined function with thread id passed as argument. LValue LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF); llvm::BasicBlock *TopBlock = CGF.AllocaInsertPt->getParent(); if (!CGF.EHStack.requiresLandingPad() || !CGF.getLangOpts().Exceptions || !CGF.getLangOpts().CXXExceptions || CGF.Builder.GetInsertBlock() == TopBlock || !isa(LVal.getPointer(CGF)) || cast(LVal.getPointer(CGF))->getParent() == TopBlock || cast(LVal.getPointer(CGF))->getParent() == CGF.Builder.GetInsertBlock()) { ThreadID = CGF.EmitLoadOfScalar(LVal, Loc); // If value loaded in entry block, cache it and use it everywhere in // function. if (CGF.Builder.GetInsertBlock() == TopBlock) { auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); Elem.second.ThreadID = ThreadID; } return ThreadID; } } } // This is not an outlined function region - need to call __kmpc_int32 // kmpc_global_thread_num(ident_t *loc). // Generate thread id value and cache this value for use across the // function. auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); if (!Elem.second.ServiceInsertPt) setLocThreadIdInsertPt(CGF); CGBuilderTy::InsertPointGuard IPG(CGF.Builder); CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt); llvm::CallInst *Call = CGF.Builder.CreateCall( OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), OMPRTL___kmpc_global_thread_num), emitUpdateLocation(CGF, Loc)); Call->setCallingConv(CGF.getRuntimeCC()); Elem.second.ThreadID = Call; return Call; } void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) { assert(CGF.CurFn && "No function in current CodeGenFunction."); if (OpenMPLocThreadIDMap.count(CGF.CurFn)) { clearLocThreadIdInsertPt(CGF); OpenMPLocThreadIDMap.erase(CGF.CurFn); } if (FunctionUDRMap.count(CGF.CurFn) > 0) { for(const auto *D : FunctionUDRMap[CGF.CurFn]) UDRMap.erase(D); FunctionUDRMap.erase(CGF.CurFn); } auto I = FunctionUDMMap.find(CGF.CurFn); if (I != FunctionUDMMap.end()) { for(const auto *D : I->second) UDMMap.erase(D); FunctionUDMMap.erase(I); } LastprivateConditionalToTypes.erase(CGF.CurFn); FunctionToUntiedTaskStackMap.erase(CGF.CurFn); } llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() { return OMPBuilder.IdentPtr; } llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() { if (!Kmpc_MicroTy) { // Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...) llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty), llvm::PointerType::getUnqual(CGM.Int32Ty)}; Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true); } return llvm::PointerType::getUnqual(Kmpc_MicroTy); } llvm::FunctionCallee CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize, bool IVSigned) { assert((IVSize == 32 || IVSize == 64) && "IV size is not compatible with the omp runtime"); StringRef Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4" : "__kmpc_for_static_init_4u") : (IVSigned ? "__kmpc_for_static_init_8" : "__kmpc_for_static_init_8u"); llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty; auto *PtrTy = llvm::PointerType::getUnqual(ITy); llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc CGM.Int32Ty, // tid CGM.Int32Ty, // schedtype llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter PtrTy, // p_lower PtrTy, // p_upper PtrTy, // p_stride ITy, // incr ITy // chunk }; auto *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); return CGM.CreateRuntimeFunction(FnTy, Name); } llvm::FunctionCallee CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize, bool IVSigned) { assert((IVSize == 32 || IVSize == 64) && "IV size is not compatible with the omp runtime"); StringRef Name = IVSize == 32 ? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u") : (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u"); llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty; llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc CGM.Int32Ty, // tid CGM.Int32Ty, // schedtype ITy, // lower ITy, // upper ITy, // stride ITy // chunk }; auto *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); return CGM.CreateRuntimeFunction(FnTy, Name); } llvm::FunctionCallee CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize, bool IVSigned) { assert((IVSize == 32 || IVSize == 64) && "IV size is not compatible with the omp runtime"); StringRef Name = IVSize == 32 ? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u") : (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u"); llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc CGM.Int32Ty, // tid }; auto *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); return CGM.CreateRuntimeFunction(FnTy, Name); } llvm::FunctionCallee CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize, bool IVSigned) { assert((IVSize == 32 || IVSize == 64) && "IV size is not compatible with the omp runtime"); StringRef Name = IVSize == 32 ? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u") : (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u"); llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty; auto *PtrTy = llvm::PointerType::getUnqual(ITy); llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc CGM.Int32Ty, // tid llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter PtrTy, // p_lower PtrTy, // p_upper PtrTy // p_stride }; auto *FnTy = llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); return CGM.CreateRuntimeFunction(FnTy, Name); } /// Obtain information that uniquely identifies a target entry. This /// consists of the file and device IDs as well as line number associated with /// the relevant entry source location. static void getTargetEntryUniqueInfo(ASTContext &C, SourceLocation Loc, unsigned &DeviceID, unsigned &FileID, unsigned &LineNum) { SourceManager &SM = C.getSourceManager(); // The loc should be always valid and have a file ID (the user cannot use // #pragma directives in macros) assert(Loc.isValid() && "Source location is expected to be always valid."); PresumedLoc PLoc = SM.getPresumedLoc(Loc); assert(PLoc.isValid() && "Source location is expected to be always valid."); llvm::sys::fs::UniqueID ID; if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { PLoc = SM.getPresumedLoc(Loc, /*UseLineDirectives=*/false); assert(PLoc.isValid() && "Source location is expected to be always valid."); if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) SM.getDiagnostics().Report(diag::err_cannot_open_file) << PLoc.getFilename() << EC.message(); } DeviceID = ID.getDevice(); FileID = ID.getFile(); LineNum = PLoc.getLine(); } Address CGOpenMPRuntime::getAddrOfDeclareTargetVar(const VarDecl *VD) { if (CGM.getLangOpts().OpenMPSimd) return Address::invalid(); llvm::Optional Res = OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); if (Res && (*Res == OMPDeclareTargetDeclAttr::MT_Link || (*Res == OMPDeclareTargetDeclAttr::MT_To && HasRequiresUnifiedSharedMemory))) { SmallString<64> PtrName; { llvm::raw_svector_ostream OS(PtrName); OS << CGM.getMangledName(GlobalDecl(VD)); if (!VD->isExternallyVisible()) { unsigned DeviceID, FileID, Line; getTargetEntryUniqueInfo(CGM.getContext(), VD->getCanonicalDecl()->getBeginLoc(), DeviceID, FileID, Line); OS << llvm::format("_%x", FileID); } OS << "_decl_tgt_ref_ptr"; } llvm::Value *Ptr = CGM.getModule().getNamedValue(PtrName); if (!Ptr) { QualType PtrTy = CGM.getContext().getPointerType(VD->getType()); Ptr = getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(PtrTy), PtrName); auto *GV = cast(Ptr); GV->setLinkage(llvm::GlobalValue::WeakAnyLinkage); if (!CGM.getLangOpts().OpenMPIsDevice) GV->setInitializer(CGM.GetAddrOfGlobal(VD)); registerTargetGlobalVariable(VD, cast(Ptr)); } return Address(Ptr, CGM.getContext().getDeclAlign(VD)); } return Address::invalid(); } llvm::Constant * CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) { assert(!CGM.getLangOpts().OpenMPUseTLS || !CGM.getContext().getTargetInfo().isTLSSupported()); // Lookup the entry, lazily creating it if necessary. std::string Suffix = getName({"cache", ""}); return getOrCreateInternalVariable( CGM.Int8PtrPtrTy, Twine(CGM.getMangledName(VD)).concat(Suffix)); } Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF, const VarDecl *VD, Address VDAddr, SourceLocation Loc) { if (CGM.getLangOpts().OpenMPUseTLS && CGM.getContext().getTargetInfo().isTLSSupported()) return VDAddr; llvm::Type *VarTy = VDAddr.getElementType(); llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.Int8PtrTy), CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)), getOrCreateThreadPrivateCache(VD)}; return Address(CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_threadprivate_cached), Args), VDAddr.getAlignment()); } void CGOpenMPRuntime::emitThreadPrivateVarInit( CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor, llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) { // Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime // library. llvm::Value *OMPLoc = emitUpdateLocation(CGF, Loc); CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_global_thread_num), OMPLoc); // Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor) // to register constructor/destructor for variable. llvm::Value *Args[] = { OMPLoc, CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.VoidPtrTy), Ctor, CopyCtor, Dtor}; CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_threadprivate_register), Args); } llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition( const VarDecl *VD, Address VDAddr, SourceLocation Loc, bool PerformInit, CodeGenFunction *CGF) { if (CGM.getLangOpts().OpenMPUseTLS && CGM.getContext().getTargetInfo().isTLSSupported()) return nullptr; VD = VD->getDefinition(CGM.getContext()); if (VD && ThreadPrivateWithDefinition.insert(CGM.getMangledName(VD)).second) { QualType ASTTy = VD->getType(); llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr; const Expr *Init = VD->getAnyInitializer(); if (CGM.getLangOpts().CPlusPlus && PerformInit) { // Generate function that re-emits the declaration's initializer into the // threadprivate copy of the variable VD CodeGenFunction CtorCGF(CGM); FunctionArgList Args; ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc, /*Id=*/nullptr, CGM.getContext().VoidPtrTy, ImplicitParamDecl::Other); Args.push_back(&Dst); const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration( CGM.getContext().VoidPtrTy, Args); llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI); std::string Name = getName({"__kmpc_global_ctor_", ""}); llvm::Function *Fn = CGM.CreateGlobalInitOrCleanUpFunction(FTy, Name, FI, Loc); CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI, Args, Loc, Loc); llvm::Value *ArgVal = CtorCGF.EmitLoadOfScalar( CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation()); Address Arg = Address(ArgVal, VDAddr.getAlignment()); Arg = CtorCGF.Builder.CreateElementBitCast( Arg, CtorCGF.ConvertTypeForMem(ASTTy)); CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(), /*IsInitializer=*/true); ArgVal = CtorCGF.EmitLoadOfScalar( CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation()); CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue); CtorCGF.FinishFunction(); Ctor = Fn; } if (VD->getType().isDestructedType() != QualType::DK_none) { // Generate function that emits destructor call for the threadprivate copy // of the variable VD CodeGenFunction DtorCGF(CGM); FunctionArgList Args; ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc, /*Id=*/nullptr, CGM.getContext().VoidPtrTy, ImplicitParamDecl::Other); Args.push_back(&Dst); const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration( CGM.getContext().VoidTy, Args); llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI); std::string Name = getName({"__kmpc_global_dtor_", ""}); llvm::Function *Fn = CGM.CreateGlobalInitOrCleanUpFunction(FTy, Name, FI, Loc); auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF); DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args, Loc, Loc); // Create a scope with an artificial location for the body of this function. auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF); llvm::Value *ArgVal = DtorCGF.EmitLoadOfScalar( DtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation()); DtorCGF.emitDestroy(Address(ArgVal, VDAddr.getAlignment()), ASTTy, DtorCGF.getDestroyer(ASTTy.isDestructedType()), DtorCGF.needsEHCleanup(ASTTy.isDestructedType())); DtorCGF.FinishFunction(); Dtor = Fn; } // Do not emit init function if it is not required. if (!Ctor && !Dtor) return nullptr; llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; auto *CopyCtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs, /*isVarArg=*/false) ->getPointerTo(); // Copying constructor for the threadprivate variable. // Must be NULL - reserved by runtime, but currently it requires that this // parameter is always NULL. Otherwise it fires assertion. CopyCtor = llvm::Constant::getNullValue(CopyCtorTy); if (Ctor == nullptr) { auto *CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy, /*isVarArg=*/false) ->getPointerTo(); Ctor = llvm::Constant::getNullValue(CtorTy); } if (Dtor == nullptr) { auto *DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, /*isVarArg=*/false) ->getPointerTo(); Dtor = llvm::Constant::getNullValue(DtorTy); } if (!CGF) { auto *InitFunctionTy = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false); std::string Name = getName({"__omp_threadprivate_init_", ""}); llvm::Function *InitFunction = CGM.CreateGlobalInitOrCleanUpFunction( InitFunctionTy, Name, CGM.getTypes().arrangeNullaryFunction()); CodeGenFunction InitCGF(CGM); FunctionArgList ArgList; InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction, CGM.getTypes().arrangeNullaryFunction(), ArgList, Loc, Loc); emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc); InitCGF.FinishFunction(); return InitFunction; } emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc); } return nullptr; } bool CGOpenMPRuntime::emitDeclareTargetVarDefinition(const VarDecl *VD, llvm::GlobalVariable *Addr, bool PerformInit) { if (CGM.getLangOpts().OMPTargetTriples.empty() && !CGM.getLangOpts().OpenMPIsDevice) return false; Optional Res = OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link || (*Res == OMPDeclareTargetDeclAttr::MT_To && HasRequiresUnifiedSharedMemory)) return CGM.getLangOpts().OpenMPIsDevice; VD = VD->getDefinition(CGM.getContext()); assert(VD && "Unknown VarDecl"); if (!DeclareTargetWithDefinition.insert(CGM.getMangledName(VD)).second) return CGM.getLangOpts().OpenMPIsDevice; QualType ASTTy = VD->getType(); SourceLocation Loc = VD->getCanonicalDecl()->getBeginLoc(); // Produce the unique prefix to identify the new target regions. We use // the source location of the variable declaration which we know to not // conflict with any target region. unsigned DeviceID; unsigned FileID; unsigned Line; getTargetEntryUniqueInfo(CGM.getContext(), Loc, DeviceID, FileID, Line); SmallString<128> Buffer, Out; { llvm::raw_svector_ostream OS(Buffer); OS << "__omp_offloading_" << llvm::format("_%x", DeviceID) << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line; } const Expr *Init = VD->getAnyInitializer(); if (CGM.getLangOpts().CPlusPlus && PerformInit) { llvm::Constant *Ctor; llvm::Constant *ID; if (CGM.getLangOpts().OpenMPIsDevice) { // Generate function that re-emits the declaration's initializer into // the threadprivate copy of the variable VD CodeGenFunction CtorCGF(CGM); const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI); llvm::Function *Fn = CGM.CreateGlobalInitOrCleanUpFunction( FTy, Twine(Buffer, "_ctor"), FI, Loc); auto NL = ApplyDebugLocation::CreateEmpty(CtorCGF); CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, FunctionArgList(), Loc, Loc); auto AL = ApplyDebugLocation::CreateArtificial(CtorCGF); CtorCGF.EmitAnyExprToMem(Init, Address(Addr, CGM.getContext().getDeclAlign(VD)), Init->getType().getQualifiers(), /*IsInitializer=*/true); CtorCGF.FinishFunction(); Ctor = Fn; ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy); CGM.addUsedGlobal(cast(Ctor)); } else { Ctor = new llvm::GlobalVariable( CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_ctor")); ID = Ctor; } // Register the information for the entry associated with the constructor. Out.clear(); OffloadEntriesInfoManager.registerTargetRegionEntryInfo( DeviceID, FileID, Twine(Buffer, "_ctor").toStringRef(Out), Line, Ctor, ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryCtor); } if (VD->getType().isDestructedType() != QualType::DK_none) { llvm::Constant *Dtor; llvm::Constant *ID; if (CGM.getLangOpts().OpenMPIsDevice) { // Generate function that emits destructor call for the threadprivate // copy of the variable VD CodeGenFunction DtorCGF(CGM); const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI); llvm::Function *Fn = CGM.CreateGlobalInitOrCleanUpFunction( FTy, Twine(Buffer, "_dtor"), FI, Loc); auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF); DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, FunctionArgList(), Loc, Loc); // Create a scope with an artificial location for the body of this // function. auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF); DtorCGF.emitDestroy(Address(Addr, CGM.getContext().getDeclAlign(VD)), ASTTy, DtorCGF.getDestroyer(ASTTy.isDestructedType()), DtorCGF.needsEHCleanup(ASTTy.isDestructedType())); DtorCGF.FinishFunction(); Dtor = Fn; ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy); CGM.addUsedGlobal(cast(Dtor)); } else { Dtor = new llvm::GlobalVariable( CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_dtor")); ID = Dtor; } // Register the information for the entry associated with the destructor. Out.clear(); OffloadEntriesInfoManager.registerTargetRegionEntryInfo( DeviceID, FileID, Twine(Buffer, "_dtor").toStringRef(Out), Line, Dtor, ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryDtor); } return CGM.getLangOpts().OpenMPIsDevice; } Address CGOpenMPRuntime::getAddrOfArtificialThreadPrivate(CodeGenFunction &CGF, QualType VarType, StringRef Name) { std::string Suffix = getName({"artificial", ""}); llvm::Type *VarLVType = CGF.ConvertTypeForMem(VarType); llvm::Value *GAddr = getOrCreateInternalVariable(VarLVType, Twine(Name).concat(Suffix)); if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPUseTLS && CGM.getTarget().isTLSSupported()) { cast(GAddr)->setThreadLocal(/*Val=*/true); return Address(GAddr, CGM.getContext().getTypeAlignInChars(VarType)); } std::string CacheSuffix = getName({"cache", ""}); llvm::Value *Args[] = { emitUpdateLocation(CGF, SourceLocation()), getThreadID(CGF, SourceLocation()), CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(GAddr, CGM.VoidPtrTy), CGF.Builder.CreateIntCast(CGF.getTypeSize(VarType), CGM.SizeTy, /*isSigned=*/false), getOrCreateInternalVariable( CGM.VoidPtrPtrTy, Twine(Name).concat(Suffix).concat(CacheSuffix))}; return Address( CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_threadprivate_cached), Args), VarLVType->getPointerTo(/*AddrSpace=*/0)), CGM.getContext().getTypeAlignInChars(VarType)); } void CGOpenMPRuntime::emitIfClause(CodeGenFunction &CGF, const Expr *Cond, const RegionCodeGenTy &ThenGen, const RegionCodeGenTy &ElseGen) { CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange()); // If the condition constant folds and can be elided, try to avoid emitting // the condition and the dead arm of the if/else. bool CondConstant; if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) { if (CondConstant) ThenGen(CGF); else ElseGen(CGF); return; } // Otherwise, the condition did not fold, or we couldn't elide it. Just // emit the conditional branch. llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("omp_if.then"); llvm::BasicBlock *ElseBlock = CGF.createBasicBlock("omp_if.else"); llvm::BasicBlock *ContBlock = CGF.createBasicBlock("omp_if.end"); CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0); // Emit the 'then' code. CGF.EmitBlock(ThenBlock); ThenGen(CGF); CGF.EmitBranch(ContBlock); // Emit the 'else' code if present. // There is no need to emit line number for unconditional branch. (void)ApplyDebugLocation::CreateEmpty(CGF); CGF.EmitBlock(ElseBlock); ElseGen(CGF); // There is no need to emit line number for unconditional branch. (void)ApplyDebugLocation::CreateEmpty(CGF); CGF.EmitBranch(ContBlock); // Emit the continuation block for code after the if. CGF.EmitBlock(ContBlock, /*IsFinished=*/true); } void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc, llvm::Function *OutlinedFn, ArrayRef CapturedVars, const Expr *IfCond) { if (!CGF.HaveInsertPoint()) return; llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); auto &M = CGM.getModule(); auto &&ThenGen = [&M, OutlinedFn, CapturedVars, RTLoc, this](CodeGenFunction &CGF, PrePostActionTy &) { // Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn); CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime(); llvm::Value *Args[] = { RTLoc, CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())}; llvm::SmallVector RealArgs; RealArgs.append(std::begin(Args), std::end(Args)); RealArgs.append(CapturedVars.begin(), CapturedVars.end()); llvm::FunctionCallee RTLFn = OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_fork_call); CGF.EmitRuntimeCall(RTLFn, RealArgs); }; auto &&ElseGen = [&M, OutlinedFn, CapturedVars, RTLoc, Loc, this](CodeGenFunction &CGF, PrePostActionTy &) { CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime(); llvm::Value *ThreadID = RT.getThreadID(CGF, Loc); // Build calls: // __kmpc_serialized_parallel(&Loc, GTid); llvm::Value *Args[] = {RTLoc, ThreadID}; CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( M, OMPRTL___kmpc_serialized_parallel), Args); // OutlinedFn(>id, &zero_bound, CapturedStruct); Address ThreadIDAddr = RT.emitThreadIDAddress(CGF, Loc); Address ZeroAddrBound = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, /*Name=*/".bound.zero.addr"); CGF.InitTempAlloca(ZeroAddrBound, CGF.Builder.getInt32(/*C*/ 0)); llvm::SmallVector OutlinedFnArgs; // ThreadId for serialized parallels is 0. OutlinedFnArgs.push_back(ThreadIDAddr.getPointer()); OutlinedFnArgs.push_back(ZeroAddrBound.getPointer()); OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); // Ensure we do not inline the function. This is trivially true for the ones // passed to __kmpc_fork_call but the ones calles in serialized regions // could be inlined. This is not a perfect but it is closer to the invariant // we want, namely, every data environment starts with a new function. // TODO: We should pass the if condition to the runtime function and do the // handling there. Much cleaner code. OutlinedFn->addFnAttr(llvm::Attribute::NoInline); RT.emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); // __kmpc_end_serialized_parallel(&Loc, GTid); llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID}; CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( M, OMPRTL___kmpc_end_serialized_parallel), EndArgs); }; if (IfCond) { emitIfClause(CGF, IfCond, ThenGen, ElseGen); } else { RegionCodeGenTy ThenRCG(ThenGen); ThenRCG(CGF); } } // If we're inside an (outlined) parallel region, use the region info's // thread-ID variable (it is passed in a first argument of the outlined function // as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in // regular serial code region, get thread ID by calling kmp_int32 // kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and // return the address of that temp. Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF, SourceLocation Loc) { if (auto *OMPRegionInfo = dyn_cast_or_null(CGF.CapturedStmtInfo)) if (OMPRegionInfo->getThreadIDVariable()) return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress(CGF); llvm::Value *ThreadID = getThreadID(CGF, Loc); QualType Int32Ty = CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true); Address ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp."); CGF.EmitStoreOfScalar(ThreadID, CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty)); return ThreadIDTemp; } llvm::Constant *CGOpenMPRuntime::getOrCreateInternalVariable( llvm::Type *Ty, const llvm::Twine &Name, unsigned AddressSpace) { SmallString<256> Buffer; llvm::raw_svector_ostream Out(Buffer); Out << Name; StringRef RuntimeName = Out.str(); auto &Elem = *InternalVars.try_emplace(RuntimeName, nullptr).first; if (Elem.second) { assert(Elem.second->getType()->getPointerElementType() == Ty && "OMP internal variable has different type than requested"); return &*Elem.second; } return Elem.second = new llvm::GlobalVariable( CGM.getModule(), Ty, /*IsConstant*/ false, llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty), Elem.first(), /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, AddressSpace); } llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) { std::string Prefix = Twine("gomp_critical_user_", CriticalName).str(); std::string Name = getName({Prefix, "var"}); return getOrCreateInternalVariable(KmpCriticalNameTy, Name); } namespace { /// Common pre(post)-action for different OpenMP constructs. class CommonActionTy final : public PrePostActionTy { llvm::FunctionCallee EnterCallee; ArrayRef EnterArgs; llvm::FunctionCallee ExitCallee; ArrayRef ExitArgs; bool Conditional; llvm::BasicBlock *ContBlock = nullptr; public: CommonActionTy(llvm::FunctionCallee EnterCallee, ArrayRef EnterArgs, llvm::FunctionCallee ExitCallee, ArrayRef ExitArgs, bool Conditional = false) : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), ExitArgs(ExitArgs), Conditional(Conditional) {} void Enter(CodeGenFunction &CGF) override { llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); if (Conditional) { llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); ContBlock = CGF.createBasicBlock("omp_if.end"); // Generate the branch (If-stmt) CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); CGF.EmitBlock(ThenBlock); } } void Done(CodeGenFunction &CGF) { // Emit the rest of blocks/branches CGF.EmitBranch(ContBlock); CGF.EmitBlock(ContBlock, true); } void Exit(CodeGenFunction &CGF) override { CGF.EmitRuntimeCall(ExitCallee, ExitArgs); } }; } // anonymous namespace void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF, StringRef CriticalName, const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, const Expr *Hint) { // __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]); // CriticalOpGen(); // __kmpc_end_critical(ident_t *, gtid, Lock); // Prepare arguments and build a call to __kmpc_critical if (!CGF.HaveInsertPoint()) return; llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), getCriticalRegionLock(CriticalName)}; llvm::SmallVector EnterArgs(std::begin(Args), std::end(Args)); if (Hint) { EnterArgs.push_back(CGF.Builder.CreateIntCast( CGF.EmitScalarExpr(Hint), CGM.Int32Ty, /*isSigned=*/false)); } CommonActionTy Action( OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), Hint ? OMPRTL___kmpc_critical_with_hint : OMPRTL___kmpc_critical), EnterArgs, OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), OMPRTL___kmpc_end_critical), Args); CriticalOpGen.setAction(Action); emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen); } void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF, const RegionCodeGenTy &MasterOpGen, SourceLocation Loc) { if (!CGF.HaveInsertPoint()) return; // if(__kmpc_master(ident_t *, gtid)) { // MasterOpGen(); // __kmpc_end_master(ident_t *, gtid); // } // Prepare arguments and build a call to __kmpc_master llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_master), Args, OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_end_master), Args, /*Conditional=*/true); MasterOpGen.setAction(Action); emitInlinedDirective(CGF, OMPD_master, MasterOpGen); Action.Done(CGF); } void CGOpenMPRuntime::emitMaskedRegion(CodeGenFunction &CGF, const RegionCodeGenTy &MaskedOpGen, SourceLocation Loc, const Expr *Filter) { if (!CGF.HaveInsertPoint()) return; // if(__kmpc_masked(ident_t *, gtid, filter)) { // MaskedOpGen(); // __kmpc_end_masked(iden_t *, gtid); // } // Prepare arguments and build a call to __kmpc_masked llvm::Value *FilterVal = Filter ? CGF.EmitScalarExpr(Filter, CGF.Int32Ty) : llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/0); llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), FilterVal}; llvm::Value *ArgsEnd[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_masked), Args, OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_end_masked), ArgsEnd, /*Conditional=*/true); MaskedOpGen.setAction(Action); emitInlinedDirective(CGF, OMPD_masked, MaskedOpGen); Action.Done(CGF); } void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF, SourceLocation Loc) { if (!CGF.HaveInsertPoint()) return; if (CGF.CGM.getLangOpts().OpenMPIRBuilder) { OMPBuilder.createTaskyield(CGF.Builder); } else { // Build call __kmpc_omp_taskyield(loc, thread_id, 0); llvm::Value *Args[] = { emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)}; CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_omp_taskyield), Args); } if (auto *Region = dyn_cast_or_null(CGF.CapturedStmtInfo)) Region->emitUntiedSwitch(CGF); } void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF, const RegionCodeGenTy &TaskgroupOpGen, SourceLocation Loc) { if (!CGF.HaveInsertPoint()) return; // __kmpc_taskgroup(ident_t *, gtid); // TaskgroupOpGen(); // __kmpc_end_taskgroup(ident_t *, gtid); // Prepare arguments and build a call to __kmpc_taskgroup llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_taskgroup), Args, OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_end_taskgroup), Args); TaskgroupOpGen.setAction(Action); emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen); } /// Given an array of pointers to variables, project the address of a /// given variable. static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array, unsigned Index, const VarDecl *Var) { // Pull out the pointer to the variable. Address PtrAddr = CGF.Builder.CreateConstArrayGEP(Array, Index); llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr); Address Addr = Address(Ptr, CGF.getContext().getDeclAlign(Var)); Addr = CGF.Builder.CreateElementBitCast( Addr, CGF.ConvertTypeForMem(Var->getType())); return Addr; } static llvm::Value *emitCopyprivateCopyFunction( CodeGenModule &CGM, llvm::Type *ArgsType, ArrayRef CopyprivateVars, ArrayRef DestExprs, ArrayRef SrcExprs, ArrayRef AssignmentOps, SourceLocation Loc) { ASTContext &C = CGM.getContext(); // void copy_func(void *LHSArg, void *RHSArg); FunctionArgList Args; ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, ImplicitParamDecl::Other); ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, ImplicitParamDecl::Other); Args.push_back(&LHSArg); Args.push_back(&RHSArg); const auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); std::string Name = CGM.getOpenMPRuntime().getName({"omp", "copyprivate", "copy_func"}); auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule()); CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); Fn->setDoesNotRecurse(); CodeGenFunction CGF(CGM); CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); // Dest = (void*[n])(LHSArg); // Src = (void*[n])(RHSArg); Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)), ArgsType), CGF.getPointerAlign()); Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)), ArgsType), CGF.getPointerAlign()); // *(Type0*)Dst[0] = *(Type0*)Src[0]; // *(Type1*)Dst[1] = *(Type1*)Src[1]; // ... // *(Typen*)Dst[n] = *(Typen*)Src[n]; for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) { const auto *DestVar = cast(cast(DestExprs[I])->getDecl()); Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar); const auto *SrcVar = cast(cast(SrcExprs[I])->getDecl()); Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar); const auto *VD = cast(CopyprivateVars[I])->getDecl(); QualType Type = VD->getType(); CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]); } CGF.FinishFunction(); return Fn; } void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF, const RegionCodeGenTy &SingleOpGen, SourceLocation Loc, ArrayRef CopyprivateVars, ArrayRef SrcExprs, ArrayRef DstExprs, ArrayRef AssignmentOps) { if (!CGF.HaveInsertPoint()) return; assert(CopyprivateVars.size() == SrcExprs.size() && CopyprivateVars.size() == DstExprs.size() && CopyprivateVars.size() == AssignmentOps.size()); ASTContext &C = CGM.getContext(); // int32 did_it = 0; // if(__kmpc_single(ident_t *, gtid)) { // SingleOpGen(); // __kmpc_end_single(ident_t *, gtid); // did_it = 1; // } // call __kmpc_copyprivate(ident_t *, gtid, , , // , did_it); Address DidIt = Address::invalid(); if (!CopyprivateVars.empty()) { // int32 did_it = 0; QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it"); CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt); } // Prepare arguments and build a call to __kmpc_single llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_single), Args, OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_end_single), Args, /*Conditional=*/true); SingleOpGen.setAction(Action); emitInlinedDirective(CGF, OMPD_single, SingleOpGen); if (DidIt.isValid()) { // did_it = 1; CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt); } Action.Done(CGF); // call __kmpc_copyprivate(ident_t *, gtid, , , // , did_it); if (DidIt.isValid()) { llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size()); QualType CopyprivateArrayTy = C.getConstantArrayType( C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0); // Create a list of all private variables for copyprivate. Address CopyprivateList = CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list"); for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) { Address Elem = CGF.Builder.CreateConstArrayGEP(CopyprivateList, I); CGF.Builder.CreateStore( CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( CGF.EmitLValue(CopyprivateVars[I]).getPointer(CGF), CGF.VoidPtrTy), Elem); } // Build function that copies private values from single region to all other // threads in the corresponding parallel region. llvm::Value *CpyFn = emitCopyprivateCopyFunction( CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(), CopyprivateVars, SrcExprs, DstExprs, AssignmentOps, Loc); llvm::Value *BufSize = CGF.getTypeSize(CopyprivateArrayTy); Address CL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList, CGF.VoidPtrTy); llvm::Value *DidItVal = CGF.Builder.CreateLoad(DidIt); llvm::Value *Args[] = { emitUpdateLocation(CGF, Loc), // ident_t * getThreadID(CGF, Loc), // i32 BufSize, // size_t CL.getPointer(), // void * CpyFn, // void (*) (void *, void *) DidItVal // i32 did_it }; CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_copyprivate), Args); } } void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF, const RegionCodeGenTy &OrderedOpGen, SourceLocation Loc, bool IsThreads) { if (!CGF.HaveInsertPoint()) return; // __kmpc_ordered(ident_t *, gtid); // OrderedOpGen(); // __kmpc_end_ordered(ident_t *, gtid); // Prepare arguments and build a call to __kmpc_ordered if (IsThreads) { llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_ordered), Args, OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_end_ordered), Args); OrderedOpGen.setAction(Action); emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen); return; } emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen); } unsigned CGOpenMPRuntime::getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind) { unsigned Flags; if (Kind == OMPD_for) Flags = OMP_IDENT_BARRIER_IMPL_FOR; else if (Kind == OMPD_sections) Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS; else if (Kind == OMPD_single) Flags = OMP_IDENT_BARRIER_IMPL_SINGLE; else if (Kind == OMPD_barrier) Flags = OMP_IDENT_BARRIER_EXPL; else Flags = OMP_IDENT_BARRIER_IMPL; return Flags; } void CGOpenMPRuntime::getDefaultScheduleAndChunk( CodeGenFunction &CGF, const OMPLoopDirective &S, OpenMPScheduleClauseKind &ScheduleKind, const Expr *&ChunkExpr) const { // Check if the loop directive is actually a doacross loop directive. In this // case choose static, 1 schedule. if (llvm::any_of( S.getClausesOfKind(), [](const OMPOrderedClause *C) { return C->getNumForLoops(); })) { ScheduleKind = OMPC_SCHEDULE_static; // Chunk size is 1 in this case. llvm::APInt ChunkSize(32, 1); ChunkExpr = IntegerLiteral::Create( CGF.getContext(), ChunkSize, CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), SourceLocation()); } } void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind Kind, bool EmitChecks, bool ForceSimpleCall) { // Check if we should use the OMPBuilder auto *OMPRegionInfo = dyn_cast_or_null(CGF.CapturedStmtInfo); if (CGF.CGM.getLangOpts().OpenMPIRBuilder) { CGF.Builder.restoreIP(OMPBuilder.createBarrier( CGF.Builder, Kind, ForceSimpleCall, EmitChecks)); return; } if (!CGF.HaveInsertPoint()) return; // Build call __kmpc_cancel_barrier(loc, thread_id); // Build call __kmpc_barrier(loc, thread_id); unsigned Flags = getDefaultFlagsForBarriers(Kind); // Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc, // thread_id); llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), getThreadID(CGF, Loc)}; if (OMPRegionInfo) { if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) { llvm::Value *Result = CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), OMPRTL___kmpc_cancel_barrier), Args); if (EmitChecks) { // if (__kmpc_cancel_barrier()) { // exit from construct; // } llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit"); llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue"); llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result); CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB); CGF.EmitBlock(ExitBB); // exit from construct; CodeGenFunction::JumpDest CancelDestination = CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind()); CGF.EmitBranchThroughCleanup(CancelDestination); CGF.EmitBlock(ContBB, /*IsFinished=*/true); } return; } } CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_barrier), Args); } /// Map the OpenMP loop schedule to the runtime enumeration. static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind, bool Chunked, bool Ordered) { switch (ScheduleKind) { case OMPC_SCHEDULE_static: return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked) : (Ordered ? OMP_ord_static : OMP_sch_static); case OMPC_SCHEDULE_dynamic: return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked; case OMPC_SCHEDULE_guided: return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked; case OMPC_SCHEDULE_runtime: return Ordered ? OMP_ord_runtime : OMP_sch_runtime; case OMPC_SCHEDULE_auto: return Ordered ? OMP_ord_auto : OMP_sch_auto; case OMPC_SCHEDULE_unknown: assert(!Chunked && "chunk was specified but schedule kind not known"); return Ordered ? OMP_ord_static : OMP_sch_static; } llvm_unreachable("Unexpected runtime schedule"); } /// Map the OpenMP distribute schedule to the runtime enumeration. static OpenMPSchedType getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) { // only static is allowed for dist_schedule return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static; } bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind, bool Chunked) const { OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false); return Schedule == OMP_sch_static; } bool CGOpenMPRuntime::isStaticNonchunked( OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const { OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked); return Schedule == OMP_dist_sch_static; } bool CGOpenMPRuntime::isStaticChunked(OpenMPScheduleClauseKind ScheduleKind, bool Chunked) const { OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false); return Schedule == OMP_sch_static_chunked; } bool CGOpenMPRuntime::isStaticChunked( OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const { OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked); return Schedule == OMP_dist_sch_static_chunked; } bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const { OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false); assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here"); return Schedule != OMP_sch_static; } static int addMonoNonMonoModifier(CodeGenModule &CGM, OpenMPSchedType Schedule, OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2) { int Modifier = 0; switch (M1) { case OMPC_SCHEDULE_MODIFIER_monotonic: Modifier = OMP_sch_modifier_monotonic; break; case OMPC_SCHEDULE_MODIFIER_nonmonotonic: Modifier = OMP_sch_modifier_nonmonotonic; break; case OMPC_SCHEDULE_MODIFIER_simd: if (Schedule == OMP_sch_static_chunked) Schedule = OMP_sch_static_balanced_chunked; break; case OMPC_SCHEDULE_MODIFIER_last: case OMPC_SCHEDULE_MODIFIER_unknown: break; } switch (M2) { case OMPC_SCHEDULE_MODIFIER_monotonic: Modifier = OMP_sch_modifier_monotonic; break; case OMPC_SCHEDULE_MODIFIER_nonmonotonic: Modifier = OMP_sch_modifier_nonmonotonic; break; case OMPC_SCHEDULE_MODIFIER_simd: if (Schedule == OMP_sch_static_chunked) Schedule = OMP_sch_static_balanced_chunked; break; case OMPC_SCHEDULE_MODIFIER_last: case OMPC_SCHEDULE_MODIFIER_unknown: break; } // OpenMP 5.0, 2.9.2 Worksharing-Loop Construct, Desription. // If the static schedule kind is specified or if the ordered clause is // specified, and if the nonmonotonic modifier is not specified, the effect is // as if the monotonic modifier is specified. Otherwise, unless the monotonic // modifier is specified, the effect is as if the nonmonotonic modifier is // specified. if (CGM.getLangOpts().OpenMP >= 50 && Modifier == 0) { if (!(Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static || Schedule == OMP_sch_static_balanced_chunked || Schedule == OMP_ord_static_chunked || Schedule == OMP_ord_static || Schedule == OMP_dist_sch_static_chunked || Schedule == OMP_dist_sch_static)) Modifier = OMP_sch_modifier_nonmonotonic; } return Schedule | Modifier; } void CGOpenMPRuntime::emitForDispatchInit( CodeGenFunction &CGF, SourceLocation Loc, const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned, bool Ordered, const DispatchRTInput &DispatchValues) { if (!CGF.HaveInsertPoint()) return; OpenMPSchedType Schedule = getRuntimeSchedule( ScheduleKind.Schedule, DispatchValues.Chunk != nullptr, Ordered); assert(Ordered || (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked && Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked && Schedule != OMP_sch_static_balanced_chunked)); // Call __kmpc_dispatch_init( // ident_t *loc, kmp_int32 tid, kmp_int32 schedule, // kmp_int[32|64] lower, kmp_int[32|64] upper, // kmp_int[32|64] stride, kmp_int[32|64] chunk); // If the Chunk was not specified in the clause - use default value 1. llvm::Value *Chunk = DispatchValues.Chunk ? DispatchValues.Chunk : CGF.Builder.getIntN(IVSize, 1); llvm::Value *Args[] = { emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), CGF.Builder.getInt32(addMonoNonMonoModifier( CGM, Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type DispatchValues.LB, // Lower DispatchValues.UB, // Upper CGF.Builder.getIntN(IVSize, 1), // Stride Chunk // Chunk }; CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args); } static void emitForStaticInitCall( CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId, llvm::FunctionCallee ForStaticInitFunction, OpenMPSchedType Schedule, OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2, const CGOpenMPRuntime::StaticRTInput &Values) { if (!CGF.HaveInsertPoint()) return; assert(!Values.Ordered); assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static_balanced_chunked || Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked || Schedule == OMP_dist_sch_static || Schedule == OMP_dist_sch_static_chunked); // Call __kmpc_for_static_init( // ident_t *loc, kmp_int32 tid, kmp_int32 schedtype, // kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower, // kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride, // kmp_int[32|64] incr, kmp_int[32|64] chunk); llvm::Value *Chunk = Values.Chunk; if (Chunk == nullptr) { assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static || Schedule == OMP_dist_sch_static) && "expected static non-chunked schedule"); // If the Chunk was not specified in the clause - use default value 1. Chunk = CGF.Builder.getIntN(Values.IVSize, 1); } else { assert((Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static_balanced_chunked || Schedule == OMP_ord_static_chunked || Schedule == OMP_dist_sch_static_chunked) && "expected static chunked schedule"); } llvm::Value *Args[] = { UpdateLocation, ThreadId, CGF.Builder.getInt32(addMonoNonMonoModifier(CGF.CGM, Schedule, M1, M2)), // Schedule type Values.IL.getPointer(), // &isLastIter Values.LB.getPointer(), // &LB Values.UB.getPointer(), // &UB Values.ST.getPointer(), // &Stride CGF.Builder.getIntN(Values.IVSize, 1), // Incr Chunk // Chunk }; CGF.EmitRuntimeCall(ForStaticInitFunction, Args); } void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind DKind, const OpenMPScheduleTy &ScheduleKind, const StaticRTInput &Values) { OpenMPSchedType ScheduleNum = getRuntimeSchedule( ScheduleKind.Schedule, Values.Chunk != nullptr, Values.Ordered); assert(isOpenMPWorksharingDirective(DKind) && "Expected loop-based or sections-based directive."); llvm::Value *UpdatedLocation = emitUpdateLocation(CGF, Loc, isOpenMPLoopDirective(DKind) ? OMP_IDENT_WORK_LOOP : OMP_IDENT_WORK_SECTIONS); llvm::Value *ThreadId = getThreadID(CGF, Loc); llvm::FunctionCallee StaticInitFunction = createForStaticInitFunction(Values.IVSize, Values.IVSigned); auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc); emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction, ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, Values); } void CGOpenMPRuntime::emitDistributeStaticInit( CodeGenFunction &CGF, SourceLocation Loc, OpenMPDistScheduleClauseKind SchedKind, const CGOpenMPRuntime::StaticRTInput &Values) { OpenMPSchedType ScheduleNum = getRuntimeSchedule(SchedKind, Values.Chunk != nullptr); llvm::Value *UpdatedLocation = emitUpdateLocation(CGF, Loc, OMP_IDENT_WORK_DISTRIBUTE); llvm::Value *ThreadId = getThreadID(CGF, Loc); llvm::FunctionCallee StaticInitFunction = createForStaticInitFunction(Values.IVSize, Values.IVSigned); emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction, ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown, OMPC_SCHEDULE_MODIFIER_unknown, Values); } void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind DKind) { if (!CGF.HaveInsertPoint()) return; // Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid); llvm::Value *Args[] = { emitUpdateLocation(CGF, Loc, isOpenMPDistributeDirective(DKind) ? OMP_IDENT_WORK_DISTRIBUTE : isOpenMPLoopDirective(DKind) ? OMP_IDENT_WORK_LOOP : OMP_IDENT_WORK_SECTIONS), getThreadID(CGF, Loc)}; auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc); CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_for_static_fini), Args); } void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF, SourceLocation Loc, unsigned IVSize, bool IVSigned) { if (!CGF.HaveInsertPoint()) return; // Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid); llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args); } llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF, SourceLocation Loc, unsigned IVSize, bool IVSigned, Address IL, Address LB, Address UB, Address ST) { // Call __kmpc_dispatch_next( // ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter, // kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper, // kmp_int[32|64] *p_stride); llvm::Value *Args[] = { emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), IL.getPointer(), // &isLastIter LB.getPointer(), // &Lower UB.getPointer(), // &Upper ST.getPointer() // &Stride }; llvm::Value *Call = CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args); return CGF.EmitScalarConversion( Call, CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/1), CGF.getContext().BoolTy, Loc); } void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF, llvm::Value *NumThreads, SourceLocation Loc) { if (!CGF.HaveInsertPoint()) return; // Build call __kmpc_push_num_threads(&loc, global_tid, num_threads) llvm::Value *Args[] = { emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)}; CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_push_num_threads), Args); } void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF, ProcBindKind ProcBind, SourceLocation Loc) { if (!CGF.HaveInsertPoint()) return; assert(ProcBind != OMP_PROC_BIND_unknown && "Unsupported proc_bind value."); // Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind) llvm::Value *Args[] = { emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), llvm::ConstantInt::get(CGM.IntTy, unsigned(ProcBind), /*isSigned=*/true)}; CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_push_proc_bind), Args); } void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef, SourceLocation Loc, llvm::AtomicOrdering AO) { if (CGF.CGM.getLangOpts().OpenMPIRBuilder) { OMPBuilder.createFlush(CGF.Builder); } else { if (!CGF.HaveInsertPoint()) return; // Build call void __kmpc_flush(ident_t *loc) CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_flush), emitUpdateLocation(CGF, Loc)); } } namespace { /// Indexes of fields for type kmp_task_t. enum KmpTaskTFields { /// List of shared variables. KmpTaskTShareds, /// Task routine. KmpTaskTRoutine, /// Partition id for the untied tasks. KmpTaskTPartId, /// Function with call of destructors for private variables. Data1, /// Task priority. Data2, /// (Taskloops only) Lower bound. KmpTaskTLowerBound, /// (Taskloops only) Upper bound. KmpTaskTUpperBound, /// (Taskloops only) Stride. KmpTaskTStride, /// (Taskloops only) Is last iteration flag. KmpTaskTLastIter, /// (Taskloops only) Reduction data. KmpTaskTReductions, }; } // anonymous namespace bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::empty() const { return OffloadEntriesTargetRegion.empty() && OffloadEntriesDeviceGlobalVar.empty(); } /// Initialize target region entry. void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: initializeTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID, StringRef ParentName, unsigned LineNum, unsigned Order) { assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is " "only required for the device " "code generation."); OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr, OMPTargetRegionEntryTargetRegion); ++OffloadingEntriesNum; } void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: registerTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID, StringRef ParentName, unsigned LineNum, llvm::Constant *Addr, llvm::Constant *ID, OMPTargetRegionEntryKind Flags) { // If we are emitting code for a target, the entry is already initialized, // only has to be registered. if (CGM.getLangOpts().OpenMPIsDevice) { // This could happen if the device compilation is invoked standalone. if (!hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum)) return; auto &Entry = OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum]; Entry.setAddress(Addr); Entry.setID(ID); Entry.setFlags(Flags); } else { if (Flags == OffloadEntriesInfoManagerTy::OMPTargetRegionEntryTargetRegion && hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum, /*IgnoreAddressId*/ true)) return; assert(!hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum) && "Target region entry already registered!"); OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum, Addr, ID, Flags); OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = Entry; ++OffloadingEntriesNum; } } bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::hasTargetRegionEntryInfo( unsigned DeviceID, unsigned FileID, StringRef ParentName, unsigned LineNum, bool IgnoreAddressId) const { auto PerDevice = OffloadEntriesTargetRegion.find(DeviceID); if (PerDevice == OffloadEntriesTargetRegion.end()) return false; auto PerFile = PerDevice->second.find(FileID); if (PerFile == PerDevice->second.end()) return false; auto PerParentName = PerFile->second.find(ParentName); if (PerParentName == PerFile->second.end()) return false; auto PerLine = PerParentName->second.find(LineNum); if (PerLine == PerParentName->second.end()) return false; // Fail if this entry is already registered. if (!IgnoreAddressId && (PerLine->second.getAddress() || PerLine->second.getID())) return false; return true; } void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::actOnTargetRegionEntriesInfo( const OffloadTargetRegionEntryInfoActTy &Action) { // Scan all target region entries and perform the provided action. for (const auto &D : OffloadEntriesTargetRegion) for (const auto &F : D.second) for (const auto &P : F.second) for (const auto &L : P.second) Action(D.first, F.first, P.first(), L.first, L.second); } void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: initializeDeviceGlobalVarEntryInfo(StringRef Name, OMPTargetGlobalVarEntryKind Flags, unsigned Order) { assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is " "only required for the device " "code generation."); OffloadEntriesDeviceGlobalVar.try_emplace(Name, Order, Flags); ++OffloadingEntriesNum; } void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: registerDeviceGlobalVarEntryInfo(StringRef VarName, llvm::Constant *Addr, CharUnits VarSize, OMPTargetGlobalVarEntryKind Flags, llvm::GlobalValue::LinkageTypes Linkage) { if (CGM.getLangOpts().OpenMPIsDevice) { // This could happen if the device compilation is invoked standalone. if (!hasDeviceGlobalVarEntryInfo(VarName)) return; auto &Entry = OffloadEntriesDeviceGlobalVar[VarName]; if (Entry.getAddress() && hasDeviceGlobalVarEntryInfo(VarName)) { if (Entry.getVarSize().isZero()) { Entry.setVarSize(VarSize); Entry.setLinkage(Linkage); } return; } Entry.setVarSize(VarSize); Entry.setLinkage(Linkage); Entry.setAddress(Addr); } else { if (hasDeviceGlobalVarEntryInfo(VarName)) { auto &Entry = OffloadEntriesDeviceGlobalVar[VarName]; assert(Entry.isValid() && Entry.getFlags() == Flags && "Entry not initialized!"); if (Entry.getVarSize().isZero()) { Entry.setVarSize(VarSize); Entry.setLinkage(Linkage); } return; } OffloadEntriesDeviceGlobalVar.try_emplace( VarName, OffloadingEntriesNum, Addr, VarSize, Flags, Linkage); ++OffloadingEntriesNum; } } void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: actOnDeviceGlobalVarEntriesInfo( const OffloadDeviceGlobalVarEntryInfoActTy &Action) { // Scan all target region entries and perform the provided action. for (const auto &E : OffloadEntriesDeviceGlobalVar) Action(E.getKey(), E.getValue()); } void CGOpenMPRuntime::createOffloadEntry( llvm::Constant *ID, llvm::Constant *Addr, uint64_t Size, int32_t Flags, llvm::GlobalValue::LinkageTypes Linkage) { StringRef Name = Addr->getName(); llvm::Module &M = CGM.getModule(); llvm::LLVMContext &C = M.getContext(); // Create constant string with the name. llvm::Constant *StrPtrInit = llvm::ConstantDataArray::getString(C, Name); std::string StringName = getName({"omp_offloading", "entry_name"}); auto *Str = new llvm::GlobalVariable( M, StrPtrInit->getType(), /*isConstant=*/true, llvm::GlobalValue::InternalLinkage, StrPtrInit, StringName); Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); llvm::Constant *Data[] = { llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(ID, CGM.VoidPtrTy), llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(Str, CGM.Int8PtrTy), llvm::ConstantInt::get(CGM.SizeTy, Size), llvm::ConstantInt::get(CGM.Int32Ty, Flags), llvm::ConstantInt::get(CGM.Int32Ty, 0)}; std::string EntryName = getName({"omp_offloading", "entry", ""}); llvm::GlobalVariable *Entry = createGlobalStruct( CGM, getTgtOffloadEntryQTy(), /*IsConstant=*/true, Data, Twine(EntryName).concat(Name), llvm::GlobalValue::WeakAnyLinkage); // The entry has to be created in the section the linker expects it to be. Entry->setSection("omp_offloading_entries"); } void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() { // Emit the offloading entries and metadata so that the device codegen side // can easily figure out what to emit. The produced metadata looks like // this: // // !omp_offload.info = !{!1, ...} // // Right now we only generate metadata for function that contain target // regions. // If we are in simd mode or there are no entries, we don't need to do // anything. if (CGM.getLangOpts().OpenMPSimd || OffloadEntriesInfoManager.empty()) return; llvm::Module &M = CGM.getModule(); llvm::LLVMContext &C = M.getContext(); SmallVector, 16> OrderedEntries(OffloadEntriesInfoManager.size()); llvm::SmallVector ParentFunctions( OffloadEntriesInfoManager.size()); // Auxiliary methods to create metadata values and strings. auto &&GetMDInt = [this](unsigned V) { return llvm::ConstantAsMetadata::get( llvm::ConstantInt::get(CGM.Int32Ty, V)); }; auto &&GetMDString = [&C](StringRef V) { return llvm::MDString::get(C, V); }; // Create the offloading info metadata node. llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info"); // Create function that emits metadata for each target region entry; auto &&TargetRegionMetadataEmitter = [this, &C, MD, &OrderedEntries, &ParentFunctions, &GetMDInt, &GetMDString]( unsigned DeviceID, unsigned FileID, StringRef ParentName, unsigned Line, const OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion &E) { // Generate metadata for target regions. Each entry of this metadata // contains: // - Entry 0 -> Kind of this type of metadata (0). // - Entry 1 -> Device ID of the file where the entry was identified. // - Entry 2 -> File ID of the file where the entry was identified. // - Entry 3 -> Mangled name of the function where the entry was // identified. // - Entry 4 -> Line in the file where the entry was identified. // - Entry 5 -> Order the entry was created. // The first element of the metadata node is the kind. llvm::Metadata *Ops[] = {GetMDInt(E.getKind()), GetMDInt(DeviceID), GetMDInt(FileID), GetMDString(ParentName), GetMDInt(Line), GetMDInt(E.getOrder())}; SourceLocation Loc; for (auto I = CGM.getContext().getSourceManager().fileinfo_begin(), E = CGM.getContext().getSourceManager().fileinfo_end(); I != E; ++I) { if (I->getFirst()->getUniqueID().getDevice() == DeviceID && I->getFirst()->getUniqueID().getFile() == FileID) { Loc = CGM.getContext().getSourceManager().translateFileLineCol( I->getFirst(), Line, 1); break; } } // Save this entry in the right position of the ordered entries array. OrderedEntries[E.getOrder()] = std::make_tuple(&E, Loc, ParentName); ParentFunctions[E.getOrder()] = ParentName; // Add metadata to the named metadata node. MD->addOperand(llvm::MDNode::get(C, Ops)); }; OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo( TargetRegionMetadataEmitter); // Create function that emits metadata for each device global variable entry; auto &&DeviceGlobalVarMetadataEmitter = [&C, &OrderedEntries, &GetMDInt, &GetMDString, MD](StringRef MangledName, const OffloadEntriesInfoManagerTy::OffloadEntryInfoDeviceGlobalVar &E) { // Generate metadata for global variables. Each entry of this metadata // contains: // - Entry 0 -> Kind of this type of metadata (1). // - Entry 1 -> Mangled name of the variable. // - Entry 2 -> Declare target kind. // - Entry 3 -> Order the entry was created. // The first element of the metadata node is the kind. llvm::Metadata *Ops[] = { GetMDInt(E.getKind()), GetMDString(MangledName), GetMDInt(E.getFlags()), GetMDInt(E.getOrder())}; // Save this entry in the right position of the ordered entries array. OrderedEntries[E.getOrder()] = std::make_tuple(&E, SourceLocation(), MangledName); // Add metadata to the named metadata node. MD->addOperand(llvm::MDNode::get(C, Ops)); }; OffloadEntriesInfoManager.actOnDeviceGlobalVarEntriesInfo( DeviceGlobalVarMetadataEmitter); for (const auto &E : OrderedEntries) { assert(std::get<0>(E) && "All ordered entries must exist!"); if (const auto *CE = dyn_cast( std::get<0>(E))) { if (!CE->getID() || !CE->getAddress()) { // Do not blame the entry if the parent funtion is not emitted. StringRef FnName = ParentFunctions[CE->getOrder()]; if (!CGM.GetGlobalValue(FnName)) continue; unsigned DiagID = CGM.getDiags().getCustomDiagID( DiagnosticsEngine::Error, "Offloading entry for target region in %0 is incorrect: either the " "address or the ID is invalid."); CGM.getDiags().Report(std::get<1>(E), DiagID) << FnName; continue; } createOffloadEntry(CE->getID(), CE->getAddress(), /*Size=*/0, CE->getFlags(), llvm::GlobalValue::WeakAnyLinkage); } else if (const auto *CE = dyn_cast( std::get<0>(E))) { OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags = static_cast( CE->getFlags()); switch (Flags) { case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo: { if (CGM.getLangOpts().OpenMPIsDevice && CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()) continue; if (!CE->getAddress()) { unsigned DiagID = CGM.getDiags().getCustomDiagID( DiagnosticsEngine::Error, "Offloading entry for declare target " "variable %0 is incorrect: the " "address is invalid."); CGM.getDiags().Report(std::get<1>(E), DiagID) << std::get<2>(E); continue; } // The vaiable has no definition - no need to add the entry. if (CE->getVarSize().isZero()) continue; break; } case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink: assert(((CGM.getLangOpts().OpenMPIsDevice && !CE->getAddress()) || (!CGM.getLangOpts().OpenMPIsDevice && CE->getAddress())) && "Declaret target link address is set."); if (CGM.getLangOpts().OpenMPIsDevice) continue; if (!CE->getAddress()) { unsigned DiagID = CGM.getDiags().getCustomDiagID( DiagnosticsEngine::Error, "Offloading entry for declare target variable is incorrect: the " "address is invalid."); CGM.getDiags().Report(DiagID); continue; } break; } createOffloadEntry(CE->getAddress(), CE->getAddress(), CE->getVarSize().getQuantity(), Flags, CE->getLinkage()); } else { llvm_unreachable("Unsupported entry kind."); } } } /// Loads all the offload entries information from the host IR /// metadata. void CGOpenMPRuntime::loadOffloadInfoMetadata() { // If we are in target mode, load the metadata from the host IR. This code has // to match the metadaata creation in createOffloadEntriesAndInfoMetadata(). if (!CGM.getLangOpts().OpenMPIsDevice) return; if (CGM.getLangOpts().OMPHostIRFile.empty()) return; auto Buf = llvm::MemoryBuffer::getFile(CGM.getLangOpts().OMPHostIRFile); if (auto EC = Buf.getError()) { CGM.getDiags().Report(diag::err_cannot_open_file) << CGM.getLangOpts().OMPHostIRFile << EC.message(); return; } llvm::LLVMContext C; auto ME = expectedToErrorOrAndEmitErrors( C, llvm::parseBitcodeFile(Buf.get()->getMemBufferRef(), C)); if (auto EC = ME.getError()) { unsigned DiagID = CGM.getDiags().getCustomDiagID( DiagnosticsEngine::Error, "Unable to parse host IR file '%0':'%1'"); CGM.getDiags().Report(DiagID) << CGM.getLangOpts().OMPHostIRFile << EC.message(); return; } llvm::NamedMDNode *MD = ME.get()->getNamedMetadata("omp_offload.info"); if (!MD) return; for (llvm::MDNode *MN : MD->operands()) { auto &&GetMDInt = [MN](unsigned Idx) { auto *V = cast(MN->getOperand(Idx)); return cast(V->getValue())->getZExtValue(); }; auto &&GetMDString = [MN](unsigned Idx) { auto *V = cast(MN->getOperand(Idx)); return V->getString(); }; switch (GetMDInt(0)) { default: llvm_unreachable("Unexpected metadata!"); break; case OffloadEntriesInfoManagerTy::OffloadEntryInfo:: OffloadingEntryInfoTargetRegion: OffloadEntriesInfoManager.initializeTargetRegionEntryInfo( /*DeviceID=*/GetMDInt(1), /*FileID=*/GetMDInt(2), /*ParentName=*/GetMDString(3), /*Line=*/GetMDInt(4), /*Order=*/GetMDInt(5)); break; case OffloadEntriesInfoManagerTy::OffloadEntryInfo:: OffloadingEntryInfoDeviceGlobalVar: OffloadEntriesInfoManager.initializeDeviceGlobalVarEntryInfo( /*MangledName=*/GetMDString(1), static_cast( /*Flags=*/GetMDInt(2)), /*Order=*/GetMDInt(3)); break; } } } void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) { if (!KmpRoutineEntryPtrTy) { // Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type. ASTContext &C = CGM.getContext(); QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy}; FunctionProtoType::ExtProtoInfo EPI; KmpRoutineEntryPtrQTy = C.getPointerType( C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI)); KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy); } } QualType CGOpenMPRuntime::getTgtOffloadEntryQTy() { // Make sure the type of the entry is already created. This is the type we // have to create: // struct __tgt_offload_entry{ // void *addr; // Pointer to the offload entry info. // // (function or global) // char *name; // Name of the function or global. // size_t size; // Size of the entry info (0 if it a function). // int32_t flags; // Flags associated with the entry, e.g. 'link'. // int32_t reserved; // Reserved, to use by the runtime library. // }; if (TgtOffloadEntryQTy.isNull()) { ASTContext &C = CGM.getContext(); RecordDecl *RD = C.buildImplicitRecord("__tgt_offload_entry"); RD->startDefinition(); addFieldToRecordDecl(C, RD, C.VoidPtrTy); addFieldToRecordDecl(C, RD, C.getPointerType(C.CharTy)); addFieldToRecordDecl(C, RD, C.getSizeType()); addFieldToRecordDecl( C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true)); addFieldToRecordDecl( C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true)); RD->completeDefinition(); RD->addAttr(PackedAttr::CreateImplicit(C)); TgtOffloadEntryQTy = C.getRecordType(RD); } return TgtOffloadEntryQTy; } namespace { struct PrivateHelpersTy { PrivateHelpersTy(const Expr *OriginalRef, const VarDecl *Original, const VarDecl *PrivateCopy, const VarDecl *PrivateElemInit) : OriginalRef(OriginalRef), Original(Original), PrivateCopy(PrivateCopy), PrivateElemInit(PrivateElemInit) {} PrivateHelpersTy(const VarDecl *Original) : Original(Original) {} const Expr *OriginalRef = nullptr; const VarDecl *Original = nullptr; const VarDecl *PrivateCopy = nullptr; const VarDecl *PrivateElemInit = nullptr; bool isLocalPrivate() const { return !OriginalRef && !PrivateCopy && !PrivateElemInit; } }; typedef std::pair PrivateDataTy; } // anonymous namespace static bool isAllocatableDecl(const VarDecl *VD) { const VarDecl *CVD = VD->getCanonicalDecl(); if (!CVD->hasAttr()) return false; const auto *AA = CVD->getAttr(); // Use the default allocation. return !((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc || AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) && !AA->getAllocator()); } static RecordDecl * createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef Privates) { if (!Privates.empty()) { ASTContext &C = CGM.getContext(); // Build struct .kmp_privates_t. { // /* private vars */ // }; RecordDecl *RD = C.buildImplicitRecord(".kmp_privates.t"); RD->startDefinition(); for (const auto &Pair : Privates) { const VarDecl *VD = Pair.second.Original; QualType Type = VD->getType().getNonReferenceType(); // If the private variable is a local variable with lvalue ref type, // allocate the pointer instead of the pointee type. if (Pair.second.isLocalPrivate()) { if (VD->getType()->isLValueReferenceType()) Type = C.getPointerType(Type); if (isAllocatableDecl(VD)) Type = C.getPointerType(Type); } FieldDecl *FD = addFieldToRecordDecl(C, RD, Type); if (VD->hasAttrs()) { for (specific_attr_iterator I(VD->getAttrs().begin()), E(VD->getAttrs().end()); I != E; ++I) FD->addAttr(*I); } } RD->completeDefinition(); return RD; } return nullptr; } static RecordDecl * createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind, QualType KmpInt32Ty, QualType KmpRoutineEntryPointerQTy) { ASTContext &C = CGM.getContext(); // Build struct kmp_task_t { // void * shareds; // kmp_routine_entry_t routine; // kmp_int32 part_id; // kmp_cmplrdata_t data1; // kmp_cmplrdata_t data2; // For taskloops additional fields: // kmp_uint64 lb; // kmp_uint64 ub; // kmp_int64 st; // kmp_int32 liter; // void * reductions; // }; RecordDecl *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TTK_Union); UD->startDefinition(); addFieldToRecordDecl(C, UD, KmpInt32Ty); addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy); UD->completeDefinition(); QualType KmpCmplrdataTy = C.getRecordType(UD); RecordDecl *RD = C.buildImplicitRecord("kmp_task_t"); RD->startDefinition(); addFieldToRecordDecl(C, RD, C.VoidPtrTy); addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy); addFieldToRecordDecl(C, RD, KmpInt32Ty); addFieldToRecordDecl(C, RD, KmpCmplrdataTy); addFieldToRecordDecl(C, RD, KmpCmplrdataTy); if (isOpenMPTaskLoopDirective(Kind)) { QualType KmpUInt64Ty = CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0); QualType KmpInt64Ty = CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1); addFieldToRecordDecl(C, RD, KmpUInt64Ty); addFieldToRecordDecl(C, RD, KmpUInt64Ty); addFieldToRecordDecl(C, RD, KmpInt64Ty); addFieldToRecordDecl(C, RD, KmpInt32Ty); addFieldToRecordDecl(C, RD, C.VoidPtrTy); } RD->completeDefinition(); return RD; } static RecordDecl * createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy, ArrayRef Privates) { ASTContext &C = CGM.getContext(); // Build struct kmp_task_t_with_privates { // kmp_task_t task_data; // .kmp_privates_t. privates; // }; RecordDecl *RD = C.buildImplicitRecord("kmp_task_t_with_privates"); RD->startDefinition(); addFieldToRecordDecl(C, RD, KmpTaskTQTy); if (const RecordDecl *PrivateRD = createPrivatesRecordDecl(CGM, Privates)) addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD)); RD->completeDefinition(); return RD; } /// Emit a proxy function which accepts kmp_task_t as the second /// argument. /// \code /// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) { /// TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt, /// For taskloops: /// tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter, /// tt->reductions, tt->shareds); /// return 0; /// } /// \endcode static llvm::Function * emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc, OpenMPDirectiveKind Kind, QualType KmpInt32Ty, QualType KmpTaskTWithPrivatesPtrQTy, QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy, QualType SharedsPtrTy, llvm::Function *TaskFunction, llvm::Value *TaskPrivatesMap) { ASTContext &C = CGM.getContext(); FunctionArgList Args; ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty, ImplicitParamDecl::Other); ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpTaskTWithPrivatesPtrQTy.withRestrict(), ImplicitParamDecl::Other); Args.push_back(&GtidArg); Args.push_back(&TaskTypeArg); const auto &TaskEntryFnInfo = CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args); llvm::FunctionType *TaskEntryTy = CGM.getTypes().GetFunctionType(TaskEntryFnInfo); std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_entry", ""}); auto *TaskEntry = llvm::Function::Create( TaskEntryTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule()); CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskEntry, TaskEntryFnInfo); TaskEntry->setDoesNotRecurse(); CodeGenFunction CGF(CGM); CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args, Loc, Loc); // TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map, // tt, // For taskloops: // tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter, // tt->task_data.shareds); llvm::Value *GtidParam = CGF.EmitLoadOfScalar( CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc); LValue TDBase = CGF.EmitLoadOfPointerLValue( CGF.GetAddrOfLocalVar(&TaskTypeArg), KmpTaskTWithPrivatesPtrQTy->castAs()); const auto *KmpTaskTWithPrivatesQTyRD = cast(KmpTaskTWithPrivatesQTy->getAsTagDecl()); LValue Base = CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin()); const auto *KmpTaskTQTyRD = cast(KmpTaskTQTy->getAsTagDecl()); auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId); LValue PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI); llvm::Value *PartidParam = PartIdLVal.getPointer(CGF); auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds); LValue SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI); llvm::Value *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( CGF.EmitLoadOfScalar(SharedsLVal, Loc), CGF.ConvertTypeForMem(SharedsPtrTy)); auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1); llvm::Value *PrivatesParam; if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) { LValue PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI); PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( PrivatesLVal.getPointer(CGF), CGF.VoidPtrTy); } else { PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); } llvm::Value *CommonArgs[] = {GtidParam, PartidParam, PrivatesParam, TaskPrivatesMap, CGF.Builder .CreatePointerBitCastOrAddrSpaceCast( TDBase.getAddress(CGF), CGF.VoidPtrTy) .getPointer()}; SmallVector CallArgs(std::begin(CommonArgs), std::end(CommonArgs)); if (isOpenMPTaskLoopDirective(Kind)) { auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound); LValue LBLVal = CGF.EmitLValueForField(Base, *LBFI); llvm::Value *LBParam = CGF.EmitLoadOfScalar(LBLVal, Loc); auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound); LValue UBLVal = CGF.EmitLValueForField(Base, *UBFI); llvm::Value *UBParam = CGF.EmitLoadOfScalar(UBLVal, Loc); auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride); LValue StLVal = CGF.EmitLValueForField(Base, *StFI); llvm::Value *StParam = CGF.EmitLoadOfScalar(StLVal, Loc); auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter); LValue LILVal = CGF.EmitLValueForField(Base, *LIFI); llvm::Value *LIParam = CGF.EmitLoadOfScalar(LILVal, Loc); auto RFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTReductions); LValue RLVal = CGF.EmitLValueForField(Base, *RFI); llvm::Value *RParam = CGF.EmitLoadOfScalar(RLVal, Loc); CallArgs.push_back(LBParam); CallArgs.push_back(UBParam); CallArgs.push_back(StParam); CallArgs.push_back(LIParam); CallArgs.push_back(RParam); } CallArgs.push_back(SharedsParam); CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskFunction, CallArgs); CGF.EmitStoreThroughLValue(RValue::get(CGF.Builder.getInt32(/*C=*/0)), CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty)); CGF.FinishFunction(); return TaskEntry; } static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM, SourceLocation Loc, QualType KmpInt32Ty, QualType KmpTaskTWithPrivatesPtrQTy, QualType KmpTaskTWithPrivatesQTy) { ASTContext &C = CGM.getContext(); FunctionArgList Args; ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty, ImplicitParamDecl::Other); ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpTaskTWithPrivatesPtrQTy.withRestrict(), ImplicitParamDecl::Other); Args.push_back(&GtidArg); Args.push_back(&TaskTypeArg); const auto &DestructorFnInfo = CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args); llvm::FunctionType *DestructorFnTy = CGM.getTypes().GetFunctionType(DestructorFnInfo); std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_destructor", ""}); auto *DestructorFn = llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule()); CGM.SetInternalFunctionAttributes(GlobalDecl(), DestructorFn, DestructorFnInfo); DestructorFn->setDoesNotRecurse(); CodeGenFunction CGF(CGM); CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo, Args, Loc, Loc); LValue Base = CGF.EmitLoadOfPointerLValue( CGF.GetAddrOfLocalVar(&TaskTypeArg), KmpTaskTWithPrivatesPtrQTy->castAs()); const auto *KmpTaskTWithPrivatesQTyRD = cast(KmpTaskTWithPrivatesQTy->getAsTagDecl()); auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin()); Base = CGF.EmitLValueForField(Base, *FI); for (const auto *Field : cast(FI->getType()->getAsTagDecl())->fields()) { if (QualType::DestructionKind DtorKind = Field->getType().isDestructedType()) { LValue FieldLValue = CGF.EmitLValueForField(Base, Field); CGF.pushDestroy(DtorKind, FieldLValue.getAddress(CGF), Field->getType()); } } CGF.FinishFunction(); return DestructorFn; } /// Emit a privates mapping function for correct handling of private and /// firstprivate variables. /// \code /// void .omp_task_privates_map.(const .privates. *noalias privs, /// **noalias priv1,..., **noalias privn) { /// *priv1 = &.privates.priv1; /// ...; /// *privn = &.privates.privn; /// } /// \endcode static llvm::Value * emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc, const OMPTaskDataTy &Data, QualType PrivatesQTy, ArrayRef Privates) { ASTContext &C = CGM.getContext(); FunctionArgList Args; ImplicitParamDecl TaskPrivatesArg( C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.getPointerType(PrivatesQTy).withConst().withRestrict(), ImplicitParamDecl::Other); Args.push_back(&TaskPrivatesArg); llvm::DenseMap, unsigned> PrivateVarsPos; unsigned Counter = 1; for (const Expr *E : Data.PrivateVars) { Args.push_back(ImplicitParamDecl::Create( C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.getPointerType(C.getPointerType(E->getType())) .withConst() .withRestrict(), ImplicitParamDecl::Other)); const auto *VD = cast(cast(E)->getDecl()); PrivateVarsPos[VD] = Counter; ++Counter; } for (const Expr *E : Data.FirstprivateVars) { Args.push_back(ImplicitParamDecl::Create( C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.getPointerType(C.getPointerType(E->getType())) .withConst() .withRestrict(), ImplicitParamDecl::Other)); const auto *VD = cast(cast(E)->getDecl()); PrivateVarsPos[VD] = Counter; ++Counter; } for (const Expr *E : Data.LastprivateVars) { Args.push_back(ImplicitParamDecl::Create( C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.getPointerType(C.getPointerType(E->getType())) .withConst() .withRestrict(), ImplicitParamDecl::Other)); const auto *VD = cast(cast(E)->getDecl()); PrivateVarsPos[VD] = Counter; ++Counter; } for (const VarDecl *VD : Data.PrivateLocals) { QualType Ty = VD->getType().getNonReferenceType(); if (VD->getType()->isLValueReferenceType()) Ty = C.getPointerType(Ty); if (isAllocatableDecl(VD)) Ty = C.getPointerType(Ty); Args.push_back(ImplicitParamDecl::Create( C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.getPointerType(C.getPointerType(Ty)).withConst().withRestrict(), ImplicitParamDecl::Other)); PrivateVarsPos[VD] = Counter; ++Counter; } const auto &TaskPrivatesMapFnInfo = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); llvm::FunctionType *TaskPrivatesMapTy = CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo); std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_privates_map", ""}); auto *TaskPrivatesMap = llvm::Function::Create( TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule()); CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskPrivatesMap, TaskPrivatesMapFnInfo); if (CGM.getLangOpts().Optimize) { TaskPrivatesMap->removeFnAttr(llvm::Attribute::NoInline); TaskPrivatesMap->removeFnAttr(llvm::Attribute::OptimizeNone); TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline); } CodeGenFunction CGF(CGM); CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap, TaskPrivatesMapFnInfo, Args, Loc, Loc); // *privi = &.privates.privi; LValue Base = CGF.EmitLoadOfPointerLValue( CGF.GetAddrOfLocalVar(&TaskPrivatesArg), TaskPrivatesArg.getType()->castAs()); const auto *PrivatesQTyRD = cast(PrivatesQTy->getAsTagDecl()); Counter = 0; for (const FieldDecl *Field : PrivatesQTyRD->fields()) { LValue FieldLVal = CGF.EmitLValueForField(Base, Field); const VarDecl *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]]; LValue RefLVal = CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); LValue RefLoadLVal = CGF.EmitLoadOfPointerLValue( RefLVal.getAddress(CGF), RefLVal.getType()->castAs()); CGF.EmitStoreOfScalar(FieldLVal.getPointer(CGF), RefLoadLVal); ++Counter; } CGF.FinishFunction(); return TaskPrivatesMap; } /// Emit initialization for private variables in task-based directives. static void emitPrivatesInit(CodeGenFunction &CGF, const OMPExecutableDirective &D, Address KmpTaskSharedsPtr, LValue TDBase, const RecordDecl *KmpTaskTWithPrivatesQTyRD, QualType SharedsTy, QualType SharedsPtrTy, const OMPTaskDataTy &Data, ArrayRef Privates, bool ForDup) { ASTContext &C = CGF.getContext(); auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin()); LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI); OpenMPDirectiveKind Kind = isOpenMPTaskLoopDirective(D.getDirectiveKind()) ? OMPD_taskloop : OMPD_task; const CapturedStmt &CS = *D.getCapturedStmt(Kind); CodeGenFunction::CGCapturedStmtInfo CapturesInfo(CS); LValue SrcBase; bool IsTargetTask = isOpenMPTargetDataManagementDirective(D.getDirectiveKind()) || isOpenMPTargetExecutionDirective(D.getDirectiveKind()); // For target-based directives skip 4 firstprivate arrays BasePointersArray, // PointersArray, SizesArray, and MappersArray. The original variables for // these arrays are not captured and we get their addresses explicitly. if ((!IsTargetTask && !Data.FirstprivateVars.empty() && ForDup) || (IsTargetTask && KmpTaskSharedsPtr.isValid())) { SrcBase = CGF.MakeAddrLValue( CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)), SharedsTy); } FI = cast(FI->getType()->getAsTagDecl())->field_begin(); for (const PrivateDataTy &Pair : Privates) { // Do not initialize private locals. if (Pair.second.isLocalPrivate()) { ++FI; continue; } const VarDecl *VD = Pair.second.PrivateCopy; const Expr *Init = VD->getAnyInitializer(); if (Init && (!ForDup || (isa(Init) && !CGF.isTrivialInitializer(Init)))) { LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI); if (const VarDecl *Elem = Pair.second.PrivateElemInit) { const VarDecl *OriginalVD = Pair.second.Original; // Check if the variable is the target-based BasePointersArray, // PointersArray, SizesArray, or MappersArray. LValue SharedRefLValue; QualType Type = PrivateLValue.getType(); const FieldDecl *SharedField = CapturesInfo.lookup(OriginalVD); if (IsTargetTask && !SharedField) { assert(isa(OriginalVD) && isa(OriginalVD->getDeclContext()) && cast(OriginalVD->getDeclContext()) ->getNumParams() == 0 && isa( cast(OriginalVD->getDeclContext()) ->getDeclContext()) && "Expected artificial target data variable."); SharedRefLValue = CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(OriginalVD), Type); } else if (ForDup) { SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField); SharedRefLValue = CGF.MakeAddrLValue( Address(SharedRefLValue.getPointer(CGF), C.getDeclAlign(OriginalVD)), SharedRefLValue.getType(), LValueBaseInfo(AlignmentSource::Decl), SharedRefLValue.getTBAAInfo()); } else if (CGF.LambdaCaptureFields.count( Pair.second.Original->getCanonicalDecl()) > 0 || dyn_cast_or_null(CGF.CurCodeDecl)) { SharedRefLValue = CGF.EmitLValue(Pair.second.OriginalRef); } else { // Processing for implicitly captured variables. InlinedOpenMPRegionRAII Region( CGF, [](CodeGenFunction &, PrePostActionTy &) {}, OMPD_unknown, /*HasCancel=*/false, /*NoInheritance=*/true); SharedRefLValue = CGF.EmitLValue(Pair.second.OriginalRef); } if (Type->isArrayType()) { // Initialize firstprivate array. if (!isa(Init) || CGF.isTrivialInitializer(Init)) { // Perform simple memcpy. CGF.EmitAggregateAssign(PrivateLValue, SharedRefLValue, Type); } else { // Initialize firstprivate array using element-by-element // initialization. CGF.EmitOMPAggregateAssign( PrivateLValue.getAddress(CGF), SharedRefLValue.getAddress(CGF), Type, [&CGF, Elem, Init, &CapturesInfo](Address DestElement, Address SrcElement) { // Clean up any temporaries needed by the initialization. CodeGenFunction::OMPPrivateScope InitScope(CGF); InitScope.addPrivate( Elem, [SrcElement]() -> Address { return SrcElement; }); (void)InitScope.Privatize(); // Emit initialization for single element. CodeGenFunction::CGCapturedStmtRAII CapInfoRAII( CGF, &CapturesInfo); CGF.EmitAnyExprToMem(Init, DestElement, Init->getType().getQualifiers(), /*IsInitializer=*/false); }); } } else { CodeGenFunction::OMPPrivateScope InitScope(CGF); InitScope.addPrivate(Elem, [SharedRefLValue, &CGF]() -> Address { return SharedRefLValue.getAddress(CGF); }); (void)InitScope.Privatize(); CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo); CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false); } } else { CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false); } } ++FI; } } /// Check if duplication function is required for taskloops. static bool checkInitIsRequired(CodeGenFunction &CGF, ArrayRef Privates) { bool InitRequired = false; for (const PrivateDataTy &Pair : Privates) { if (Pair.second.isLocalPrivate()) continue; const VarDecl *VD = Pair.second.PrivateCopy; const Expr *Init = VD->getAnyInitializer(); InitRequired = InitRequired || (Init && isa(Init) && !CGF.isTrivialInitializer(Init)); if (InitRequired) break; } return InitRequired; } /// Emit task_dup function (for initialization of /// private/firstprivate/lastprivate vars and last_iter flag) /// \code /// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int /// lastpriv) { /// // setup lastprivate flag /// task_dst->last = lastpriv; /// // could be constructor calls here... /// } /// \endcode static llvm::Value * emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc, const OMPExecutableDirective &D, QualType KmpTaskTWithPrivatesPtrQTy, const RecordDecl *KmpTaskTWithPrivatesQTyRD, const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy, QualType SharedsPtrTy, const OMPTaskDataTy &Data, ArrayRef Privates, bool WithLastIter) { ASTContext &C = CGM.getContext(); FunctionArgList Args; ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpTaskTWithPrivatesPtrQTy, ImplicitParamDecl::Other); ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpTaskTWithPrivatesPtrQTy, ImplicitParamDecl::Other); ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, ImplicitParamDecl::Other); Args.push_back(&DstArg); Args.push_back(&SrcArg); Args.push_back(&LastprivArg); const auto &TaskDupFnInfo = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); llvm::FunctionType *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo); std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_dup", ""}); auto *TaskDup = llvm::Function::Create( TaskDupTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule()); CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskDup, TaskDupFnInfo); TaskDup->setDoesNotRecurse(); CodeGenFunction CGF(CGM); CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args, Loc, Loc); LValue TDBase = CGF.EmitLoadOfPointerLValue( CGF.GetAddrOfLocalVar(&DstArg), KmpTaskTWithPrivatesPtrQTy->castAs()); // task_dst->liter = lastpriv; if (WithLastIter) { auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter); LValue Base = CGF.EmitLValueForField( TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin()); LValue LILVal = CGF.EmitLValueForField(Base, *LIFI); llvm::Value *Lastpriv = CGF.EmitLoadOfScalar( CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc); CGF.EmitStoreOfScalar(Lastpriv, LILVal); } // Emit initial values for private copies (if any). assert(!Privates.empty()); Address KmpTaskSharedsPtr = Address::invalid(); if (!Data.FirstprivateVars.empty()) { LValue TDBase = CGF.EmitLoadOfPointerLValue( CGF.GetAddrOfLocalVar(&SrcArg), KmpTaskTWithPrivatesPtrQTy->castAs()); LValue Base = CGF.EmitLValueForField( TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin()); KmpTaskSharedsPtr = Address( CGF.EmitLoadOfScalar(CGF.EmitLValueForField( Base, *std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds)), Loc), CGM.getNaturalTypeAlignment(SharedsTy)); } emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD, SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true); CGF.FinishFunction(); return TaskDup; } /// Checks if destructor function is required to be generated. /// \return true if cleanups are required, false otherwise. static bool checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD, ArrayRef Privates) { for (const PrivateDataTy &P : Privates) { if (P.second.isLocalPrivate()) continue; QualType Ty = P.second.Original->getType().getNonReferenceType(); if (Ty.isDestructedType()) return true; } return false; } namespace { /// Loop generator for OpenMP iterator expression. class OMPIteratorGeneratorScope final : public CodeGenFunction::OMPPrivateScope { CodeGenFunction &CGF; const OMPIteratorExpr *E = nullptr; SmallVector ContDests; SmallVector ExitDests; OMPIteratorGeneratorScope() = delete; OMPIteratorGeneratorScope(OMPIteratorGeneratorScope &) = delete; public: OMPIteratorGeneratorScope(CodeGenFunction &CGF, const OMPIteratorExpr *E) : CodeGenFunction::OMPPrivateScope(CGF), CGF(CGF), E(E) { if (!E) return; SmallVector Uppers; for (unsigned I = 0, End = E->numOfIterators(); I < End; ++I) { Uppers.push_back(CGF.EmitScalarExpr(E->getHelper(I).Upper)); const auto *VD = cast(E->getIteratorDecl(I)); addPrivate(VD, [&CGF, VD]() { return CGF.CreateMemTemp(VD->getType(), VD->getName()); }); const OMPIteratorHelperData &HelperData = E->getHelper(I); addPrivate(HelperData.CounterVD, [&CGF, &HelperData]() { return CGF.CreateMemTemp(HelperData.CounterVD->getType(), "counter.addr"); }); } Privatize(); for (unsigned I = 0, End = E->numOfIterators(); I < End; ++I) { const OMPIteratorHelperData &HelperData = E->getHelper(I); LValue CLVal = CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(HelperData.CounterVD), HelperData.CounterVD->getType()); // Counter = 0; CGF.EmitStoreOfScalar( llvm::ConstantInt::get(CLVal.getAddress(CGF).getElementType(), 0), CLVal); CodeGenFunction::JumpDest &ContDest = ContDests.emplace_back(CGF.getJumpDestInCurrentScope("iter.cont")); CodeGenFunction::JumpDest &ExitDest = ExitDests.emplace_back(CGF.getJumpDestInCurrentScope("iter.exit")); // N = ; llvm::Value *N = Uppers[I]; // cont: // if (Counter < N) goto body; else goto exit; CGF.EmitBlock(ContDest.getBlock()); auto *CVal = CGF.EmitLoadOfScalar(CLVal, HelperData.CounterVD->getLocation()); llvm::Value *Cmp = HelperData.CounterVD->getType()->isSignedIntegerOrEnumerationType() ? CGF.Builder.CreateICmpSLT(CVal, N) : CGF.Builder.CreateICmpULT(CVal, N); llvm::BasicBlock *BodyBB = CGF.createBasicBlock("iter.body"); CGF.Builder.CreateCondBr(Cmp, BodyBB, ExitDest.getBlock()); // body: CGF.EmitBlock(BodyBB); // Iteri = Begini + Counter * Stepi; CGF.EmitIgnoredExpr(HelperData.Update); } } ~OMPIteratorGeneratorScope() { if (!E) return; for (unsigned I = E->numOfIterators(); I > 0; --I) { // Counter = Counter + 1; const OMPIteratorHelperData &HelperData = E->getHelper(I - 1); CGF.EmitIgnoredExpr(HelperData.CounterUpdate); // goto cont; CGF.EmitBranchThroughCleanup(ContDests[I - 1]); // exit: CGF.EmitBlock(ExitDests[I - 1].getBlock(), /*IsFinished=*/I == 1); } } }; } // namespace static std::pair getPointerAndSize(CodeGenFunction &CGF, const Expr *E) { const auto *OASE = dyn_cast(E); llvm::Value *Addr; if (OASE) { const Expr *Base = OASE->getBase(); Addr = CGF.EmitScalarExpr(Base); } else { Addr = CGF.EmitLValue(E).getPointer(CGF); } llvm::Value *SizeVal; QualType Ty = E->getType(); if (OASE) { SizeVal = CGF.getTypeSize(OASE->getBase()->getType()->getPointeeType()); for (const Expr *SE : OASE->getDimensions()) { llvm::Value *Sz = CGF.EmitScalarExpr(SE); Sz = CGF.EmitScalarConversion( Sz, SE->getType(), CGF.getContext().getSizeType(), SE->getExprLoc()); SizeVal = CGF.Builder.CreateNUWMul(SizeVal, Sz); } } else if (const auto *ASE = dyn_cast(E->IgnoreParenImpCasts())) { LValue UpAddrLVal = CGF.EmitOMPArraySectionExpr(ASE, /*IsLowerBound=*/false); llvm::Value *UpAddr = CGF.Builder.CreateConstGEP1_32(UpAddrLVal.getPointer(CGF), /*Idx0=*/1); llvm::Value *LowIntPtr = CGF.Builder.CreatePtrToInt(Addr, CGF.SizeTy); llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGF.SizeTy); SizeVal = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr); } else { SizeVal = CGF.getTypeSize(Ty); } return std::make_pair(Addr, SizeVal); } /// Builds kmp_depend_info, if it is not built yet, and builds flags type. static void getKmpAffinityType(ASTContext &C, QualType &KmpTaskAffinityInfoTy) { QualType FlagsTy = C.getIntTypeForBitwidth(32, /*Signed=*/false); if (KmpTaskAffinityInfoTy.isNull()) { RecordDecl *KmpAffinityInfoRD = C.buildImplicitRecord("kmp_task_affinity_info_t"); KmpAffinityInfoRD->startDefinition(); addFieldToRecordDecl(C, KmpAffinityInfoRD, C.getIntPtrType()); addFieldToRecordDecl(C, KmpAffinityInfoRD, C.getSizeType()); addFieldToRecordDecl(C, KmpAffinityInfoRD, FlagsTy); KmpAffinityInfoRD->completeDefinition(); KmpTaskAffinityInfoTy = C.getRecordType(KmpAffinityInfoRD); } } CGOpenMPRuntime::TaskResultTy CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc, const OMPExecutableDirective &D, llvm::Function *TaskFunction, QualType SharedsTy, Address Shareds, const OMPTaskDataTy &Data) { ASTContext &C = CGM.getContext(); llvm::SmallVector Privates; // Aggregate privates and sort them by the alignment. const auto *I = Data.PrivateCopies.begin(); for (const Expr *E : Data.PrivateVars) { const auto *VD = cast(cast(E)->getDecl()); Privates.emplace_back( C.getDeclAlign(VD), PrivateHelpersTy(E, VD, cast(cast(*I)->getDecl()), /*PrivateElemInit=*/nullptr)); ++I; } I = Data.FirstprivateCopies.begin(); const auto *IElemInitRef = Data.FirstprivateInits.begin(); for (const Expr *E : Data.FirstprivateVars) { const auto *VD = cast(cast(E)->getDecl()); Privates.emplace_back( C.getDeclAlign(VD), PrivateHelpersTy( E, VD, cast(cast(*I)->getDecl()), cast(cast(*IElemInitRef)->getDecl()))); ++I; ++IElemInitRef; } I = Data.LastprivateCopies.begin(); for (const Expr *E : Data.LastprivateVars) { const auto *VD = cast(cast(E)->getDecl()); Privates.emplace_back( C.getDeclAlign(VD), PrivateHelpersTy(E, VD, cast(cast(*I)->getDecl()), /*PrivateElemInit=*/nullptr)); ++I; } for (const VarDecl *VD : Data.PrivateLocals) { if (isAllocatableDecl(VD)) Privates.emplace_back(CGM.getPointerAlign(), PrivateHelpersTy(VD)); else Privates.emplace_back(C.getDeclAlign(VD), PrivateHelpersTy(VD)); } llvm::stable_sort(Privates, [](const PrivateDataTy &L, const PrivateDataTy &R) { return L.first > R.first; }); QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); // Build type kmp_routine_entry_t (if not built yet). emitKmpRoutineEntryT(KmpInt32Ty); // Build type kmp_task_t (if not built yet). if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) { if (SavedKmpTaskloopTQTy.isNull()) { SavedKmpTaskloopTQTy = C.getRecordType(createKmpTaskTRecordDecl( CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy)); } KmpTaskTQTy = SavedKmpTaskloopTQTy; } else { assert((D.getDirectiveKind() == OMPD_task || isOpenMPTargetExecutionDirective(D.getDirectiveKind()) || isOpenMPTargetDataManagementDirective(D.getDirectiveKind())) && "Expected taskloop, task or target directive"); if (SavedKmpTaskTQTy.isNull()) { SavedKmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl( CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy)); } KmpTaskTQTy = SavedKmpTaskTQTy; } const auto *KmpTaskTQTyRD = cast(KmpTaskTQTy->getAsTagDecl()); // Build particular struct kmp_task_t for the given task. const RecordDecl *KmpTaskTWithPrivatesQTyRD = createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates); QualType KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD); QualType KmpTaskTWithPrivatesPtrQTy = C.getPointerType(KmpTaskTWithPrivatesQTy); llvm::Type *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy); llvm::Type *KmpTaskTWithPrivatesPtrTy = KmpTaskTWithPrivatesTy->getPointerTo(); llvm::Value *KmpTaskTWithPrivatesTySize = CGF.getTypeSize(KmpTaskTWithPrivatesQTy); QualType SharedsPtrTy = C.getPointerType(SharedsTy); // Emit initial values for private copies (if any). llvm::Value *TaskPrivatesMap = nullptr; llvm::Type *TaskPrivatesMapTy = std::next(TaskFunction->arg_begin(), 3)->getType(); if (!Privates.empty()) { auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin()); TaskPrivatesMap = emitTaskPrivateMappingFunction(CGM, Loc, Data, FI->getType(), Privates); TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( TaskPrivatesMap, TaskPrivatesMapTy); } else { TaskPrivatesMap = llvm::ConstantPointerNull::get( cast(TaskPrivatesMapTy)); } // Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid, // kmp_task_t *tt); llvm::Function *TaskEntry = emitProxyTaskFunction( CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction, TaskPrivatesMap); // Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, // kmp_routine_entry_t *task_entry); // Task flags. Format is taken from // https://github.com/llvm/llvm-project/blob/main/openmp/runtime/src/kmp.h, // description of kmp_tasking_flags struct. enum { TiedFlag = 0x1, FinalFlag = 0x2, DestructorsFlag = 0x8, PriorityFlag = 0x20, DetachableFlag = 0x40, }; unsigned Flags = Data.Tied ? TiedFlag : 0; bool NeedsCleanup = false; if (!Privates.empty()) { NeedsCleanup = checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD, Privates); if (NeedsCleanup) Flags = Flags | DestructorsFlag; } if (Data.Priority.getInt()) Flags = Flags | PriorityFlag; if (D.hasClausesOfKind()) Flags = Flags | DetachableFlag; llvm::Value *TaskFlags = Data.Final.getPointer() ? CGF.Builder.CreateSelect(Data.Final.getPointer(), CGF.Builder.getInt32(FinalFlag), CGF.Builder.getInt32(/*C=*/0)) : CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0); TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags)); llvm::Value *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy)); SmallVector AllocArgs = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), TaskFlags, KmpTaskTWithPrivatesTySize, SharedsSize, CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( TaskEntry, KmpRoutineEntryPtrTy)}; llvm::Value *NewTask; if (D.hasClausesOfKind()) { // Check if we have any device clause associated with the directive. const Expr *Device = nullptr; if (auto *C = D.getSingleClause()) Device = C->getDevice(); // Emit device ID if any otherwise use default value. llvm::Value *DeviceID; if (Device) DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), CGF.Int64Ty, /*isSigned=*/true); else DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF); AllocArgs.push_back(DeviceID); NewTask = CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_omp_target_task_alloc), AllocArgs); } else { NewTask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_omp_task_alloc), AllocArgs); } // Emit detach clause initialization. // evt = (typeof(evt))__kmpc_task_allow_completion_event(loc, tid, // task_descriptor); if (const auto *DC = D.getSingleClause()) { const Expr *Evt = DC->getEventHandler()->IgnoreParenImpCasts(); LValue EvtLVal = CGF.EmitLValue(Evt); // Build kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, // int gtid, kmp_task_t *task); llvm::Value *Loc = emitUpdateLocation(CGF, DC->getBeginLoc()); llvm::Value *Tid = getThreadID(CGF, DC->getBeginLoc()); Tid = CGF.Builder.CreateIntCast(Tid, CGF.IntTy, /*isSigned=*/false); llvm::Value *EvtVal = CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_task_allow_completion_event), {Loc, Tid, NewTask}); EvtVal = CGF.EmitScalarConversion(EvtVal, C.VoidPtrTy, Evt->getType(), Evt->getExprLoc()); CGF.EmitStoreOfScalar(EvtVal, EvtLVal); } // Process affinity clauses. if (D.hasClausesOfKind()) { // Process list of affinity data. ASTContext &C = CGM.getContext(); Address AffinitiesArray = Address::invalid(); // Calculate number of elements to form the array of affinity data. llvm::Value *NumOfElements = nullptr; unsigned NumAffinities = 0; for (const auto *C : D.getClausesOfKind()) { if (const Expr *Modifier = C->getModifier()) { const auto *IE = cast(Modifier->IgnoreParenImpCasts()); for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) { llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper); Sz = CGF.Builder.CreateIntCast(Sz, CGF.SizeTy, /*isSigned=*/false); NumOfElements = NumOfElements ? CGF.Builder.CreateNUWMul(NumOfElements, Sz) : Sz; } } else { NumAffinities += C->varlist_size(); } } getKmpAffinityType(CGM.getContext(), KmpTaskAffinityInfoTy); // Fields ids in kmp_task_affinity_info record. enum RTLAffinityInfoFieldsTy { BaseAddr, Len, Flags }; QualType KmpTaskAffinityInfoArrayTy; if (NumOfElements) { NumOfElements = CGF.Builder.CreateNUWAdd( llvm::ConstantInt::get(CGF.SizeTy, NumAffinities), NumOfElements); OpaqueValueExpr OVE( Loc, C.getIntTypeForBitwidth(C.getTypeSize(C.getSizeType()), /*Signed=*/0), VK_RValue); CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, RValue::get(NumOfElements)); KmpTaskAffinityInfoArrayTy = C.getVariableArrayType(KmpTaskAffinityInfoTy, &OVE, ArrayType::Normal, /*IndexTypeQuals=*/0, SourceRange(Loc, Loc)); // Properly emit variable-sized array. auto *PD = ImplicitParamDecl::Create(C, KmpTaskAffinityInfoArrayTy, ImplicitParamDecl::Other); CGF.EmitVarDecl(*PD); AffinitiesArray = CGF.GetAddrOfLocalVar(PD); NumOfElements = CGF.Builder.CreateIntCast(NumOfElements, CGF.Int32Ty, /*isSigned=*/false); } else { KmpTaskAffinityInfoArrayTy = C.getConstantArrayType( KmpTaskAffinityInfoTy, llvm::APInt(C.getTypeSize(C.getSizeType()), NumAffinities), nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0); AffinitiesArray = CGF.CreateMemTemp(KmpTaskAffinityInfoArrayTy, ".affs.arr.addr"); AffinitiesArray = CGF.Builder.CreateConstArrayGEP(AffinitiesArray, 0); NumOfElements = llvm::ConstantInt::get(CGM.Int32Ty, NumAffinities, /*isSigned=*/false); } const auto *KmpAffinityInfoRD = KmpTaskAffinityInfoTy->getAsRecordDecl(); // Fill array by elements without iterators. unsigned Pos = 0; bool HasIterator = false; for (const auto *C : D.getClausesOfKind()) { if (C->getModifier()) { HasIterator = true; continue; } for (const Expr *E : C->varlists()) { llvm::Value *Addr; llvm::Value *Size; std::tie(Addr, Size) = getPointerAndSize(CGF, E); LValue Base = CGF.MakeAddrLValue(CGF.Builder.CreateConstGEP(AffinitiesArray, Pos), KmpTaskAffinityInfoTy); // affs[i].base_addr = &; LValue BaseAddrLVal = CGF.EmitLValueForField( Base, *std::next(KmpAffinityInfoRD->field_begin(), BaseAddr)); CGF.EmitStoreOfScalar(CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy), BaseAddrLVal); // affs[i].len = sizeof(); LValue LenLVal = CGF.EmitLValueForField( Base, *std::next(KmpAffinityInfoRD->field_begin(), Len)); CGF.EmitStoreOfScalar(Size, LenLVal); ++Pos; } } LValue PosLVal; if (HasIterator) { PosLVal = CGF.MakeAddrLValue( CGF.CreateMemTemp(C.getSizeType(), "affs.counter.addr"), C.getSizeType()); CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Pos), PosLVal); } // Process elements with iterators. for (const auto *C : D.getClausesOfKind()) { const Expr *Modifier = C->getModifier(); if (!Modifier) continue; OMPIteratorGeneratorScope IteratorScope( CGF, cast_or_null(Modifier->IgnoreParenImpCasts())); for (const Expr *E : C->varlists()) { llvm::Value *Addr; llvm::Value *Size; std::tie(Addr, Size) = getPointerAndSize(CGF, E); llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc()); LValue Base = CGF.MakeAddrLValue( Address(CGF.Builder.CreateGEP(AffinitiesArray.getPointer(), Idx), AffinitiesArray.getAlignment()), KmpTaskAffinityInfoTy); // affs[i].base_addr = &; LValue BaseAddrLVal = CGF.EmitLValueForField( Base, *std::next(KmpAffinityInfoRD->field_begin(), BaseAddr)); CGF.EmitStoreOfScalar(CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy), BaseAddrLVal); // affs[i].len = sizeof(); LValue LenLVal = CGF.EmitLValueForField( Base, *std::next(KmpAffinityInfoRD->field_begin(), Len)); CGF.EmitStoreOfScalar(Size, LenLVal); Idx = CGF.Builder.CreateNUWAdd( Idx, llvm::ConstantInt::get(Idx->getType(), 1)); CGF.EmitStoreOfScalar(Idx, PosLVal); } } // Call to kmp_int32 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, // kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 // naffins, kmp_task_affinity_info_t *affin_list); llvm::Value *LocRef = emitUpdateLocation(CGF, Loc); llvm::Value *GTid = getThreadID(CGF, Loc); llvm::Value *AffinListPtr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( AffinitiesArray.getPointer(), CGM.VoidPtrTy); // FIXME: Emit the function and ignore its result for now unless the // runtime function is properly implemented. (void)CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_omp_reg_task_with_affinity), {LocRef, GTid, NewTask, NumOfElements, AffinListPtr}); } llvm::Value *NewTaskNewTaskTTy = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( NewTask, KmpTaskTWithPrivatesPtrTy); LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy, KmpTaskTWithPrivatesQTy); LValue TDBase = CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin()); // Fill the data in the resulting kmp_task_t record. // Copy shareds if there are any. Address KmpTaskSharedsPtr = Address::invalid(); if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) { KmpTaskSharedsPtr = Address(CGF.EmitLoadOfScalar( CGF.EmitLValueForField( TDBase, *std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds)), Loc), CGM.getNaturalTypeAlignment(SharedsTy)); LValue Dest = CGF.MakeAddrLValue(KmpTaskSharedsPtr, SharedsTy); LValue Src = CGF.MakeAddrLValue(Shareds, SharedsTy); CGF.EmitAggregateCopy(Dest, Src, SharedsTy, AggValueSlot::DoesNotOverlap); } // Emit initial values for private copies (if any). TaskResultTy Result; if (!Privates.empty()) { emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD, SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/false); if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && (!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) { Result.TaskDupFn = emitTaskDupFunction( CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD, KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates, /*WithLastIter=*/!Data.LastprivateVars.empty()); } } // Fields of union "kmp_cmplrdata_t" for destructors and priority. enum { Priority = 0, Destructors = 1 }; // Provide pointer to function with destructors for privates. auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1); const RecordDecl *KmpCmplrdataUD = (*FI)->getType()->getAsUnionType()->getDecl(); if (NeedsCleanup) { llvm::Value *DestructorFn = emitDestructorsFunction( CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTy); LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI); LValue DestructorsLV = CGF.EmitLValueForField( Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors)); CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( DestructorFn, KmpRoutineEntryPtrTy), DestructorsLV); } // Set priority. if (Data.Priority.getInt()) { LValue Data2LV = CGF.EmitLValueForField( TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2)); LValue PriorityLV = CGF.EmitLValueForField( Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority)); CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV); } Result.NewTask = NewTask; Result.TaskEntry = TaskEntry; Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy; Result.TDBase = TDBase; Result.KmpTaskTQTyRD = KmpTaskTQTyRD; return Result; } namespace { /// Dependence kind for RTL. enum RTLDependenceKindTy { DepIn = 0x01, DepInOut = 0x3, DepMutexInOutSet = 0x4 }; /// Fields ids in kmp_depend_info record. enum RTLDependInfoFieldsTy { BaseAddr, Len, Flags }; } // namespace /// Translates internal dependency kind into the runtime kind. static RTLDependenceKindTy translateDependencyKind(OpenMPDependClauseKind K) { RTLDependenceKindTy DepKind; switch (K) { case OMPC_DEPEND_in: DepKind = DepIn; break; // Out and InOut dependencies must use the same code. case OMPC_DEPEND_out: case OMPC_DEPEND_inout: DepKind = DepInOut; break; case OMPC_DEPEND_mutexinoutset: DepKind = DepMutexInOutSet; break; case OMPC_DEPEND_source: case OMPC_DEPEND_sink: case OMPC_DEPEND_depobj: case OMPC_DEPEND_unknown: llvm_unreachable("Unknown task dependence type"); } return DepKind; } /// Builds kmp_depend_info, if it is not built yet, and builds flags type. static void getDependTypes(ASTContext &C, QualType &KmpDependInfoTy, QualType &FlagsTy) { FlagsTy = C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false); if (KmpDependInfoTy.isNull()) { RecordDecl *KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info"); KmpDependInfoRD->startDefinition(); addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType()); addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType()); addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy); KmpDependInfoRD->completeDefinition(); KmpDependInfoTy = C.getRecordType(KmpDependInfoRD); } } std::pair CGOpenMPRuntime::getDepobjElements(CodeGenFunction &CGF, LValue DepobjLVal, SourceLocation Loc) { ASTContext &C = CGM.getContext(); QualType FlagsTy; getDependTypes(C, KmpDependInfoTy, FlagsTy); RecordDecl *KmpDependInfoRD = cast(KmpDependInfoTy->getAsTagDecl()); LValue Base = CGF.EmitLoadOfPointerLValue( DepobjLVal.getAddress(CGF), C.getPointerType(C.VoidPtrTy).castAs()); QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy); Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( Base.getAddress(CGF), CGF.ConvertTypeForMem(KmpDependInfoPtrTy)); Base = CGF.MakeAddrLValue(Addr, KmpDependInfoTy, Base.getBaseInfo(), Base.getTBAAInfo()); llvm::Value *DepObjAddr = CGF.Builder.CreateGEP( Addr.getPointer(), llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true)); LValue NumDepsBase = CGF.MakeAddrLValue( Address(DepObjAddr, Addr.getAlignment()), KmpDependInfoTy, Base.getBaseInfo(), Base.getTBAAInfo()); // NumDeps = deps[i].base_addr; LValue BaseAddrLVal = CGF.EmitLValueForField( NumDepsBase, *std::next(KmpDependInfoRD->field_begin(), BaseAddr)); llvm::Value *NumDeps = CGF.EmitLoadOfScalar(BaseAddrLVal, Loc); return std::make_pair(NumDeps, Base); } static void emitDependData(CodeGenFunction &CGF, QualType &KmpDependInfoTy, llvm::PointerUnion Pos, const OMPTaskDataTy::DependData &Data, Address DependenciesArray) { CodeGenModule &CGM = CGF.CGM; ASTContext &C = CGM.getContext(); QualType FlagsTy; getDependTypes(C, KmpDependInfoTy, FlagsTy); RecordDecl *KmpDependInfoRD = cast(KmpDependInfoTy->getAsTagDecl()); llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy); OMPIteratorGeneratorScope IteratorScope( CGF, cast_or_null( Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts() : nullptr)); for (const Expr *E : Data.DepExprs) { llvm::Value *Addr; llvm::Value *Size; std::tie(Addr, Size) = getPointerAndSize(CGF, E); LValue Base; if (unsigned *P = Pos.dyn_cast()) { Base = CGF.MakeAddrLValue( CGF.Builder.CreateConstGEP(DependenciesArray, *P), KmpDependInfoTy); } else { LValue &PosLVal = *Pos.get(); llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc()); Base = CGF.MakeAddrLValue( Address(CGF.Builder.CreateGEP(DependenciesArray.getPointer(), Idx), DependenciesArray.getAlignment()), KmpDependInfoTy); } // deps[i].base_addr = &; LValue BaseAddrLVal = CGF.EmitLValueForField( Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr)); CGF.EmitStoreOfScalar(CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy), BaseAddrLVal); // deps[i].len = sizeof(); LValue LenLVal = CGF.EmitLValueForField( Base, *std::next(KmpDependInfoRD->field_begin(), Len)); CGF.EmitStoreOfScalar(Size, LenLVal); // deps[i].flags = ; RTLDependenceKindTy DepKind = translateDependencyKind(Data.DepKind); LValue FlagsLVal = CGF.EmitLValueForField( Base, *std::next(KmpDependInfoRD->field_begin(), Flags)); CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind), FlagsLVal); if (unsigned *P = Pos.dyn_cast()) { ++(*P); } else { LValue &PosLVal = *Pos.get(); llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc()); Idx = CGF.Builder.CreateNUWAdd(Idx, llvm::ConstantInt::get(Idx->getType(), 1)); CGF.EmitStoreOfScalar(Idx, PosLVal); } } } static SmallVector emitDepobjElementsSizes(CodeGenFunction &CGF, QualType &KmpDependInfoTy, const OMPTaskDataTy::DependData &Data) { assert(Data.DepKind == OMPC_DEPEND_depobj && "Expected depobj dependecy kind."); SmallVector Sizes; SmallVector SizeLVals; ASTContext &C = CGF.getContext(); QualType FlagsTy; getDependTypes(C, KmpDependInfoTy, FlagsTy); RecordDecl *KmpDependInfoRD = cast(KmpDependInfoTy->getAsTagDecl()); QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy); llvm::Type *KmpDependInfoPtrT = CGF.ConvertTypeForMem(KmpDependInfoPtrTy); { OMPIteratorGeneratorScope IteratorScope( CGF, cast_or_null( Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts() : nullptr)); for (const Expr *E : Data.DepExprs) { LValue DepobjLVal = CGF.EmitLValue(E->IgnoreParenImpCasts()); LValue Base = CGF.EmitLoadOfPointerLValue( DepobjLVal.getAddress(CGF), C.getPointerType(C.VoidPtrTy).castAs()); Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( Base.getAddress(CGF), KmpDependInfoPtrT); Base = CGF.MakeAddrLValue(Addr, KmpDependInfoTy, Base.getBaseInfo(), Base.getTBAAInfo()); llvm::Value *DepObjAddr = CGF.Builder.CreateGEP( Addr.getPointer(), llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true)); LValue NumDepsBase = CGF.MakeAddrLValue( Address(DepObjAddr, Addr.getAlignment()), KmpDependInfoTy, Base.getBaseInfo(), Base.getTBAAInfo()); // NumDeps = deps[i].base_addr; LValue BaseAddrLVal = CGF.EmitLValueForField( NumDepsBase, *std::next(KmpDependInfoRD->field_begin(), BaseAddr)); llvm::Value *NumDeps = CGF.EmitLoadOfScalar(BaseAddrLVal, E->getExprLoc()); LValue NumLVal = CGF.MakeAddrLValue( CGF.CreateMemTemp(C.getUIntPtrType(), "depobj.size.addr"), C.getUIntPtrType()); CGF.InitTempAlloca(NumLVal.getAddress(CGF), llvm::ConstantInt::get(CGF.IntPtrTy, 0)); llvm::Value *PrevVal = CGF.EmitLoadOfScalar(NumLVal, E->getExprLoc()); llvm::Value *Add = CGF.Builder.CreateNUWAdd(PrevVal, NumDeps); CGF.EmitStoreOfScalar(Add, NumLVal); SizeLVals.push_back(NumLVal); } } for (unsigned I = 0, E = SizeLVals.size(); I < E; ++I) { llvm::Value *Size = CGF.EmitLoadOfScalar(SizeLVals[I], Data.DepExprs[I]->getExprLoc()); Sizes.push_back(Size); } return Sizes; } static void emitDepobjElements(CodeGenFunction &CGF, QualType &KmpDependInfoTy, LValue PosLVal, const OMPTaskDataTy::DependData &Data, Address DependenciesArray) { assert(Data.DepKind == OMPC_DEPEND_depobj && "Expected depobj dependecy kind."); ASTContext &C = CGF.getContext(); QualType FlagsTy; getDependTypes(C, KmpDependInfoTy, FlagsTy); RecordDecl *KmpDependInfoRD = cast(KmpDependInfoTy->getAsTagDecl()); QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy); llvm::Type *KmpDependInfoPtrT = CGF.ConvertTypeForMem(KmpDependInfoPtrTy); llvm::Value *ElSize = CGF.getTypeSize(KmpDependInfoTy); { OMPIteratorGeneratorScope IteratorScope( CGF, cast_or_null( Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts() : nullptr)); for (unsigned I = 0, End = Data.DepExprs.size(); I < End; ++I) { const Expr *E = Data.DepExprs[I]; LValue DepobjLVal = CGF.EmitLValue(E->IgnoreParenImpCasts()); LValue Base = CGF.EmitLoadOfPointerLValue( DepobjLVal.getAddress(CGF), C.getPointerType(C.VoidPtrTy).castAs()); Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( Base.getAddress(CGF), KmpDependInfoPtrT); Base = CGF.MakeAddrLValue(Addr, KmpDependInfoTy, Base.getBaseInfo(), Base.getTBAAInfo()); // Get number of elements in a single depobj. llvm::Value *DepObjAddr = CGF.Builder.CreateGEP( Addr.getPointer(), llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true)); LValue NumDepsBase = CGF.MakeAddrLValue( Address(DepObjAddr, Addr.getAlignment()), KmpDependInfoTy, Base.getBaseInfo(), Base.getTBAAInfo()); // NumDeps = deps[i].base_addr; LValue BaseAddrLVal = CGF.EmitLValueForField( NumDepsBase, *std::next(KmpDependInfoRD->field_begin(), BaseAddr)); llvm::Value *NumDeps = CGF.EmitLoadOfScalar(BaseAddrLVal, E->getExprLoc()); // memcopy dependency data. llvm::Value *Size = CGF.Builder.CreateNUWMul( ElSize, CGF.Builder.CreateIntCast(NumDeps, CGF.SizeTy, /*isSigned=*/false)); llvm::Value *Pos = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc()); Address DepAddr = Address(CGF.Builder.CreateGEP(DependenciesArray.getPointer(), Pos), DependenciesArray.getAlignment()); CGF.Builder.CreateMemCpy(DepAddr, Base.getAddress(CGF), Size); // Increase pos. // pos += size; llvm::Value *Add = CGF.Builder.CreateNUWAdd(Pos, NumDeps); CGF.EmitStoreOfScalar(Add, PosLVal); } } } std::pair CGOpenMPRuntime::emitDependClause( CodeGenFunction &CGF, ArrayRef Dependencies, SourceLocation Loc) { if (llvm::all_of(Dependencies, [](const OMPTaskDataTy::DependData &D) { return D.DepExprs.empty(); })) return std::make_pair(nullptr, Address::invalid()); // Process list of dependencies. ASTContext &C = CGM.getContext(); Address DependenciesArray = Address::invalid(); llvm::Value *NumOfElements = nullptr; unsigned NumDependencies = std::accumulate( Dependencies.begin(), Dependencies.end(), 0, [](unsigned V, const OMPTaskDataTy::DependData &D) { return D.DepKind == OMPC_DEPEND_depobj ? V : (V + (D.IteratorExpr ? 0 : D.DepExprs.size())); }); QualType FlagsTy; getDependTypes(C, KmpDependInfoTy, FlagsTy); bool HasDepobjDeps = false; bool HasRegularWithIterators = false; llvm::Value *NumOfDepobjElements = llvm::ConstantInt::get(CGF.IntPtrTy, 0); llvm::Value *NumOfRegularWithIterators = llvm::ConstantInt::get(CGF.IntPtrTy, 1); // Calculate number of depobj dependecies and regular deps with the iterators. for (const OMPTaskDataTy::DependData &D : Dependencies) { if (D.DepKind == OMPC_DEPEND_depobj) { SmallVector Sizes = emitDepobjElementsSizes(CGF, KmpDependInfoTy, D); for (llvm::Value *Size : Sizes) { NumOfDepobjElements = CGF.Builder.CreateNUWAdd(NumOfDepobjElements, Size); } HasDepobjDeps = true; continue; } // Include number of iterations, if any. if (const auto *IE = cast_or_null(D.IteratorExpr)) { for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) { llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper); Sz = CGF.Builder.CreateIntCast(Sz, CGF.IntPtrTy, /*isSigned=*/false); NumOfRegularWithIterators = CGF.Builder.CreateNUWMul(NumOfRegularWithIterators, Sz); } HasRegularWithIterators = true; continue; } } QualType KmpDependInfoArrayTy; if (HasDepobjDeps || HasRegularWithIterators) { NumOfElements = llvm::ConstantInt::get(CGM.IntPtrTy, NumDependencies, /*isSigned=*/false); if (HasDepobjDeps) { NumOfElements = CGF.Builder.CreateNUWAdd(NumOfDepobjElements, NumOfElements); } if (HasRegularWithIterators) { NumOfElements = CGF.Builder.CreateNUWAdd(NumOfRegularWithIterators, NumOfElements); } OpaqueValueExpr OVE(Loc, C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0), VK_RValue); CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, RValue::get(NumOfElements)); KmpDependInfoArrayTy = C.getVariableArrayType(KmpDependInfoTy, &OVE, ArrayType::Normal, /*IndexTypeQuals=*/0, SourceRange(Loc, Loc)); // CGF.EmitVariablyModifiedType(KmpDependInfoArrayTy); // Properly emit variable-sized array. auto *PD = ImplicitParamDecl::Create(C, KmpDependInfoArrayTy, ImplicitParamDecl::Other); CGF.EmitVarDecl(*PD); DependenciesArray = CGF.GetAddrOfLocalVar(PD); NumOfElements = CGF.Builder.CreateIntCast(NumOfElements, CGF.Int32Ty, /*isSigned=*/false); } else { KmpDependInfoArrayTy = C.getConstantArrayType( KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies), nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0); DependenciesArray = CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr"); DependenciesArray = CGF.Builder.CreateConstArrayGEP(DependenciesArray, 0); NumOfElements = llvm::ConstantInt::get(CGM.Int32Ty, NumDependencies, /*isSigned=*/false); } unsigned Pos = 0; for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) { if (Dependencies[I].DepKind == OMPC_DEPEND_depobj || Dependencies[I].IteratorExpr) continue; emitDependData(CGF, KmpDependInfoTy, &Pos, Dependencies[I], DependenciesArray); } // Copy regular dependecies with iterators. LValue PosLVal = CGF.MakeAddrLValue( CGF.CreateMemTemp(C.getSizeType(), "dep.counter.addr"), C.getSizeType()); CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Pos), PosLVal); for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) { if (Dependencies[I].DepKind == OMPC_DEPEND_depobj || !Dependencies[I].IteratorExpr) continue; emitDependData(CGF, KmpDependInfoTy, &PosLVal, Dependencies[I], DependenciesArray); } // Copy final depobj arrays without iterators. if (HasDepobjDeps) { for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) { if (Dependencies[I].DepKind != OMPC_DEPEND_depobj) continue; emitDepobjElements(CGF, KmpDependInfoTy, PosLVal, Dependencies[I], DependenciesArray); } } DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( DependenciesArray, CGF.VoidPtrTy); return std::make_pair(NumOfElements, DependenciesArray); } Address CGOpenMPRuntime::emitDepobjDependClause( CodeGenFunction &CGF, const OMPTaskDataTy::DependData &Dependencies, SourceLocation Loc) { if (Dependencies.DepExprs.empty()) return Address::invalid(); // Process list of dependencies. ASTContext &C = CGM.getContext(); Address DependenciesArray = Address::invalid(); unsigned NumDependencies = Dependencies.DepExprs.size(); QualType FlagsTy; getDependTypes(C, KmpDependInfoTy, FlagsTy); RecordDecl *KmpDependInfoRD = cast(KmpDependInfoTy->getAsTagDecl()); llvm::Value *Size; // Define type kmp_depend_info[]; // For depobj reserve one extra element to store the number of elements. // It is required to handle depobj(x) update(in) construct. // kmp_depend_info[] deps; llvm::Value *NumDepsVal; CharUnits Align = C.getTypeAlignInChars(KmpDependInfoTy); if (const auto *IE = cast_or_null(Dependencies.IteratorExpr)) { NumDepsVal = llvm::ConstantInt::get(CGF.SizeTy, 1); for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) { llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper); Sz = CGF.Builder.CreateIntCast(Sz, CGF.SizeTy, /*isSigned=*/false); NumDepsVal = CGF.Builder.CreateNUWMul(NumDepsVal, Sz); } Size = CGF.Builder.CreateNUWAdd(llvm::ConstantInt::get(CGF.SizeTy, 1), NumDepsVal); CharUnits SizeInBytes = C.getTypeSizeInChars(KmpDependInfoTy).alignTo(Align); llvm::Value *RecSize = CGM.getSize(SizeInBytes); Size = CGF.Builder.CreateNUWMul(Size, RecSize); NumDepsVal = CGF.Builder.CreateIntCast(NumDepsVal, CGF.IntPtrTy, /*isSigned=*/false); } else { QualType KmpDependInfoArrayTy = C.getConstantArrayType( KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies + 1), nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0); CharUnits Sz = C.getTypeSizeInChars(KmpDependInfoArrayTy); Size = CGM.getSize(Sz.alignTo(Align)); NumDepsVal = llvm::ConstantInt::get(CGF.IntPtrTy, NumDependencies); } // Need to allocate on the dynamic memory. llvm::Value *ThreadID = getThreadID(CGF, Loc); // Use default allocator. llvm::Value *Allocator = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); llvm::Value *Args[] = {ThreadID, Size, Allocator}; llvm::Value *Addr = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_alloc), Args, ".dep.arr.addr"); Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( Addr, CGF.ConvertTypeForMem(KmpDependInfoTy)->getPointerTo()); DependenciesArray = Address(Addr, Align); // Write number of elements in the first element of array for depobj. LValue Base = CGF.MakeAddrLValue(DependenciesArray, KmpDependInfoTy); // deps[i].base_addr = NumDependencies; LValue BaseAddrLVal = CGF.EmitLValueForField( Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr)); CGF.EmitStoreOfScalar(NumDepsVal, BaseAddrLVal); llvm::PointerUnion Pos; unsigned Idx = 1; LValue PosLVal; if (Dependencies.IteratorExpr) { PosLVal = CGF.MakeAddrLValue( CGF.CreateMemTemp(C.getSizeType(), "iterator.counter.addr"), C.getSizeType()); CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Idx), PosLVal, /*IsInit=*/true); Pos = &PosLVal; } else { Pos = &Idx; } emitDependData(CGF, KmpDependInfoTy, Pos, Dependencies, DependenciesArray); DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( CGF.Builder.CreateConstGEP(DependenciesArray, 1), CGF.VoidPtrTy); return DependenciesArray; } void CGOpenMPRuntime::emitDestroyClause(CodeGenFunction &CGF, LValue DepobjLVal, SourceLocation Loc) { ASTContext &C = CGM.getContext(); QualType FlagsTy; getDependTypes(C, KmpDependInfoTy, FlagsTy); LValue Base = CGF.EmitLoadOfPointerLValue( DepobjLVal.getAddress(CGF), C.getPointerType(C.VoidPtrTy).castAs()); QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy); Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( Base.getAddress(CGF), CGF.ConvertTypeForMem(KmpDependInfoPtrTy)); llvm::Value *DepObjAddr = CGF.Builder.CreateGEP( Addr.getPointer(), llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true)); DepObjAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(DepObjAddr, CGF.VoidPtrTy); llvm::Value *ThreadID = getThreadID(CGF, Loc); // Use default allocator. llvm::Value *Allocator = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); llvm::Value *Args[] = {ThreadID, DepObjAddr, Allocator}; // _kmpc_free(gtid, addr, nullptr); (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_free), Args); } void CGOpenMPRuntime::emitUpdateClause(CodeGenFunction &CGF, LValue DepobjLVal, OpenMPDependClauseKind NewDepKind, SourceLocation Loc) { ASTContext &C = CGM.getContext(); QualType FlagsTy; getDependTypes(C, KmpDependInfoTy, FlagsTy); RecordDecl *KmpDependInfoRD = cast(KmpDependInfoTy->getAsTagDecl()); llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy); llvm::Value *NumDeps; LValue Base; std::tie(NumDeps, Base) = getDepobjElements(CGF, DepobjLVal, Loc); Address Begin = Base.getAddress(CGF); // Cast from pointer to array type to pointer to single element. llvm::Value *End = CGF.Builder.CreateGEP(Begin.getPointer(), NumDeps); // The basic structure here is a while-do loop. llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.body"); llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.done"); llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock(); CGF.EmitBlock(BodyBB); llvm::PHINode *ElementPHI = CGF.Builder.CreatePHI(Begin.getType(), 2, "omp.elementPast"); ElementPHI->addIncoming(Begin.getPointer(), EntryBB); Begin = Address(ElementPHI, Begin.getAlignment()); Base = CGF.MakeAddrLValue(Begin, KmpDependInfoTy, Base.getBaseInfo(), Base.getTBAAInfo()); // deps[i].flags = NewDepKind; RTLDependenceKindTy DepKind = translateDependencyKind(NewDepKind); LValue FlagsLVal = CGF.EmitLValueForField( Base, *std::next(KmpDependInfoRD->field_begin(), Flags)); CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind), FlagsLVal); // Shift the address forward by one element. Address ElementNext = CGF.Builder.CreateConstGEP(Begin, /*Index=*/1, "omp.elementNext"); ElementPHI->addIncoming(ElementNext.getPointer(), CGF.Builder.GetInsertBlock()); llvm::Value *IsEmpty = CGF.Builder.CreateICmpEQ(ElementNext.getPointer(), End, "omp.isempty"); CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); // Done. CGF.EmitBlock(DoneBB, /*IsFinished=*/true); } void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc, const OMPExecutableDirective &D, llvm::Function *TaskFunction, QualType SharedsTy, Address Shareds, const Expr *IfCond, const OMPTaskDataTy &Data) { if (!CGF.HaveInsertPoint()) return; TaskResultTy Result = emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data); llvm::Value *NewTask = Result.NewTask; llvm::Function *TaskEntry = Result.TaskEntry; llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy; LValue TDBase = Result.TDBase; const RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD; // Process list of dependences. Address DependenciesArray = Address::invalid(); llvm::Value *NumOfElements; std::tie(NumOfElements, DependenciesArray) = emitDependClause(CGF, Data.Dependences, Loc); // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc() // libcall. // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid, // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence // list is not empty llvm::Value *ThreadID = getThreadID(CGF, Loc); llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc); llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask }; llvm::Value *DepTaskArgs[7]; if (!Data.Dependences.empty()) { DepTaskArgs[0] = UpLoc; DepTaskArgs[1] = ThreadID; DepTaskArgs[2] = NewTask; DepTaskArgs[3] = NumOfElements; DepTaskArgs[4] = DependenciesArray.getPointer(); DepTaskArgs[5] = CGF.Builder.getInt32(0); DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); } auto &&ThenCodeGen = [this, &Data, TDBase, KmpTaskTQTyRD, &TaskArgs, &DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) { if (!Data.Tied) { auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId); LValue PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI); CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal); } if (!Data.Dependences.empty()) { CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_omp_task_with_deps), DepTaskArgs); } else { CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_omp_task), TaskArgs); } // Check if parent region is untied and build return for untied task; if (auto *Region = dyn_cast_or_null(CGF.CapturedStmtInfo)) Region->emitUntiedSwitch(CGF); }; llvm::Value *DepWaitTaskArgs[6]; if (!Data.Dependences.empty()) { DepWaitTaskArgs[0] = UpLoc; DepWaitTaskArgs[1] = ThreadID; DepWaitTaskArgs[2] = NumOfElements; DepWaitTaskArgs[3] = DependenciesArray.getPointer(); DepWaitTaskArgs[4] = CGF.Builder.getInt32(0); DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); } auto &M = CGM.getModule(); auto &&ElseCodeGen = [this, &M, &TaskArgs, ThreadID, NewTaskNewTaskTTy, TaskEntry, &Data, &DepWaitTaskArgs, Loc](CodeGenFunction &CGF, PrePostActionTy &) { CodeGenFunction::RunCleanupsScope LocalScope(CGF); // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid, // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info // is specified. if (!Data.Dependences.empty()) CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_omp_wait_deps), DepWaitTaskArgs); // Call proxy_task_entry(gtid, new_task); auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy, Loc](CodeGenFunction &CGF, PrePostActionTy &Action) { Action.Enter(CGF); llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy}; CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskEntry, OutlinedFnArgs); }; // Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid, // kmp_task_t *new_task); // Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid, // kmp_task_t *new_task); RegionCodeGenTy RCG(CodeGen); CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction( M, OMPRTL___kmpc_omp_task_begin_if0), TaskArgs, OMPBuilder.getOrCreateRuntimeFunction( M, OMPRTL___kmpc_omp_task_complete_if0), TaskArgs); RCG.setAction(Action); RCG(CGF); }; if (IfCond) { emitIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen); } else { RegionCodeGenTy ThenRCG(ThenCodeGen); ThenRCG(CGF); } } void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc, const OMPLoopDirective &D, llvm::Function *TaskFunction, QualType SharedsTy, Address Shareds, const Expr *IfCond, const OMPTaskDataTy &Data) { if (!CGF.HaveInsertPoint()) return; TaskResultTy Result = emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data); // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc() // libcall. // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int // sched, kmp_uint64 grainsize, void *task_dup); llvm::Value *ThreadID = getThreadID(CGF, Loc); llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc); llvm::Value *IfVal; if (IfCond) { IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy, /*isSigned=*/true); } else { IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1); } LValue LBLVal = CGF.EmitLValueForField( Result.TDBase, *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound)); const auto *LBVar = cast(cast(D.getLowerBoundVariable())->getDecl()); CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(CGF), LBLVal.getQuals(), /*IsInitializer=*/true); LValue UBLVal = CGF.EmitLValueForField( Result.TDBase, *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound)); const auto *UBVar = cast(cast(D.getUpperBoundVariable())->getDecl()); CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(CGF), UBLVal.getQuals(), /*IsInitializer=*/true); LValue StLVal = CGF.EmitLValueForField( Result.TDBase, *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride)); const auto *StVar = cast(cast(D.getStrideVariable())->getDecl()); CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(CGF), StLVal.getQuals(), /*IsInitializer=*/true); // Store reductions address. LValue RedLVal = CGF.EmitLValueForField( Result.TDBase, *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTReductions)); if (Data.Reductions) { CGF.EmitStoreOfScalar(Data.Reductions, RedLVal); } else { CGF.EmitNullInitialization(RedLVal.getAddress(CGF), CGF.getContext().VoidPtrTy); } enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 }; llvm::Value *TaskArgs[] = { UpLoc, ThreadID, Result.NewTask, IfVal, LBLVal.getPointer(CGF), UBLVal.getPointer(CGF), CGF.EmitLoadOfScalar(StLVal, Loc), llvm::ConstantInt::getSigned( CGF.IntTy, 1), // Always 1 because taskgroup emitted by the compiler llvm::ConstantInt::getSigned( CGF.IntTy, Data.Schedule.getPointer() ? Data.Schedule.getInt() ? NumTasks : Grainsize : NoSchedule), Data.Schedule.getPointer() ? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty, /*isSigned=*/false) : llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0), Result.TaskDupFn ? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( Result.TaskDupFn, CGF.VoidPtrTy) : llvm::ConstantPointerNull::get(CGF.VoidPtrTy)}; CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_taskloop), TaskArgs); } /// Emit reduction operation for each element of array (required for /// array sections) LHS op = RHS. /// \param Type Type of array. /// \param LHSVar Variable on the left side of the reduction operation /// (references element of array in original variable). /// \param RHSVar Variable on the right side of the reduction operation /// (references element of array in original variable). /// \param RedOpGen Generator of reduction operation with use of LHSVar and /// RHSVar. static void EmitOMPAggregateReduction( CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar, const VarDecl *RHSVar, const llvm::function_ref &RedOpGen, const Expr *XExpr = nullptr, const Expr *EExpr = nullptr, const Expr *UpExpr = nullptr) { // Perform element-by-element initialization. QualType ElementTy; Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar); Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar); // Drill down to the base element type on both arrays. const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe(); llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr); llvm::Value *RHSBegin = RHSAddr.getPointer(); llvm::Value *LHSBegin = LHSAddr.getPointer(); // Cast from pointer to array type to pointer to single element. llvm::Value *LHSEnd = CGF.Builder.CreateGEP(LHSBegin, NumElements); // The basic structure here is a while-do loop. llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arraycpy.body"); llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arraycpy.done"); llvm::Value *IsEmpty = CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty"); CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); // Enter the loop body, making that address the current address. llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock(); CGF.EmitBlock(BodyBB); CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy); llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI( RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast"); RHSElementPHI->addIncoming(RHSBegin, EntryBB); Address RHSElementCurrent = Address(RHSElementPHI, RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize)); llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI( LHSBegin->getType(), 2, "omp.arraycpy.destElementPast"); LHSElementPHI->addIncoming(LHSBegin, EntryBB); Address LHSElementCurrent = Address(LHSElementPHI, LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize)); // Emit copy. CodeGenFunction::OMPPrivateScope Scope(CGF); Scope.addPrivate(LHSVar, [=]() { return LHSElementCurrent; }); Scope.addPrivate(RHSVar, [=]() { return RHSElementCurrent; }); Scope.Privatize(); RedOpGen(CGF, XExpr, EExpr, UpExpr); Scope.ForceCleanup(); // Shift the address forward by one element. llvm::Value *LHSElementNext = CGF.Builder.CreateConstGEP1_32( LHSElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); llvm::Value *RHSElementNext = CGF.Builder.CreateConstGEP1_32( RHSElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); // Check whether we've reached the end. llvm::Value *Done = CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done"); CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB); LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock()); RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock()); // Done. CGF.EmitBlock(DoneBB, /*IsFinished=*/true); } /// Emit reduction combiner. If the combiner is a simple expression emit it as /// is, otherwise consider it as combiner of UDR decl and emit it as a call of /// UDR combiner function. static void emitReductionCombiner(CodeGenFunction &CGF, const Expr *ReductionOp) { if (const auto *CE = dyn_cast(ReductionOp)) if (const auto *OVE = dyn_cast(CE->getCallee())) if (const auto *DRE = dyn_cast(OVE->getSourceExpr()->IgnoreImpCasts())) if (const auto *DRD = dyn_cast(DRE->getDecl())) { std::pair Reduction = CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD); RValue Func = RValue::get(Reduction.first); CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func); CGF.EmitIgnoredExpr(ReductionOp); return; } CGF.EmitIgnoredExpr(ReductionOp); } llvm::Function *CGOpenMPRuntime::emitReductionFunction( SourceLocation Loc, llvm::Type *ArgsType, ArrayRef Privates, ArrayRef LHSExprs, ArrayRef RHSExprs, ArrayRef ReductionOps) { ASTContext &C = CGM.getContext(); // void reduction_func(void *LHSArg, void *RHSArg); FunctionArgList Args; ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, ImplicitParamDecl::Other); ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, ImplicitParamDecl::Other); Args.push_back(&LHSArg); Args.push_back(&RHSArg); const auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); std::string Name = getName({"omp", "reduction", "reduction_func"}); auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule()); CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); Fn->setDoesNotRecurse(); CodeGenFunction CGF(CGM); CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); // Dst = (void*[n])(LHSArg); // Src = (void*[n])(RHSArg); Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)), ArgsType), CGF.getPointerAlign()); Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)), ArgsType), CGF.getPointerAlign()); // ... // *(Type*)lhs[i] = RedOp(*(Type*)lhs[i], *(Type*)rhs[i]); // ... CodeGenFunction::OMPPrivateScope Scope(CGF); auto IPriv = Privates.begin(); unsigned Idx = 0; for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) { const auto *RHSVar = cast(cast(RHSExprs[I])->getDecl()); Scope.addPrivate(RHSVar, [&CGF, RHS, Idx, RHSVar]() { return emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar); }); const auto *LHSVar = cast(cast(LHSExprs[I])->getDecl()); Scope.addPrivate(LHSVar, [&CGF, LHS, Idx, LHSVar]() { return emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar); }); QualType PrivTy = (*IPriv)->getType(); if (PrivTy->isVariablyModifiedType()) { // Get array size and emit VLA type. ++Idx; Address Elem = CGF.Builder.CreateConstArrayGEP(LHS, Idx); llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem); const VariableArrayType *VLA = CGF.getContext().getAsVariableArrayType(PrivTy); const auto *OVE = cast(VLA->getSizeExpr()); CodeGenFunction::OpaqueValueMapping OpaqueMap( CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy))); CGF.EmitVariablyModifiedType(PrivTy); } } Scope.Privatize(); IPriv = Privates.begin(); auto ILHS = LHSExprs.begin(); auto IRHS = RHSExprs.begin(); for (const Expr *E : ReductionOps) { if ((*IPriv)->getType()->isArrayType()) { // Emit reduction for array section. const auto *LHSVar = cast(cast(*ILHS)->getDecl()); const auto *RHSVar = cast(cast(*IRHS)->getDecl()); EmitOMPAggregateReduction( CGF, (*IPriv)->getType(), LHSVar, RHSVar, [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) { emitReductionCombiner(CGF, E); }); } else { // Emit reduction for array subscript or single variable. emitReductionCombiner(CGF, E); } ++IPriv; ++ILHS; ++IRHS; } Scope.ForceCleanup(); CGF.FinishFunction(); return Fn; } void CGOpenMPRuntime::emitSingleReductionCombiner(CodeGenFunction &CGF, const Expr *ReductionOp, const Expr *PrivateRef, const DeclRefExpr *LHS, const DeclRefExpr *RHS) { if (PrivateRef->getType()->isArrayType()) { // Emit reduction for array section. const auto *LHSVar = cast(LHS->getDecl()); const auto *RHSVar = cast(RHS->getDecl()); EmitOMPAggregateReduction( CGF, PrivateRef->getType(), LHSVar, RHSVar, [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) { emitReductionCombiner(CGF, ReductionOp); }); } else { // Emit reduction for array subscript or single variable. emitReductionCombiner(CGF, ReductionOp); } } void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc, ArrayRef Privates, ArrayRef LHSExprs, ArrayRef RHSExprs, ArrayRef ReductionOps, ReductionOptionsTy Options) { if (!CGF.HaveInsertPoint()) return; bool WithNowait = Options.WithNowait; bool SimpleReduction = Options.SimpleReduction; // Next code should be emitted for reduction: // // static kmp_critical_name lock = { 0 }; // // void reduce_func(void *lhs[], void *rhs[]) { // *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]); // ... // *(Type-1*)lhs[-1] = ReductionOperation-1(*(Type-1*)lhs[-1], // *(Type-1*)rhs[-1]); // } // // ... // void *RedList[] = {&[0], ..., &[-1]}; // switch (__kmpc_reduce{_nowait}(, , , sizeof(RedList), // RedList, reduce_func, &)) { // case 1: // ... // [i] = RedOp(*[i], *[i]); // ... // __kmpc_end_reduce{_nowait}(, , &); // break; // case 2: // ... // Atomic([i] = RedOp(*[i], *[i])); // ... // [__kmpc_end_reduce(, , &);] // break; // default:; // } // // if SimpleReduction is true, only the next code is generated: // ... // [i] = RedOp(*[i], *[i]); // ... ASTContext &C = CGM.getContext(); if (SimpleReduction) { CodeGenFunction::RunCleanupsScope Scope(CGF); auto IPriv = Privates.begin(); auto ILHS = LHSExprs.begin(); auto IRHS = RHSExprs.begin(); for (const Expr *E : ReductionOps) { emitSingleReductionCombiner(CGF, E, *IPriv, cast(*ILHS), cast(*IRHS)); ++IPriv; ++ILHS; ++IRHS; } return; } // 1. Build a list of reduction variables. // void *RedList[] = {[0], ..., [-1]}; auto Size = RHSExprs.size(); for (const Expr *E : Privates) { if (E->getType()->isVariablyModifiedType()) // Reserve place for array size. ++Size; } llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); QualType ReductionArrayTy = C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0); Address ReductionList = CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); auto IPriv = Privates.begin(); unsigned Idx = 0; for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); CGF.Builder.CreateStore( CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy), Elem); if ((*IPriv)->getType()->isVariablyModifiedType()) { // Store array size. ++Idx; Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); llvm::Value *Size = CGF.Builder.CreateIntCast( CGF.getVLASize( CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) .NumElts, CGF.SizeTy, /*isSigned=*/false); CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), Elem); } } // 2. Emit reduce_func(). llvm::Function *ReductionFn = emitReductionFunction( Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, LHSExprs, RHSExprs, ReductionOps); // 3. Create static kmp_critical_name lock = { 0 }; std::string Name = getName({"reduction"}); llvm::Value *Lock = getCriticalRegionLock(Name); // 4. Build res = __kmpc_reduce{_nowait}(, , , sizeof(RedList), // RedList, reduce_func, &); llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE); llvm::Value *ThreadId = getThreadID(CGF, Loc); llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( ReductionList.getPointer(), CGF.VoidPtrTy); llvm::Value *Args[] = { IdentTLoc, // ident_t * ThreadId, // i32 CGF.Builder.getInt32(RHSExprs.size()), // i32 ReductionArrayTySize, // size_type sizeof(RedList) RL, // void *RedList ReductionFn, // void (*) (void *, void *) Lock // kmp_critical_name *& }; llvm::Value *Res = CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), WithNowait ? OMPRTL___kmpc_reduce_nowait : OMPRTL___kmpc_reduce), Args); // 5. Build switch(res) llvm::BasicBlock *DefaultBB = CGF.createBasicBlock(".omp.reduction.default"); llvm::SwitchInst *SwInst = CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2); // 6. Build case 1: // ... // [i] = RedOp(*[i], *[i]); // ... // __kmpc_end_reduce{_nowait}(, , &); // break; llvm::BasicBlock *Case1BB = CGF.createBasicBlock(".omp.reduction.case1"); SwInst->addCase(CGF.Builder.getInt32(1), Case1BB); CGF.EmitBlock(Case1BB); // Add emission of __kmpc_end_reduce{_nowait}(, , &); llvm::Value *EndArgs[] = { IdentTLoc, // ident_t * ThreadId, // i32 Lock // kmp_critical_name *& }; auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps]( CodeGenFunction &CGF, PrePostActionTy &Action) { CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime(); auto IPriv = Privates.begin(); auto ILHS = LHSExprs.begin(); auto IRHS = RHSExprs.begin(); for (const Expr *E : ReductionOps) { RT.emitSingleReductionCombiner(CGF, E, *IPriv, cast(*ILHS), cast(*IRHS)); ++IPriv; ++ILHS; ++IRHS; } }; RegionCodeGenTy RCG(CodeGen); CommonActionTy Action( nullptr, llvm::None, OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), WithNowait ? OMPRTL___kmpc_end_reduce_nowait : OMPRTL___kmpc_end_reduce), EndArgs); RCG.setAction(Action); RCG(CGF); CGF.EmitBranch(DefaultBB); // 7. Build case 2: // ... // Atomic([i] = RedOp(*[i], *[i])); // ... // break; llvm::BasicBlock *Case2BB = CGF.createBasicBlock(".omp.reduction.case2"); SwInst->addCase(CGF.Builder.getInt32(2), Case2BB); CGF.EmitBlock(Case2BB); auto &&AtomicCodeGen = [Loc, Privates, LHSExprs, RHSExprs, ReductionOps]( CodeGenFunction &CGF, PrePostActionTy &Action) { auto ILHS = LHSExprs.begin(); auto IRHS = RHSExprs.begin(); auto IPriv = Privates.begin(); for (const Expr *E : ReductionOps) { const Expr *XExpr = nullptr; const Expr *EExpr = nullptr; const Expr *UpExpr = nullptr; BinaryOperatorKind BO = BO_Comma; if (const auto *BO = dyn_cast(E)) { if (BO->getOpcode() == BO_Assign) { XExpr = BO->getLHS(); UpExpr = BO->getRHS(); } } // Try to emit update expression as a simple atomic. const Expr *RHSExpr = UpExpr; if (RHSExpr) { // Analyze RHS part of the whole expression. if (const auto *ACO = dyn_cast( RHSExpr->IgnoreParenImpCasts())) { // If this is a conditional operator, analyze its condition for // min/max reduction operator. RHSExpr = ACO->getCond(); } if (const auto *BORHS = dyn_cast(RHSExpr->IgnoreParenImpCasts())) { EExpr = BORHS->getRHS(); BO = BORHS->getOpcode(); } } if (XExpr) { const auto *VD = cast(cast(*ILHS)->getDecl()); auto &&AtomicRedGen = [BO, VD, Loc](CodeGenFunction &CGF, const Expr *XExpr, const Expr *EExpr, const Expr *UpExpr) { LValue X = CGF.EmitLValue(XExpr); RValue E; if (EExpr) E = CGF.EmitAnyExpr(EExpr); CGF.EmitOMPAtomicSimpleUpdateExpr( X, E, BO, /*IsXLHSInRHSPart=*/true, llvm::AtomicOrdering::Monotonic, Loc, [&CGF, UpExpr, VD, Loc](RValue XRValue) { CodeGenFunction::OMPPrivateScope PrivateScope(CGF); PrivateScope.addPrivate( VD, [&CGF, VD, XRValue, Loc]() { Address LHSTemp = CGF.CreateMemTemp(VD->getType()); CGF.emitOMPSimpleStore( CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue, VD->getType().getNonReferenceType(), Loc); return LHSTemp; }); (void)PrivateScope.Privatize(); return CGF.EmitAnyExpr(UpExpr); }); }; if ((*IPriv)->getType()->isArrayType()) { // Emit atomic reduction for array section. const auto *RHSVar = cast(cast(*IRHS)->getDecl()); EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar, AtomicRedGen, XExpr, EExpr, UpExpr); } else { // Emit atomic reduction for array subscript or single variable. AtomicRedGen(CGF, XExpr, EExpr, UpExpr); } } else { // Emit as a critical region. auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) { CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime(); std::string Name = RT.getName({"atomic_reduction"}); RT.emitCriticalRegion( CGF, Name, [=](CodeGenFunction &CGF, PrePostActionTy &Action) { Action.Enter(CGF); emitReductionCombiner(CGF, E); }, Loc); }; if ((*IPriv)->getType()->isArrayType()) { const auto *LHSVar = cast(cast(*ILHS)->getDecl()); const auto *RHSVar = cast(cast(*IRHS)->getDecl()); EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar, CritRedGen); } else { CritRedGen(CGF, nullptr, nullptr, nullptr); } } ++ILHS; ++IRHS; ++IPriv; } }; RegionCodeGenTy AtomicRCG(AtomicCodeGen); if (!WithNowait) { // Add emission of __kmpc_end_reduce(, , &); llvm::Value *EndArgs[] = { IdentTLoc, // ident_t * ThreadId, // i32 Lock // kmp_critical_name *& }; CommonActionTy Action(nullptr, llvm::None, OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_end_reduce), EndArgs); AtomicRCG.setAction(Action); AtomicRCG(CGF); } else { AtomicRCG(CGF); } CGF.EmitBranch(DefaultBB); CGF.EmitBlock(DefaultBB, /*IsFinished=*/true); } /// Generates unique name for artificial threadprivate variables. /// Format is: "." "_" "" static std::string generateUniqueName(CodeGenModule &CGM, StringRef Prefix, const Expr *Ref) { SmallString<256> Buffer; llvm::raw_svector_ostream Out(Buffer); const clang::DeclRefExpr *DE; const VarDecl *D = ::getBaseDecl(Ref, DE); if (!D) D = cast(cast(Ref)->getDecl()); D = D->getCanonicalDecl(); std::string Name = CGM.getOpenMPRuntime().getName( {D->isLocalVarDeclOrParm() ? D->getName() : CGM.getMangledName(D)}); Out << Prefix << Name << "_" << D->getCanonicalDecl()->getBeginLoc().getRawEncoding(); return std::string(Out.str()); } /// Emits reduction initializer function: /// \code /// void @.red_init(void* %arg, void* %orig) { /// %0 = bitcast void* %arg to * /// store , * %0 /// ret void /// } /// \endcode static llvm::Value *emitReduceInitFunction(CodeGenModule &CGM, SourceLocation Loc, ReductionCodeGen &RCG, unsigned N) { ASTContext &C = CGM.getContext(); QualType VoidPtrTy = C.VoidPtrTy; VoidPtrTy.addRestrict(); FunctionArgList Args; ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, VoidPtrTy, ImplicitParamDecl::Other); ImplicitParamDecl ParamOrig(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, VoidPtrTy, ImplicitParamDecl::Other); Args.emplace_back(&Param); Args.emplace_back(&ParamOrig); const auto &FnInfo = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo); std::string Name = CGM.getOpenMPRuntime().getName({"red_init", ""}); auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule()); CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo); Fn->setDoesNotRecurse(); CodeGenFunction CGF(CGM); CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc); Address PrivateAddr = CGF.EmitLoadOfPointer( CGF.GetAddrOfLocalVar(&Param), C.getPointerType(C.VoidPtrTy).castAs()); llvm::Value *Size = nullptr; // If the size of the reduction item is non-constant, load it from global // threadprivate variable. if (RCG.getSizes(N).second) { Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate( CGF, CGM.getContext().getSizeType(), generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N))); Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false, CGM.getContext().getSizeType(), Loc); } RCG.emitAggregateType(CGF, N, Size); LValue OrigLVal; // If initializer uses initializer from declare reduction construct, emit a // pointer to the address of the original reduction item (reuired by reduction // initializer) if (RCG.usesReductionInitializer(N)) { Address SharedAddr = CGF.GetAddrOfLocalVar(&ParamOrig); SharedAddr = CGF.EmitLoadOfPointer( SharedAddr, CGM.getContext().VoidPtrTy.castAs()->getTypePtr()); OrigLVal = CGF.MakeAddrLValue(SharedAddr, CGM.getContext().VoidPtrTy); } else { OrigLVal = CGF.MakeNaturalAlignAddrLValue( llvm::ConstantPointerNull::get(CGM.VoidPtrTy), CGM.getContext().VoidPtrTy); } // Emit the initializer: // %0 = bitcast void* %arg to * // store , * %0 RCG.emitInitialization(CGF, N, PrivateAddr, OrigLVal, [](CodeGenFunction &) { return false; }); CGF.FinishFunction(); return Fn; } /// Emits reduction combiner function: /// \code /// void @.red_comb(void* %arg0, void* %arg1) { /// %lhs = bitcast void* %arg0 to * /// %rhs = bitcast void* %arg1 to * /// %2 = (* %lhs, * %rhs) /// store %2, * %lhs /// ret void /// } /// \endcode static llvm::Value *emitReduceCombFunction(CodeGenModule &CGM, SourceLocation Loc, ReductionCodeGen &RCG, unsigned N, const Expr *ReductionOp, const Expr *LHS, const Expr *RHS, const Expr *PrivateRef) { ASTContext &C = CGM.getContext(); const auto *LHSVD = cast(cast(LHS)->getDecl()); const auto *RHSVD = cast(cast(RHS)->getDecl()); FunctionArgList Args; ImplicitParamDecl ParamInOut(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, ImplicitParamDecl::Other); ImplicitParamDecl ParamIn(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, ImplicitParamDecl::Other); Args.emplace_back(&ParamInOut); Args.emplace_back(&ParamIn); const auto &FnInfo = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo); std::string Name = CGM.getOpenMPRuntime().getName({"red_comb", ""}); auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule()); CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo); Fn->setDoesNotRecurse(); CodeGenFunction CGF(CGM); CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc); llvm::Value *Size = nullptr; // If the size of the reduction item is non-constant, load it from global // threadprivate variable. if (RCG.getSizes(N).second) { Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate( CGF, CGM.getContext().getSizeType(), generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N))); Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false, CGM.getContext().getSizeType(), Loc); } RCG.emitAggregateType(CGF, N, Size); // Remap lhs and rhs variables to the addresses of the function arguments. // %lhs = bitcast void* %arg0 to * // %rhs = bitcast void* %arg1 to * CodeGenFunction::OMPPrivateScope PrivateScope(CGF); PrivateScope.addPrivate(LHSVD, [&C, &CGF, &ParamInOut, LHSVD]() { // Pull out the pointer to the variable. Address PtrAddr = CGF.EmitLoadOfPointer( CGF.GetAddrOfLocalVar(&ParamInOut), C.getPointerType(C.VoidPtrTy).castAs()); return CGF.Builder.CreateElementBitCast( PtrAddr, CGF.ConvertTypeForMem(LHSVD->getType())); }); PrivateScope.addPrivate(RHSVD, [&C, &CGF, &ParamIn, RHSVD]() { // Pull out the pointer to the variable. Address PtrAddr = CGF.EmitLoadOfPointer( CGF.GetAddrOfLocalVar(&ParamIn), C.getPointerType(C.VoidPtrTy).castAs()); return CGF.Builder.CreateElementBitCast( PtrAddr, CGF.ConvertTypeForMem(RHSVD->getType())); }); PrivateScope.Privatize(); // Emit the combiner body: // %2 = ( *%lhs, *%rhs) // store %2, * %lhs CGM.getOpenMPRuntime().emitSingleReductionCombiner( CGF, ReductionOp, PrivateRef, cast(LHS), cast(RHS)); CGF.FinishFunction(); return Fn; } /// Emits reduction finalizer function: /// \code /// void @.red_fini(void* %arg) { /// %0 = bitcast void* %arg to * /// (* %0) /// ret void /// } /// \endcode static llvm::Value *emitReduceFiniFunction(CodeGenModule &CGM, SourceLocation Loc, ReductionCodeGen &RCG, unsigned N) { if (!RCG.needCleanups(N)) return nullptr; ASTContext &C = CGM.getContext(); FunctionArgList Args; ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, ImplicitParamDecl::Other); Args.emplace_back(&Param); const auto &FnInfo = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo); std::string Name = CGM.getOpenMPRuntime().getName({"red_fini", ""}); auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule()); CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo); Fn->setDoesNotRecurse(); CodeGenFunction CGF(CGM); CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc); Address PrivateAddr = CGF.EmitLoadOfPointer( CGF.GetAddrOfLocalVar(&Param), C.getPointerType(C.VoidPtrTy).castAs()); llvm::Value *Size = nullptr; // If the size of the reduction item is non-constant, load it from global // threadprivate variable. if (RCG.getSizes(N).second) { Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate( CGF, CGM.getContext().getSizeType(), generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N))); Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false, CGM.getContext().getSizeType(), Loc); } RCG.emitAggregateType(CGF, N, Size); // Emit the finalizer body: // (* %0) RCG.emitCleanups(CGF, N, PrivateAddr); CGF.FinishFunction(Loc); return Fn; } llvm::Value *CGOpenMPRuntime::emitTaskReductionInit( CodeGenFunction &CGF, SourceLocation Loc, ArrayRef LHSExprs, ArrayRef RHSExprs, const OMPTaskDataTy &Data) { if (!CGF.HaveInsertPoint() || Data.ReductionVars.empty()) return nullptr; // Build typedef struct: // kmp_taskred_input { // void *reduce_shar; // shared reduction item // void *reduce_orig; // original reduction item used for initialization // size_t reduce_size; // size of data item // void *reduce_init; // data initialization routine // void *reduce_fini; // data finalization routine // void *reduce_comb; // data combiner routine // kmp_task_red_flags_t flags; // flags for additional info from compiler // } kmp_taskred_input_t; ASTContext &C = CGM.getContext(); RecordDecl *RD = C.buildImplicitRecord("kmp_taskred_input_t"); RD->startDefinition(); const FieldDecl *SharedFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy); const FieldDecl *OrigFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy); const FieldDecl *SizeFD = addFieldToRecordDecl(C, RD, C.getSizeType()); const FieldDecl *InitFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy); const FieldDecl *FiniFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy); const FieldDecl *CombFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy); const FieldDecl *FlagsFD = addFieldToRecordDecl( C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false)); RD->completeDefinition(); QualType RDType = C.getRecordType(RD); unsigned Size = Data.ReductionVars.size(); llvm::APInt ArraySize(/*numBits=*/64, Size); QualType ArrayRDType = C.getConstantArrayType( RDType, ArraySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0); // kmp_task_red_input_t .rd_input.[Size]; Address TaskRedInput = CGF.CreateMemTemp(ArrayRDType, ".rd_input."); ReductionCodeGen RCG(Data.ReductionVars, Data.ReductionOrigs, Data.ReductionCopies, Data.ReductionOps); for (unsigned Cnt = 0; Cnt < Size; ++Cnt) { // kmp_task_red_input_t &ElemLVal = .rd_input.[Cnt]; llvm::Value *Idxs[] = {llvm::ConstantInt::get(CGM.SizeTy, /*V=*/0), llvm::ConstantInt::get(CGM.SizeTy, Cnt)}; llvm::Value *GEP = CGF.EmitCheckedInBoundsGEP( TaskRedInput.getPointer(), Idxs, /*SignedIndices=*/false, /*IsSubtraction=*/false, Loc, ".rd_input.gep."); LValue ElemLVal = CGF.MakeNaturalAlignAddrLValue(GEP, RDType); // ElemLVal.reduce_shar = &Shareds[Cnt]; LValue SharedLVal = CGF.EmitLValueForField(ElemLVal, SharedFD); RCG.emitSharedOrigLValue(CGF, Cnt); llvm::Value *CastedShared = CGF.EmitCastToVoidPtr(RCG.getSharedLValue(Cnt).getPointer(CGF)); CGF.EmitStoreOfScalar(CastedShared, SharedLVal); // ElemLVal.reduce_orig = &Origs[Cnt]; LValue OrigLVal = CGF.EmitLValueForField(ElemLVal, OrigFD); llvm::Value *CastedOrig = CGF.EmitCastToVoidPtr(RCG.getOrigLValue(Cnt).getPointer(CGF)); CGF.EmitStoreOfScalar(CastedOrig, OrigLVal); RCG.emitAggregateType(CGF, Cnt); llvm::Value *SizeValInChars; llvm::Value *SizeVal; std::tie(SizeValInChars, SizeVal) = RCG.getSizes(Cnt); // We use delayed creation/initialization for VLAs and array sections. It is // required because runtime does not provide the way to pass the sizes of // VLAs/array sections to initializer/combiner/finalizer functions. Instead // threadprivate global variables are used to store these values and use // them in the functions. bool DelayedCreation = !!SizeVal; SizeValInChars = CGF.Builder.CreateIntCast(SizeValInChars, CGM.SizeTy, /*isSigned=*/false); LValue SizeLVal = CGF.EmitLValueForField(ElemLVal, SizeFD); CGF.EmitStoreOfScalar(SizeValInChars, SizeLVal); // ElemLVal.reduce_init = init; LValue InitLVal = CGF.EmitLValueForField(ElemLVal, InitFD); llvm::Value *InitAddr = CGF.EmitCastToVoidPtr(emitReduceInitFunction(CGM, Loc, RCG, Cnt)); CGF.EmitStoreOfScalar(InitAddr, InitLVal); // ElemLVal.reduce_fini = fini; LValue FiniLVal = CGF.EmitLValueForField(ElemLVal, FiniFD); llvm::Value *Fini = emitReduceFiniFunction(CGM, Loc, RCG, Cnt); llvm::Value *FiniAddr = Fini ? CGF.EmitCastToVoidPtr(Fini) : llvm::ConstantPointerNull::get(CGM.VoidPtrTy); CGF.EmitStoreOfScalar(FiniAddr, FiniLVal); // ElemLVal.reduce_comb = comb; LValue CombLVal = CGF.EmitLValueForField(ElemLVal, CombFD); llvm::Value *CombAddr = CGF.EmitCastToVoidPtr(emitReduceCombFunction( CGM, Loc, RCG, Cnt, Data.ReductionOps[Cnt], LHSExprs[Cnt], RHSExprs[Cnt], Data.ReductionCopies[Cnt])); CGF.EmitStoreOfScalar(CombAddr, CombLVal); // ElemLVal.flags = 0; LValue FlagsLVal = CGF.EmitLValueForField(ElemLVal, FlagsFD); if (DelayedCreation) { CGF.EmitStoreOfScalar( llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1, /*isSigned=*/true), FlagsLVal); } else CGF.EmitNullInitialization(FlagsLVal.getAddress(CGF), FlagsLVal.getType()); } if (Data.IsReductionWithTaskMod) { // Build call void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int // is_ws, int num, void *data); llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc); llvm::Value *GTid = CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy, /*isSigned=*/true); llvm::Value *Args[] = { IdentTLoc, GTid, llvm::ConstantInt::get(CGM.IntTy, Data.IsWorksharingReduction ? 1 : 0, /*isSigned=*/true), llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true), CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( TaskRedInput.getPointer(), CGM.VoidPtrTy)}; return CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_taskred_modifier_init), Args); } // Build call void *__kmpc_taskred_init(int gtid, int num_data, void *data); llvm::Value *Args[] = { CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy, /*isSigned=*/true), llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true), CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TaskRedInput.getPointer(), CGM.VoidPtrTy)}; return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_taskred_init), Args); } void CGOpenMPRuntime::emitTaskReductionFini(CodeGenFunction &CGF, SourceLocation Loc, bool IsWorksharingReduction) { // Build call void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int // is_ws, int num, void *data); llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc); llvm::Value *GTid = CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy, /*isSigned=*/true); llvm::Value *Args[] = {IdentTLoc, GTid, llvm::ConstantInt::get(CGM.IntTy, IsWorksharingReduction ? 1 : 0, /*isSigned=*/true)}; (void)CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_task_reduction_modifier_fini), Args); } void CGOpenMPRuntime::emitTaskReductionFixups(CodeGenFunction &CGF, SourceLocation Loc, ReductionCodeGen &RCG, unsigned N) { auto Sizes = RCG.getSizes(N); // Emit threadprivate global variable if the type is non-constant // (Sizes.second = nullptr). if (Sizes.second) { llvm::Value *SizeVal = CGF.Builder.CreateIntCast(Sizes.second, CGM.SizeTy, /*isSigned=*/false); Address SizeAddr = getAddrOfArtificialThreadPrivate( CGF, CGM.getContext().getSizeType(), generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N))); CGF.Builder.CreateStore(SizeVal, SizeAddr, /*IsVolatile=*/false); } } Address CGOpenMPRuntime::getTaskReductionItem(CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *ReductionsPtr, LValue SharedLVal) { // Build call void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void // *d); llvm::Value *Args[] = {CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy, /*isSigned=*/true), ReductionsPtr, CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( SharedLVal.getPointer(CGF), CGM.VoidPtrTy)}; return Address( CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_task_reduction_get_th_data), Args), SharedLVal.getAlignment()); } void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF, SourceLocation Loc) { if (!CGF.HaveInsertPoint()) return; if (CGF.CGM.getLangOpts().OpenMPIRBuilder) { OMPBuilder.createTaskwait(CGF.Builder); } else { // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 // global_tid); llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; // Ignore return result until untied tasks are supported. CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_omp_taskwait), Args); } if (auto *Region = dyn_cast_or_null(CGF.CapturedStmtInfo)) Region->emitUntiedSwitch(CGF); } void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF, OpenMPDirectiveKind InnerKind, const RegionCodeGenTy &CodeGen, bool HasCancel) { if (!CGF.HaveInsertPoint()) return; InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel, InnerKind != OMPD_critical && InnerKind != OMPD_master && InnerKind != OMPD_masked); CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr); } namespace { enum RTCancelKind { CancelNoreq = 0, CancelParallel = 1, CancelLoop = 2, CancelSections = 3, CancelTaskgroup = 4 }; } // anonymous namespace static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) { RTCancelKind CancelKind = CancelNoreq; if (CancelRegion == OMPD_parallel) CancelKind = CancelParallel; else if (CancelRegion == OMPD_for) CancelKind = CancelLoop; else if (CancelRegion == OMPD_sections) CancelKind = CancelSections; else { assert(CancelRegion == OMPD_taskgroup); CancelKind = CancelTaskgroup; } return CancelKind; } void CGOpenMPRuntime::emitCancellationPointCall( CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind CancelRegion) { if (!CGF.HaveInsertPoint()) return; // Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32 // global_tid, kmp_int32 cncl_kind); if (auto *OMPRegionInfo = dyn_cast_or_null(CGF.CapturedStmtInfo)) { // For 'cancellation point taskgroup', the task region info may not have a // cancel. This may instead happen in another adjacent task. if (CancelRegion == OMPD_taskgroup || OMPRegionInfo->hasCancel()) { llvm::Value *Args[] = { emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), CGF.Builder.getInt32(getCancellationKind(CancelRegion))}; // Ignore return result until untied tasks are supported. llvm::Value *Result = CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_cancellationpoint), Args); // if (__kmpc_cancellationpoint()) { // exit from construct; // } llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit"); llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue"); llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result); CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB); CGF.EmitBlock(ExitBB); // exit from construct; CodeGenFunction::JumpDest CancelDest = CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind()); CGF.EmitBranchThroughCleanup(CancelDest); CGF.EmitBlock(ContBB, /*IsFinished=*/true); } } } void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc, const Expr *IfCond, OpenMPDirectiveKind CancelRegion) { if (!CGF.HaveInsertPoint()) return; // Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid, // kmp_int32 cncl_kind); auto &M = CGM.getModule(); if (auto *OMPRegionInfo = dyn_cast_or_null(CGF.CapturedStmtInfo)) { auto &&ThenGen = [this, &M, Loc, CancelRegion, OMPRegionInfo](CodeGenFunction &CGF, PrePostActionTy &) { CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime(); llvm::Value *Args[] = { RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc), CGF.Builder.getInt32(getCancellationKind(CancelRegion))}; // Ignore return result until untied tasks are supported. llvm::Value *Result = CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_cancel), Args); // if (__kmpc_cancel()) { // exit from construct; // } llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit"); llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue"); llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result); CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB); CGF.EmitBlock(ExitBB); // exit from construct; CodeGenFunction::JumpDest CancelDest = CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind()); CGF.EmitBranchThroughCleanup(CancelDest); CGF.EmitBlock(ContBB, /*IsFinished=*/true); }; if (IfCond) { emitIfClause(CGF, IfCond, ThenGen, [](CodeGenFunction &, PrePostActionTy &) {}); } else { RegionCodeGenTy ThenRCG(ThenGen); ThenRCG(CGF); } } } namespace { /// Cleanup action for uses_allocators support. class OMPUsesAllocatorsActionTy final : public PrePostActionTy { ArrayRef> Allocators; public: OMPUsesAllocatorsActionTy( ArrayRef> Allocators) : Allocators(Allocators) {} void Enter(CodeGenFunction &CGF) override { if (!CGF.HaveInsertPoint()) return; for (const auto &AllocatorData : Allocators) { CGF.CGM.getOpenMPRuntime().emitUsesAllocatorsInit( CGF, AllocatorData.first, AllocatorData.second); } } void Exit(CodeGenFunction &CGF) override { if (!CGF.HaveInsertPoint()) return; for (const auto &AllocatorData : Allocators) { CGF.CGM.getOpenMPRuntime().emitUsesAllocatorsFini(CGF, AllocatorData.first); } } }; } // namespace void CGOpenMPRuntime::emitTargetOutlinedFunction( const OMPExecutableDirective &D, StringRef ParentName, llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { assert(!ParentName.empty() && "Invalid target region parent name!"); HasEmittedTargetRegion = true; SmallVector, 4> Allocators; for (const auto *C : D.getClausesOfKind()) { for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) { const OMPUsesAllocatorsClause::Data D = C->getAllocatorData(I); if (!D.AllocatorTraits) continue; Allocators.emplace_back(D.Allocator, D.AllocatorTraits); } } OMPUsesAllocatorsActionTy UsesAllocatorAction(Allocators); CodeGen.setAction(UsesAllocatorAction); emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, CodeGen); } void CGOpenMPRuntime::emitUsesAllocatorsInit(CodeGenFunction &CGF, const Expr *Allocator, const Expr *AllocatorTraits) { llvm::Value *ThreadId = getThreadID(CGF, Allocator->getExprLoc()); ThreadId = CGF.Builder.CreateIntCast(ThreadId, CGF.IntTy, /*isSigned=*/true); // Use default memspace handle. llvm::Value *MemSpaceHandle = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); llvm::Value *NumTraits = llvm::ConstantInt::get( CGF.IntTy, cast( AllocatorTraits->getType()->getAsArrayTypeUnsafe()) ->getSize() .getLimitedValue()); LValue AllocatorTraitsLVal = CGF.EmitLValue(AllocatorTraits); Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( AllocatorTraitsLVal.getAddress(CGF), CGF.VoidPtrPtrTy); AllocatorTraitsLVal = CGF.MakeAddrLValue(Addr, CGF.getContext().VoidPtrTy, AllocatorTraitsLVal.getBaseInfo(), AllocatorTraitsLVal.getTBAAInfo()); llvm::Value *Traits = CGF.EmitLoadOfScalar(AllocatorTraitsLVal, AllocatorTraits->getExprLoc()); llvm::Value *AllocatorVal = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_init_allocator), {ThreadId, MemSpaceHandle, NumTraits, Traits}); // Store to allocator. CGF.EmitVarDecl(*cast( cast(Allocator->IgnoreParenImpCasts())->getDecl())); LValue AllocatorLVal = CGF.EmitLValue(Allocator->IgnoreParenImpCasts()); AllocatorVal = CGF.EmitScalarConversion(AllocatorVal, CGF.getContext().VoidPtrTy, Allocator->getType(), Allocator->getExprLoc()); CGF.EmitStoreOfScalar(AllocatorVal, AllocatorLVal); } void CGOpenMPRuntime::emitUsesAllocatorsFini(CodeGenFunction &CGF, const Expr *Allocator) { llvm::Value *ThreadId = getThreadID(CGF, Allocator->getExprLoc()); ThreadId = CGF.Builder.CreateIntCast(ThreadId, CGF.IntTy, /*isSigned=*/true); LValue AllocatorLVal = CGF.EmitLValue(Allocator->IgnoreParenImpCasts()); llvm::Value *AllocatorVal = CGF.EmitLoadOfScalar(AllocatorLVal, Allocator->getExprLoc()); AllocatorVal = CGF.EmitScalarConversion(AllocatorVal, Allocator->getType(), CGF.getContext().VoidPtrTy, Allocator->getExprLoc()); (void)CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), OMPRTL___kmpc_destroy_allocator), {ThreadId, AllocatorVal}); } void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper( const OMPExecutableDirective &D, StringRef ParentName, llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { // Create a unique name for the entry function using the source location // information of the current target region. The name will be something like: // // __omp_offloading_DD_FFFF_PP_lBB // // where DD_FFFF is an ID unique to the file (device and file IDs), PP is the // mangled name of the function that encloses the target region and BB is the // line number of the target region. unsigned DeviceID; unsigned FileID; unsigned Line; getTargetEntryUniqueInfo(CGM.getContext(), D.getBeginLoc(), DeviceID, FileID, Line); SmallString<64> EntryFnName; { llvm::raw_svector_ostream OS(EntryFnName); OS << "__omp_offloading" << llvm::format("_%x", DeviceID) << llvm::format("_%x_", FileID) << ParentName << "_l" << Line; } const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target); CodeGenFunction CGF(CGM, true); CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName); CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); OutlinedFn = CGF.GenerateOpenMPCapturedStmtFunction(CS, D.getBeginLoc()); // If this target outline function is not an offload entry, we don't need to // register it. if (!IsOffloadEntry) return; // The target region ID is used by the runtime library to identify the current // target region, so it only has to be unique and not necessarily point to // anything. It could be the pointer to the outlined function that implements // the target region, but we aren't using that so that the compiler doesn't // need to keep that, and could therefore inline the host function if proven // worthwhile during optimization. In the other hand, if emitting code for the // device, the ID has to be the function address so that it can retrieved from // the offloading entry and launched by the runtime library. We also mark the // outlined function to have external linkage in case we are emitting code for // the device, because these functions will be entry points to the device. if (CGM.getLangOpts().OpenMPIsDevice) { OutlinedFnID = llvm::ConstantExpr::getBitCast(OutlinedFn, CGM.Int8PtrTy); OutlinedFn->setLinkage(llvm::GlobalValue::WeakAnyLinkage); OutlinedFn->setDSOLocal(false); if (CGM.getTriple().isAMDGCN()) OutlinedFn->setCallingConv(llvm::CallingConv::AMDGPU_KERNEL); } else { std::string Name = getName({EntryFnName, "region_id"}); OutlinedFnID = new llvm::GlobalVariable( CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, llvm::Constant::getNullValue(CGM.Int8Ty), Name); } // Register the information for the entry associated with this target region. OffloadEntriesInfoManager.registerTargetRegionEntryInfo( DeviceID, FileID, ParentName, Line, OutlinedFn, OutlinedFnID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryTargetRegion); } /// Checks if the expression is constant or does not have non-trivial function /// calls. static bool isTrivial(ASTContext &Ctx, const Expr * E) { // We can skip constant expressions. // We can skip expressions with trivial calls or simple expressions. return (E->isEvaluatable(Ctx, Expr::SE_AllowUndefinedBehavior) || !E->hasNonTrivialCall(Ctx)) && !E->HasSideEffects(Ctx, /*IncludePossibleEffects=*/true); } const Stmt *CGOpenMPRuntime::getSingleCompoundChild(ASTContext &Ctx, const Stmt *Body) { const Stmt *Child = Body->IgnoreContainers(); while (const auto *C = dyn_cast_or_null(Child)) { Child = nullptr; for (const Stmt *S : C->body()) { if (const auto *E = dyn_cast(S)) { if (isTrivial(Ctx, E)) continue; } // Some of the statements can be ignored. if (isa(S) || isa(S) || isa(S) || isa(S) || isa(S)) continue; // Analyze declarations. if (const auto *DS = dyn_cast(S)) { if (llvm::all_of(DS->decls(), [](const Decl *D) { if (isa(D) || isa(D) || isa(D) || isa(D) || isa(D) || isa(D) || isa(D) || isa(D) || isa(D) || isa(D)) return true; const auto *VD = dyn_cast(D); if (!VD) return false; return VD->hasGlobalStorage() || !VD->isUsed(); })) continue; } // Found multiple children - cannot get the one child only. if (Child) return nullptr; Child = S; } if (Child) Child = Child->IgnoreContainers(); } return Child; } /// Emit the number of teams for a target directive. Inspect the num_teams /// clause associated with a teams construct combined or closely nested /// with the target directive. /// /// Emit a team of size one for directives such as 'target parallel' that /// have no associated teams construct. /// /// Otherwise, return nullptr. static llvm::Value * emitNumTeamsForTargetDirective(CodeGenFunction &CGF, const OMPExecutableDirective &D) { assert(!CGF.getLangOpts().OpenMPIsDevice && "Clauses associated with the teams directive expected to be emitted " "only for the host!"); OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); assert(isOpenMPTargetExecutionDirective(DirectiveKind) && "Expected target-based executable directive."); CGBuilderTy &Bld = CGF.Builder; switch (DirectiveKind) { case OMPD_target: { const auto *CS = D.getInnermostCapturedStmt(); const auto *Body = CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(CGF.getContext(), Body); if (const auto *NestedDir = dyn_cast_or_null(ChildStmt)) { if (isOpenMPTeamsDirective(NestedDir->getDirectiveKind())) { if (NestedDir->hasClausesOfKind()) { CGOpenMPInnerExprInfo CGInfo(CGF, *CS); CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); const Expr *NumTeams = NestedDir->getSingleClause()->getNumTeams(); llvm::Value *NumTeamsVal = CGF.EmitScalarExpr(NumTeams, /*IgnoreResultAssign*/ true); return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty, /*isSigned=*/true); } return Bld.getInt32(0); } if (isOpenMPParallelDirective(NestedDir->getDirectiveKind()) || isOpenMPSimdDirective(NestedDir->getDirectiveKind())) return Bld.getInt32(1); return Bld.getInt32(0); } return nullptr; } case OMPD_target_teams: case OMPD_target_teams_distribute: case OMPD_target_teams_distribute_simd: case OMPD_target_teams_distribute_parallel_for: case OMPD_target_teams_distribute_parallel_for_simd: { if (D.hasClausesOfKind()) { CodeGenFunction::RunCleanupsScope NumTeamsScope(CGF); const Expr *NumTeams = D.getSingleClause()->getNumTeams(); llvm::Value *NumTeamsVal = CGF.EmitScalarExpr(NumTeams, /*IgnoreResultAssign*/ true); return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty, /*isSigned=*/true); } return Bld.getInt32(0); } case OMPD_target_parallel: case OMPD_target_parallel_for: case OMPD_target_parallel_for_simd: case OMPD_target_simd: return Bld.getInt32(1); case OMPD_parallel: case OMPD_for: case OMPD_parallel_for: case OMPD_parallel_master: case OMPD_parallel_sections: case OMPD_for_simd: case OMPD_parallel_for_simd: case OMPD_cancel: case OMPD_cancellation_point: case OMPD_ordered: case OMPD_threadprivate: case OMPD_allocate: case OMPD_task: case OMPD_simd: case OMPD_tile: case OMPD_sections: case OMPD_section: case OMPD_single: case OMPD_master: case OMPD_critical: case OMPD_taskyield: case OMPD_barrier: case OMPD_taskwait: case OMPD_taskgroup: case OMPD_atomic: case OMPD_flush: case OMPD_depobj: case OMPD_scan: case OMPD_teams: case OMPD_target_data: case OMPD_target_exit_data: case OMPD_target_enter_data: case OMPD_distribute: case OMPD_distribute_simd: case OMPD_distribute_parallel_for: case OMPD_distribute_parallel_for_simd: case OMPD_teams_distribute: case OMPD_teams_distribute_simd: case OMPD_teams_distribute_parallel_for: case OMPD_teams_distribute_parallel_for_simd: case OMPD_target_update: case OMPD_declare_simd: case OMPD_declare_variant: case OMPD_begin_declare_variant: case OMPD_end_declare_variant: case OMPD_declare_target: case OMPD_end_declare_target: case OMPD_declare_reduction: case OMPD_declare_mapper: case OMPD_taskloop: case OMPD_taskloop_simd: case OMPD_master_taskloop: case OMPD_master_taskloop_simd: case OMPD_parallel_master_taskloop: case OMPD_parallel_master_taskloop_simd: case OMPD_requires: case OMPD_unknown: break; default: break; } llvm_unreachable("Unexpected directive kind."); } static llvm::Value *getNumThreads(CodeGenFunction &CGF, const CapturedStmt *CS, llvm::Value *DefaultThreadLimitVal) { const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild( CGF.getContext(), CS->getCapturedStmt()); if (const auto *Dir = dyn_cast_or_null(Child)) { if (isOpenMPParallelDirective(Dir->getDirectiveKind())) { llvm::Value *NumThreads = nullptr; llvm::Value *CondVal = nullptr; // Handle if clause. If if clause present, the number of threads is // calculated as ? ( ? : 0 ) : 1. if (Dir->hasClausesOfKind()) { CGOpenMPInnerExprInfo CGInfo(CGF, *CS); CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); const OMPIfClause *IfClause = nullptr; for (const auto *C : Dir->getClausesOfKind()) { if (C->getNameModifier() == OMPD_unknown || C->getNameModifier() == OMPD_parallel) { IfClause = C; break; } } if (IfClause) { const Expr *Cond = IfClause->getCondition(); bool Result; if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) { if (!Result) return CGF.Builder.getInt32(1); } else { CodeGenFunction::LexicalScope Scope(CGF, Cond->getSourceRange()); if (const auto *PreInit = cast_or_null(IfClause->getPreInitStmt())) { for (const auto *I : PreInit->decls()) { if (!I->hasAttr()) { CGF.EmitVarDecl(cast(*I)); } else { CodeGenFunction::AutoVarEmission Emission = CGF.EmitAutoVarAlloca(cast(*I)); CGF.EmitAutoVarCleanups(Emission); } } } CondVal = CGF.EvaluateExprAsBool(Cond); } } } // Check the value of num_threads clause iff if clause was not specified // or is not evaluated to false. if (Dir->hasClausesOfKind()) { CGOpenMPInnerExprInfo CGInfo(CGF, *CS); CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); const auto *NumThreadsClause = Dir->getSingleClause(); CodeGenFunction::LexicalScope Scope( CGF, NumThreadsClause->getNumThreads()->getSourceRange()); if (const auto *PreInit = cast_or_null(NumThreadsClause->getPreInitStmt())) { for (const auto *I : PreInit->decls()) { if (!I->hasAttr()) { CGF.EmitVarDecl(cast(*I)); } else { CodeGenFunction::AutoVarEmission Emission = CGF.EmitAutoVarAlloca(cast(*I)); CGF.EmitAutoVarCleanups(Emission); } } } NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads()); NumThreads = CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned=*/false); if (DefaultThreadLimitVal) NumThreads = CGF.Builder.CreateSelect( CGF.Builder.CreateICmpULT(DefaultThreadLimitVal, NumThreads), DefaultThreadLimitVal, NumThreads); } else { NumThreads = DefaultThreadLimitVal ? DefaultThreadLimitVal : CGF.Builder.getInt32(0); } // Process condition of the if clause. if (CondVal) { NumThreads = CGF.Builder.CreateSelect(CondVal, NumThreads, CGF.Builder.getInt32(1)); } return NumThreads; } if (isOpenMPSimdDirective(Dir->getDirectiveKind())) return CGF.Builder.getInt32(1); return DefaultThreadLimitVal; } return DefaultThreadLimitVal ? DefaultThreadLimitVal : CGF.Builder.getInt32(0); } /// Emit the number of threads for a target directive. Inspect the /// thread_limit clause associated with a teams construct combined or closely /// nested with the target directive. /// /// Emit the num_threads clause for directives such as 'target parallel' that /// have no associated teams construct. /// /// Otherwise, return nullptr. static llvm::Value * emitNumThreadsForTargetDirective(CodeGenFunction &CGF, const OMPExecutableDirective &D) { assert(!CGF.getLangOpts().OpenMPIsDevice && "Clauses associated with the teams directive expected to be emitted " "only for the host!"); OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); assert(isOpenMPTargetExecutionDirective(DirectiveKind) && "Expected target-based executable directive."); CGBuilderTy &Bld = CGF.Builder; llvm::Value *ThreadLimitVal = nullptr; llvm::Value *NumThreadsVal = nullptr; switch (DirectiveKind) { case OMPD_target: { const CapturedStmt *CS = D.getInnermostCapturedStmt(); if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal)) return NumThreads; const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild( CGF.getContext(), CS->getCapturedStmt()); if (const auto *Dir = dyn_cast_or_null(Child)) { if (Dir->hasClausesOfKind()) { CGOpenMPInnerExprInfo CGInfo(CGF, *CS); CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); const auto *ThreadLimitClause = Dir->getSingleClause(); CodeGenFunction::LexicalScope Scope( CGF, ThreadLimitClause->getThreadLimit()->getSourceRange()); if (const auto *PreInit = cast_or_null(ThreadLimitClause->getPreInitStmt())) { for (const auto *I : PreInit->decls()) { if (!I->hasAttr()) { CGF.EmitVarDecl(cast(*I)); } else { CodeGenFunction::AutoVarEmission Emission = CGF.EmitAutoVarAlloca(cast(*I)); CGF.EmitAutoVarCleanups(Emission); } } } llvm::Value *ThreadLimit = CGF.EmitScalarExpr( ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true); ThreadLimitVal = Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false); } if (isOpenMPTeamsDirective(Dir->getDirectiveKind()) && !isOpenMPDistributeDirective(Dir->getDirectiveKind())) { CS = Dir->getInnermostCapturedStmt(); const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild( CGF.getContext(), CS->getCapturedStmt()); Dir = dyn_cast_or_null(Child); } if (Dir && isOpenMPDistributeDirective(Dir->getDirectiveKind()) && !isOpenMPSimdDirective(Dir->getDirectiveKind())) { CS = Dir->getInnermostCapturedStmt(); if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal)) return NumThreads; } if (Dir && isOpenMPSimdDirective(Dir->getDirectiveKind())) return Bld.getInt32(1); } return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0); } case OMPD_target_teams: { if (D.hasClausesOfKind()) { CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF); const auto *ThreadLimitClause = D.getSingleClause(); llvm::Value *ThreadLimit = CGF.EmitScalarExpr( ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true); ThreadLimitVal = Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false); } const CapturedStmt *CS = D.getInnermostCapturedStmt(); if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal)) return NumThreads; const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild( CGF.getContext(), CS->getCapturedStmt()); if (const auto *Dir = dyn_cast_or_null(Child)) { if (Dir->getDirectiveKind() == OMPD_distribute) { CS = Dir->getInnermostCapturedStmt(); if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal)) return NumThreads; } } return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0); } case OMPD_target_teams_distribute: if (D.hasClausesOfKind()) { CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF); const auto *ThreadLimitClause = D.getSingleClause(); llvm::Value *ThreadLimit = CGF.EmitScalarExpr( ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true); ThreadLimitVal = Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false); } return getNumThreads(CGF, D.getInnermostCapturedStmt(), ThreadLimitVal); case OMPD_target_parallel: case OMPD_target_parallel_for: case OMPD_target_parallel_for_simd: case OMPD_target_teams_distribute_parallel_for: case OMPD_target_teams_distribute_parallel_for_simd: { llvm::Value *CondVal = nullptr; // Handle if clause. If if clause present, the number of threads is // calculated as ? ( ? : 0 ) : 1. if (D.hasClausesOfKind()) { const OMPIfClause *IfClause = nullptr; for (const auto *C : D.getClausesOfKind()) { if (C->getNameModifier() == OMPD_unknown || C->getNameModifier() == OMPD_parallel) { IfClause = C; break; } } if (IfClause) { const Expr *Cond = IfClause->getCondition(); bool Result; if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) { if (!Result) return Bld.getInt32(1); } else { CodeGenFunction::RunCleanupsScope Scope(CGF); CondVal = CGF.EvaluateExprAsBool(Cond); } } } if (D.hasClausesOfKind()) { CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF); const auto *ThreadLimitClause = D.getSingleClause(); llvm::Value *ThreadLimit = CGF.EmitScalarExpr( ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true); ThreadLimitVal = Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false); } if (D.hasClausesOfKind()) { CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); const auto *NumThreadsClause = D.getSingleClause(); llvm::Value *NumThreads = CGF.EmitScalarExpr( NumThreadsClause->getNumThreads(), /*IgnoreResultAssign=*/true); NumThreadsVal = Bld.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned=*/false); ThreadLimitVal = ThreadLimitVal ? Bld.CreateSelect(Bld.CreateICmpULT(NumThreadsVal, ThreadLimitVal), NumThreadsVal, ThreadLimitVal) : NumThreadsVal; } if (!ThreadLimitVal) ThreadLimitVal = Bld.getInt32(0); if (CondVal) return Bld.CreateSelect(CondVal, ThreadLimitVal, Bld.getInt32(1)); return ThreadLimitVal; } case OMPD_target_teams_distribute_simd: case OMPD_target_simd: return Bld.getInt32(1); case OMPD_parallel: case OMPD_for: case OMPD_parallel_for: case OMPD_parallel_master: case OMPD_parallel_sections: case OMPD_for_simd: case OMPD_parallel_for_simd: case OMPD_cancel: case OMPD_cancellation_point: case OMPD_ordered: case OMPD_threadprivate: case OMPD_allocate: case OMPD_task: case OMPD_simd: case OMPD_tile: case OMPD_sections: case OMPD_section: case OMPD_single: case OMPD_master: case OMPD_critical: case OMPD_taskyield: case OMPD_barrier: case OMPD_taskwait: case OMPD_taskgroup: case OMPD_atomic: case OMPD_flush: case OMPD_depobj: case OMPD_scan: case OMPD_teams: case OMPD_target_data: case OMPD_target_exit_data: case OMPD_target_enter_data: case OMPD_distribute: case OMPD_distribute_simd: case OMPD_distribute_parallel_for: case OMPD_distribute_parallel_for_simd: case OMPD_teams_distribute: case OMPD_teams_distribute_simd: case OMPD_teams_distribute_parallel_for: case OMPD_teams_distribute_parallel_for_simd: case OMPD_target_update: case OMPD_declare_simd: case OMPD_declare_variant: case OMPD_begin_declare_variant: case OMPD_end_declare_variant: case OMPD_declare_target: case OMPD_end_declare_target: case OMPD_declare_reduction: case OMPD_declare_mapper: case OMPD_taskloop: case OMPD_taskloop_simd: case OMPD_master_taskloop: case OMPD_master_taskloop_simd: case OMPD_parallel_master_taskloop: case OMPD_parallel_master_taskloop_simd: case OMPD_requires: case OMPD_unknown: break; default: break; } llvm_unreachable("Unsupported directive kind."); } namespace { LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); // Utility to handle information from clauses associated with a given // construct that use mappable expressions (e.g. 'map' clause, 'to' clause). // It provides a convenient interface to obtain the information and generate // code for that information. class MappableExprsHandler { public: /// Values for bit flags used to specify the mapping type for /// offloading. enum OpenMPOffloadMappingFlags : uint64_t { /// No flags OMP_MAP_NONE = 0x0, /// Allocate memory on the device and move data from host to device. OMP_MAP_TO = 0x01, /// Allocate memory on the device and move data from device to host. OMP_MAP_FROM = 0x02, /// Always perform the requested mapping action on the element, even /// if it was already mapped before. OMP_MAP_ALWAYS = 0x04, /// Delete the element from the device environment, ignoring the /// current reference count associated with the element. OMP_MAP_DELETE = 0x08, /// The element being mapped is a pointer-pointee pair; both the /// pointer and the pointee should be mapped. OMP_MAP_PTR_AND_OBJ = 0x10, /// This flags signals that the base address of an entry should be /// passed to the target kernel as an argument. OMP_MAP_TARGET_PARAM = 0x20, /// Signal that the runtime library has to return the device pointer /// in the current position for the data being mapped. Used when we have the /// use_device_ptr or use_device_addr clause. OMP_MAP_RETURN_PARAM = 0x40, /// This flag signals that the reference being passed is a pointer to /// private data. OMP_MAP_PRIVATE = 0x80, /// Pass the element to the device by value. OMP_MAP_LITERAL = 0x100, /// Implicit map OMP_MAP_IMPLICIT = 0x200, /// Close is a hint to the runtime to allocate memory close to /// the target device. OMP_MAP_CLOSE = 0x400, /// 0x800 is reserved for compatibility with XLC. /// Produce a runtime error if the data is not already allocated. OMP_MAP_PRESENT = 0x1000, /// Signal that the runtime library should use args as an array of /// descriptor_dim pointers and use args_size as dims. Used when we have /// non-contiguous list items in target update directive OMP_MAP_NON_CONTIG = 0x100000000000, /// The 16 MSBs of the flags indicate whether the entry is member of some /// struct/class. OMP_MAP_MEMBER_OF = 0xffff000000000000, LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ OMP_MAP_MEMBER_OF), }; /// Get the offset of the OMP_MAP_MEMBER_OF field. static unsigned getFlagMemberOffset() { unsigned Offset = 0; for (uint64_t Remain = OMP_MAP_MEMBER_OF; !(Remain & 1); Remain = Remain >> 1) Offset++; return Offset; } /// Class that holds debugging information for a data mapping to be passed to /// the runtime library. class MappingExprInfo { /// The variable declaration used for the data mapping. const ValueDecl *MapDecl = nullptr; /// The original expression used in the map clause, or null if there is /// none. const Expr *MapExpr = nullptr; public: MappingExprInfo(const ValueDecl *MapDecl, const Expr *MapExpr = nullptr) : MapDecl(MapDecl), MapExpr(MapExpr) {} const ValueDecl *getMapDecl() const { return MapDecl; } const Expr *getMapExpr() const { return MapExpr; } }; /// Class that associates information with a base pointer to be passed to the /// runtime library. class BasePointerInfo { /// The base pointer. llvm::Value *Ptr = nullptr; /// The base declaration that refers to this device pointer, or null if /// there is none. const ValueDecl *DevPtrDecl = nullptr; public: BasePointerInfo(llvm::Value *Ptr, const ValueDecl *DevPtrDecl = nullptr) : Ptr(Ptr), DevPtrDecl(DevPtrDecl) {} llvm::Value *operator*() const { return Ptr; } const ValueDecl *getDevicePtrDecl() const { return DevPtrDecl; } void setDevicePtrDecl(const ValueDecl *D) { DevPtrDecl = D; } }; using MapExprsArrayTy = SmallVector; using MapBaseValuesArrayTy = SmallVector; using MapValuesArrayTy = SmallVector; using MapFlagsArrayTy = SmallVector; using MapMappersArrayTy = SmallVector; using MapDimArrayTy = SmallVector; using MapNonContiguousArrayTy = SmallVector; /// This structure contains combined information generated for mappable /// clauses, including base pointers, pointers, sizes, map types, user-defined /// mappers, and non-contiguous information. struct MapCombinedInfoTy { struct StructNonContiguousInfo { bool IsNonContiguous = false; MapDimArrayTy Dims; MapNonContiguousArrayTy Offsets; MapNonContiguousArrayTy Counts; MapNonContiguousArrayTy Strides; }; MapExprsArrayTy Exprs; MapBaseValuesArrayTy BasePointers; MapValuesArrayTy Pointers; MapValuesArrayTy Sizes; MapFlagsArrayTy Types; MapMappersArrayTy Mappers; StructNonContiguousInfo NonContigInfo; /// Append arrays in \a CurInfo. void append(MapCombinedInfoTy &CurInfo) { Exprs.append(CurInfo.Exprs.begin(), CurInfo.Exprs.end()); BasePointers.append(CurInfo.BasePointers.begin(), CurInfo.BasePointers.end()); Pointers.append(CurInfo.Pointers.begin(), CurInfo.Pointers.end()); Sizes.append(CurInfo.Sizes.begin(), CurInfo.Sizes.end()); Types.append(CurInfo.Types.begin(), CurInfo.Types.end()); Mappers.append(CurInfo.Mappers.begin(), CurInfo.Mappers.end()); NonContigInfo.Dims.append(CurInfo.NonContigInfo.Dims.begin(), CurInfo.NonContigInfo.Dims.end()); NonContigInfo.Offsets.append(CurInfo.NonContigInfo.Offsets.begin(), CurInfo.NonContigInfo.Offsets.end()); NonContigInfo.Counts.append(CurInfo.NonContigInfo.Counts.begin(), CurInfo.NonContigInfo.Counts.end()); NonContigInfo.Strides.append(CurInfo.NonContigInfo.Strides.begin(), CurInfo.NonContigInfo.Strides.end()); } }; /// Map between a struct and the its lowest & highest elements which have been /// mapped. /// [ValueDecl *] --> {LE(FieldIndex, Pointer), /// HE(FieldIndex, Pointer)} struct StructRangeInfoTy { MapCombinedInfoTy PreliminaryMapData; std::pair LowestElem = { 0, Address::invalid()}; std::pair HighestElem = { 0, Address::invalid()}; Address Base = Address::invalid(); Address LB = Address::invalid(); bool IsArraySection = false; bool HasCompleteRecord = false; }; private: /// Kind that defines how a device pointer has to be returned. struct MapInfo { OMPClauseMappableExprCommon::MappableExprComponentListRef Components; OpenMPMapClauseKind MapType = OMPC_MAP_unknown; ArrayRef MapModifiers; ArrayRef MotionModifiers; bool ReturnDevicePointer = false; bool IsImplicit = false; const ValueDecl *Mapper = nullptr; const Expr *VarRef = nullptr; bool ForDeviceAddr = false; MapInfo() = default; MapInfo( OMPClauseMappableExprCommon::MappableExprComponentListRef Components, OpenMPMapClauseKind MapType, ArrayRef MapModifiers, ArrayRef MotionModifiers, bool ReturnDevicePointer, bool IsImplicit, const ValueDecl *Mapper = nullptr, const Expr *VarRef = nullptr, bool ForDeviceAddr = false) : Components(Components), MapType(MapType), MapModifiers(MapModifiers), MotionModifiers(MotionModifiers), ReturnDevicePointer(ReturnDevicePointer), IsImplicit(IsImplicit), Mapper(Mapper), VarRef(VarRef), ForDeviceAddr(ForDeviceAddr) {} }; /// If use_device_ptr or use_device_addr is used on a decl which is a struct /// member and there is no map information about it, then emission of that /// entry is deferred until the whole struct has been processed. struct DeferredDevicePtrEntryTy { const Expr *IE = nullptr; const ValueDecl *VD = nullptr; bool ForDeviceAddr = false; DeferredDevicePtrEntryTy(const Expr *IE, const ValueDecl *VD, bool ForDeviceAddr) : IE(IE), VD(VD), ForDeviceAddr(ForDeviceAddr) {} }; /// The target directive from where the mappable clauses were extracted. It /// is either a executable directive or a user-defined mapper directive. llvm::PointerUnion CurDir; /// Function the directive is being generated for. CodeGenFunction &CGF; /// Set of all first private variables in the current directive. /// bool data is set to true if the variable is implicitly marked as /// firstprivate, false otherwise. llvm::DenseMap, bool> FirstPrivateDecls; /// Map between device pointer declarations and their expression components. /// The key value for declarations in 'this' is null. llvm::DenseMap< const ValueDecl *, SmallVector> DevPointersMap; llvm::Value *getExprTypeSize(const Expr *E) const { QualType ExprTy = E->getType().getCanonicalType(); // Calculate the size for array shaping expression. if (const auto *OAE = dyn_cast(E)) { llvm::Value *Size = CGF.getTypeSize(OAE->getBase()->getType()->getPointeeType()); for (const Expr *SE : OAE->getDimensions()) { llvm::Value *Sz = CGF.EmitScalarExpr(SE); Sz = CGF.EmitScalarConversion(Sz, SE->getType(), CGF.getContext().getSizeType(), SE->getExprLoc()); Size = CGF.Builder.CreateNUWMul(Size, Sz); } return Size; } // Reference types are ignored for mapping purposes. if (const auto *RefTy = ExprTy->getAs()) ExprTy = RefTy->getPointeeType().getCanonicalType(); // Given that an array section is considered a built-in type, we need to // do the calculation based on the length of the section instead of relying // on CGF.getTypeSize(E->getType()). if (const auto *OAE = dyn_cast(E)) { QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType( OAE->getBase()->IgnoreParenImpCasts()) .getCanonicalType(); // If there is no length associated with the expression and lower bound is // not specified too, that means we are using the whole length of the // base. if (!OAE->getLength() && OAE->getColonLocFirst().isValid() && !OAE->getLowerBound()) return CGF.getTypeSize(BaseTy); llvm::Value *ElemSize; if (const auto *PTy = BaseTy->getAs()) { ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType()); } else { const auto *ATy = cast(BaseTy.getTypePtr()); assert(ATy && "Expecting array type if not a pointer type."); ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType()); } // If we don't have a length at this point, that is because we have an // array section with a single element. if (!OAE->getLength() && OAE->getColonLocFirst().isInvalid()) return ElemSize; if (const Expr *LenExpr = OAE->getLength()) { llvm::Value *LengthVal = CGF.EmitScalarExpr(LenExpr); LengthVal = CGF.EmitScalarConversion(LengthVal, LenExpr->getType(), CGF.getContext().getSizeType(), LenExpr->getExprLoc()); return CGF.Builder.CreateNUWMul(LengthVal, ElemSize); } assert(!OAE->getLength() && OAE->getColonLocFirst().isValid() && OAE->getLowerBound() && "expected array_section[lb:]."); // Size = sizetype - lb * elemtype; llvm::Value *LengthVal = CGF.getTypeSize(BaseTy); llvm::Value *LBVal = CGF.EmitScalarExpr(OAE->getLowerBound()); LBVal = CGF.EmitScalarConversion(LBVal, OAE->getLowerBound()->getType(), CGF.getContext().getSizeType(), OAE->getLowerBound()->getExprLoc()); LBVal = CGF.Builder.CreateNUWMul(LBVal, ElemSize); llvm::Value *Cmp = CGF.Builder.CreateICmpUGT(LengthVal, LBVal); llvm::Value *TrueVal = CGF.Builder.CreateNUWSub(LengthVal, LBVal); LengthVal = CGF.Builder.CreateSelect( Cmp, TrueVal, llvm::ConstantInt::get(CGF.SizeTy, 0)); return LengthVal; } return CGF.getTypeSize(ExprTy); } /// Return the corresponding bits for a given map clause modifier. Add /// a flag marking the map as a pointer if requested. Add a flag marking the /// map as the first one of a series of maps that relate to the same map /// expression. OpenMPOffloadMappingFlags getMapTypeBits( OpenMPMapClauseKind MapType, ArrayRef MapModifiers, ArrayRef MotionModifiers, bool IsImplicit, bool AddPtrFlag, bool AddIsTargetParamFlag, bool IsNonContiguous) const { OpenMPOffloadMappingFlags Bits = IsImplicit ? OMP_MAP_IMPLICIT : OMP_MAP_NONE; switch (MapType) { case OMPC_MAP_alloc: case OMPC_MAP_release: // alloc and release is the default behavior in the runtime library, i.e. // if we don't pass any bits alloc/release that is what the runtime is // going to do. Therefore, we don't need to signal anything for these two // type modifiers. break; case OMPC_MAP_to: Bits |= OMP_MAP_TO; break; case OMPC_MAP_from: Bits |= OMP_MAP_FROM; break; case OMPC_MAP_tofrom: Bits |= OMP_MAP_TO | OMP_MAP_FROM; break; case OMPC_MAP_delete: Bits |= OMP_MAP_DELETE; break; case OMPC_MAP_unknown: llvm_unreachable("Unexpected map type!"); } if (AddPtrFlag) Bits |= OMP_MAP_PTR_AND_OBJ; if (AddIsTargetParamFlag) Bits |= OMP_MAP_TARGET_PARAM; if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_always) != MapModifiers.end()) Bits |= OMP_MAP_ALWAYS; if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_close) != MapModifiers.end()) Bits |= OMP_MAP_CLOSE; if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_present) != MapModifiers.end() || llvm::find(MotionModifiers, OMPC_MOTION_MODIFIER_present) != MotionModifiers.end()) Bits |= OMP_MAP_PRESENT; if (IsNonContiguous) Bits |= OMP_MAP_NON_CONTIG; return Bits; } /// Return true if the provided expression is a final array section. A /// final array section, is one whose length can't be proved to be one. bool isFinalArraySectionExpression(const Expr *E) const { const auto *OASE = dyn_cast(E); // It is not an array section and therefore not a unity-size one. if (!OASE) return false; // An array section with no colon always refer to a single element. if (OASE->getColonLocFirst().isInvalid()) return false; const Expr *Length = OASE->getLength(); // If we don't have a length we have to check if the array has size 1 // for this dimension. Also, we should always expect a length if the // base type is pointer. if (!Length) { QualType BaseQTy = OMPArraySectionExpr::getBaseOriginalType( OASE->getBase()->IgnoreParenImpCasts()) .getCanonicalType(); if (const auto *ATy = dyn_cast(BaseQTy.getTypePtr())) return ATy->getSize().getSExtValue() != 1; // If we don't have a constant dimension length, we have to consider // the current section as having any size, so it is not necessarily // unitary. If it happen to be unity size, that's user fault. return true; } // Check if the length evaluates to 1. Expr::EvalResult Result; if (!Length->EvaluateAsInt(Result, CGF.getContext())) return true; // Can have more that size 1. llvm::APSInt ConstLength = Result.Val.getInt(); return ConstLength.getSExtValue() != 1; } /// Generate the base pointers, section pointers, sizes, map type bits, and /// user-defined mappers (all included in \a CombinedInfo) for the provided /// map type, map or motion modifiers, and expression components. /// \a IsFirstComponent should be set to true if the provided set of /// components is the first associated with a capture. void generateInfoForComponentList( OpenMPMapClauseKind MapType, ArrayRef MapModifiers, ArrayRef MotionModifiers, OMPClauseMappableExprCommon::MappableExprComponentListRef Components, MapCombinedInfoTy &CombinedInfo, StructRangeInfoTy &PartialStruct, bool IsFirstComponentList, bool IsImplicit, const ValueDecl *Mapper = nullptr, bool ForDeviceAddr = false, const ValueDecl *BaseDecl = nullptr, const Expr *MapExpr = nullptr, ArrayRef OverlappedElements = llvm::None) const { // The following summarizes what has to be generated for each map and the // types below. The generated information is expressed in this order: // base pointer, section pointer, size, flags // (to add to the ones that come from the map type and modifier). // // double d; // int i[100]; // float *p; // // struct S1 { // int i; // float f[50]; // } // struct S2 { // int i; // float f[50]; // S1 s; // double *p; // struct S2 *ps; // int &ref; // } // S2 s; // S2 *ps; // // map(d) // &d, &d, sizeof(double), TARGET_PARAM | TO | FROM // // map(i) // &i, &i, 100*sizeof(int), TARGET_PARAM | TO | FROM // // map(i[1:23]) // &i(=&i[0]), &i[1], 23*sizeof(int), TARGET_PARAM | TO | FROM // // map(p) // &p, &p, sizeof(float*), TARGET_PARAM | TO | FROM // // map(p[1:24]) // &p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM | PTR_AND_OBJ // in unified shared memory mode or for local pointers // p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM // // map(s) // &s, &s, sizeof(S2), TARGET_PARAM | TO | FROM // // map(s.i) // &s, &(s.i), sizeof(int), TARGET_PARAM | TO | FROM // // map(s.s.f) // &s, &(s.s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM // // map(s.p) // &s, &(s.p), sizeof(double*), TARGET_PARAM | TO | FROM // // map(to: s.p[:22]) // &s, &(s.p), sizeof(double*), TARGET_PARAM (*) // &s, &(s.p), sizeof(double*), MEMBER_OF(1) (**) // &(s.p), &(s.p[0]), 22*sizeof(double), // MEMBER_OF(1) | PTR_AND_OBJ | TO (***) // (*) alloc space for struct members, only this is a target parameter // (**) map the pointer (nothing to be mapped in this example) (the compiler // optimizes this entry out, same in the examples below) // (***) map the pointee (map: to) // // map(to: s.ref) // &s, &(s.ref), sizeof(int*), TARGET_PARAM (*) // &s, &(s.ref), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | TO (***) // (*) alloc space for struct members, only this is a target parameter // (**) map the pointer (nothing to be mapped in this example) (the compiler // optimizes this entry out, same in the examples below) // (***) map the pointee (map: to) // // map(s.ps) // &s, &(s.ps), sizeof(S2*), TARGET_PARAM | TO | FROM // // map(from: s.ps->s.i) // &s, &(s.ps), sizeof(S2*), TARGET_PARAM // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1) // &(s.ps), &(s.ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM // // map(to: s.ps->ps) // &s, &(s.ps), sizeof(S2*), TARGET_PARAM // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1) // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | TO // // map(s.ps->ps->ps) // &s, &(s.ps), sizeof(S2*), TARGET_PARAM // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1) // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ // &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM // // map(to: s.ps->ps->s.f[:22]) // &s, &(s.ps), sizeof(S2*), TARGET_PARAM // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1) // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ // &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO // // map(ps) // &ps, &ps, sizeof(S2*), TARGET_PARAM | TO | FROM // // map(ps->i) // ps, &(ps->i), sizeof(int), TARGET_PARAM | TO | FROM // // map(ps->s.f) // ps, &(ps->s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM // // map(from: ps->p) // ps, &(ps->p), sizeof(double*), TARGET_PARAM | FROM // // map(to: ps->p[:22]) // ps, &(ps->p), sizeof(double*), TARGET_PARAM // ps, &(ps->p), sizeof(double*), MEMBER_OF(1) // &(ps->p), &(ps->p[0]), 22*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | TO // // map(ps->ps) // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM | TO | FROM // // map(from: ps->ps->s.i) // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1) // &(ps->ps), &(ps->ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM // // map(from: ps->ps->ps) // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1) // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | FROM // // map(ps->ps->ps->ps) // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1) // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ // &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM // // map(to: ps->ps->ps->s.f[:22]) // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1) // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ // &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO // // map(to: s.f[:22]) map(from: s.p[:33]) // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1) + // sizeof(double*) (**), TARGET_PARAM // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | TO // &s, &(s.p), sizeof(double*), MEMBER_OF(1) // &(s.p), &(s.p[0]), 33*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | FROM // (*) allocate contiguous space needed to fit all mapped members even if // we allocate space for members not mapped (in this example, // s.f[22..49] and s.s are not mapped, yet we must allocate space for // them as well because they fall between &s.f[0] and &s.p) // // map(from: s.f[:22]) map(to: ps->p[:33]) // &s, &(s.f[0]), 22*sizeof(float), TARGET_PARAM | FROM // ps, &(ps->p), sizeof(S2*), TARGET_PARAM // ps, &(ps->p), sizeof(double*), MEMBER_OF(2) (*) // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(2) | PTR_AND_OBJ | TO // (*) the struct this entry pertains to is the 2nd element in the list of // arguments, hence MEMBER_OF(2) // // map(from: s.f[:22], s.s) map(to: ps->p[:33]) // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1), TARGET_PARAM // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | FROM // &s, &(s.s), sizeof(struct S1), MEMBER_OF(1) | FROM // ps, &(ps->p), sizeof(S2*), TARGET_PARAM // ps, &(ps->p), sizeof(double*), MEMBER_OF(4) (*) // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(4) | PTR_AND_OBJ | TO // (*) the struct this entry pertains to is the 4th element in the list // of arguments, hence MEMBER_OF(4) // Track if the map information being generated is the first for a capture. bool IsCaptureFirstInfo = IsFirstComponentList; // When the variable is on a declare target link or in a to clause with // unified memory, a reference is needed to hold the host/device address // of the variable. bool RequiresReference = false; // Scan the components from the base to the complete expression. auto CI = Components.rbegin(); auto CE = Components.rend(); auto I = CI; // Track if the map information being generated is the first for a list of // components. bool IsExpressionFirstInfo = true; bool FirstPointerInComplexData = false; Address BP = Address::invalid(); const Expr *AssocExpr = I->getAssociatedExpression(); const auto *AE = dyn_cast(AssocExpr); const auto *OASE = dyn_cast(AssocExpr); const auto *OAShE = dyn_cast(AssocExpr); if (isa(AssocExpr)) { // The base is the 'this' pointer. The content of the pointer is going // to be the base of the field being mapped. BP = CGF.LoadCXXThisAddress(); } else if ((AE && isa(AE->getBase()->IgnoreParenImpCasts())) || (OASE && isa(OASE->getBase()->IgnoreParenImpCasts()))) { BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(CGF); } else if (OAShE && isa(OAShE->getBase()->IgnoreParenCasts())) { BP = Address( CGF.EmitScalarExpr(OAShE->getBase()), CGF.getContext().getTypeAlignInChars(OAShE->getBase()->getType())); } else { // The base is the reference to the variable. // BP = &Var. BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(CGF); if (const auto *VD = dyn_cast_or_null(I->getAssociatedDeclaration())) { if (llvm::Optional Res = OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { if ((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) { RequiresReference = true; BP = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); } } } // If the variable is a pointer and is being dereferenced (i.e. is not // the last component), the base has to be the pointer itself, not its // reference. References are ignored for mapping purposes. QualType Ty = I->getAssociatedDeclaration()->getType().getNonReferenceType(); if (Ty->isAnyPointerType() && std::next(I) != CE) { // No need to generate individual map information for the pointer, it // can be associated with the combined storage if shared memory mode is // active or the base declaration is not global variable. const auto *VD = dyn_cast(I->getAssociatedDeclaration()); if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() || !VD || VD->hasLocalStorage()) BP = CGF.EmitLoadOfPointer(BP, Ty->castAs()); else FirstPointerInComplexData = true; ++I; } } // Track whether a component of the list should be marked as MEMBER_OF some // combined entry (for partial structs). Only the first PTR_AND_OBJ entry // in a component list should be marked as MEMBER_OF, all subsequent entries // do not belong to the base struct. E.g. // struct S2 s; // s.ps->ps->ps->f[:] // (1) (2) (3) (4) // ps(1) is a member pointer, ps(2) is a pointee of ps(1), so it is a // PTR_AND_OBJ entry; the PTR is ps(1), so MEMBER_OF the base struct. ps(3) // is the pointee of ps(2) which is not member of struct s, so it should not // be marked as such (it is still PTR_AND_OBJ). // The variable is initialized to false so that PTR_AND_OBJ entries which // are not struct members are not considered (e.g. array of pointers to // data). bool ShouldBeMemberOf = false; // Variable keeping track of whether or not we have encountered a component // in the component list which is a member expression. Useful when we have a // pointer or a final array section, in which case it is the previous // component in the list which tells us whether we have a member expression. // E.g. X.f[:] // While processing the final array section "[:]" it is "f" which tells us // whether we are dealing with a member of a declared struct. const MemberExpr *EncounteredME = nullptr; // Track for the total number of dimension. Start from one for the dummy // dimension. uint64_t DimSize = 1; bool IsNonContiguous = CombinedInfo.NonContigInfo.IsNonContiguous; bool IsPrevMemberReference = false; for (; I != CE; ++I) { // If the current component is member of a struct (parent struct) mark it. if (!EncounteredME) { EncounteredME = dyn_cast(I->getAssociatedExpression()); // If we encounter a PTR_AND_OBJ entry from now on it should be marked // as MEMBER_OF the parent struct. if (EncounteredME) { ShouldBeMemberOf = true; // Do not emit as complex pointer if this is actually not array-like // expression. if (FirstPointerInComplexData) { QualType Ty = std::prev(I) ->getAssociatedDeclaration() ->getType() .getNonReferenceType(); BP = CGF.EmitLoadOfPointer(BP, Ty->castAs()); FirstPointerInComplexData = false; } } } auto Next = std::next(I); // We need to generate the addresses and sizes if this is the last // component, if the component is a pointer or if it is an array section // whose length can't be proved to be one. If this is a pointer, it // becomes the base address for the following components. // A final array section, is one whose length can't be proved to be one. // If the map item is non-contiguous then we don't treat any array section // as final array section. bool IsFinalArraySection = !IsNonContiguous && isFinalArraySectionExpression(I->getAssociatedExpression()); // If we have a declaration for the mapping use that, otherwise use // the base declaration of the map clause. const ValueDecl *MapDecl = (I->getAssociatedDeclaration()) ? I->getAssociatedDeclaration() : BaseDecl; MapExpr = (I->getAssociatedExpression()) ? I->getAssociatedExpression() : MapExpr; // Get information on whether the element is a pointer. Have to do a // special treatment for array sections given that they are built-in // types. const auto *OASE = dyn_cast(I->getAssociatedExpression()); const auto *OAShE = dyn_cast(I->getAssociatedExpression()); const auto *UO = dyn_cast(I->getAssociatedExpression()); const auto *BO = dyn_cast(I->getAssociatedExpression()); bool IsPointer = OAShE || (OASE && OMPArraySectionExpr::getBaseOriginalType(OASE) .getCanonicalType() ->isAnyPointerType()) || I->getAssociatedExpression()->getType()->isAnyPointerType(); bool IsMemberReference = isa(I->getAssociatedExpression()) && MapDecl && MapDecl->getType()->isLValueReferenceType(); bool IsNonDerefPointer = IsPointer && !UO && !BO && !IsNonContiguous; if (OASE) ++DimSize; if (Next == CE || IsMemberReference || IsNonDerefPointer || IsFinalArraySection) { // If this is not the last component, we expect the pointer to be // associated with an array expression or member expression. assert((Next == CE || isa(Next->getAssociatedExpression()) || isa(Next->getAssociatedExpression()) || isa(Next->getAssociatedExpression()) || isa(Next->getAssociatedExpression()) || isa(Next->getAssociatedExpression()) || isa(Next->getAssociatedExpression())) && "Unexpected expression"); Address LB = Address::invalid(); Address LowestElem = Address::invalid(); auto &&EmitMemberExprBase = [](CodeGenFunction &CGF, const MemberExpr *E) { const Expr *BaseExpr = E->getBase(); // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a // scalar. LValue BaseLV; if (E->isArrow()) { LValueBaseInfo BaseInfo; TBAAAccessInfo TBAAInfo; Address Addr = CGF.EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); QualType PtrTy = BaseExpr->getType()->getPointeeType(); BaseLV = CGF.MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); } else { BaseLV = CGF.EmitOMPSharedLValue(BaseExpr); } return BaseLV; }; if (OAShE) { LowestElem = LB = Address(CGF.EmitScalarExpr(OAShE->getBase()), CGF.getContext().getTypeAlignInChars( OAShE->getBase()->getType())); } else if (IsMemberReference) { const auto *ME = cast(I->getAssociatedExpression()); LValue BaseLVal = EmitMemberExprBase(CGF, ME); LowestElem = CGF.EmitLValueForFieldInitialization( BaseLVal, cast(MapDecl)) .getAddress(CGF); LB = CGF.EmitLoadOfReferenceLValue(LowestElem, MapDecl->getType()) .getAddress(CGF); } else { LowestElem = LB = CGF.EmitOMPSharedLValue(I->getAssociatedExpression()) .getAddress(CGF); } // If this component is a pointer inside the base struct then we don't // need to create any entry for it - it will be combined with the object // it is pointing to into a single PTR_AND_OBJ entry. bool IsMemberPointerOrAddr = EncounteredME && (((IsPointer || ForDeviceAddr) && I->getAssociatedExpression() == EncounteredME) || (IsPrevMemberReference && !IsPointer) || (IsMemberReference && Next != CE && !Next->getAssociatedExpression()->getType()->isPointerType())); if (!OverlappedElements.empty() && Next == CE) { // Handle base element with the info for overlapped elements. assert(!PartialStruct.Base.isValid() && "The base element is set."); assert(!IsPointer && "Unexpected base element with the pointer type."); // Mark the whole struct as the struct that requires allocation on the // device. PartialStruct.LowestElem = {0, LowestElem}; CharUnits TypeSize = CGF.getContext().getTypeSizeInChars( I->getAssociatedExpression()->getType()); Address HB = CGF.Builder.CreateConstGEP( CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(LowestElem, CGF.VoidPtrTy), TypeSize.getQuantity() - 1); PartialStruct.HighestElem = { std::numeric_limits::max(), HB}; PartialStruct.Base = BP; PartialStruct.LB = LB; assert( PartialStruct.PreliminaryMapData.BasePointers.empty() && "Overlapped elements must be used only once for the variable."); std::swap(PartialStruct.PreliminaryMapData, CombinedInfo); // Emit data for non-overlapped data. OpenMPOffloadMappingFlags Flags = OMP_MAP_MEMBER_OF | getMapTypeBits(MapType, MapModifiers, MotionModifiers, IsImplicit, /*AddPtrFlag=*/false, /*AddIsTargetParamFlag=*/false, IsNonContiguous); llvm::Value *Size = nullptr; // Do bitcopy of all non-overlapped structure elements. for (OMPClauseMappableExprCommon::MappableExprComponentListRef Component : OverlappedElements) { Address ComponentLB = Address::invalid(); for (const OMPClauseMappableExprCommon::MappableComponent &MC : Component) { if (const ValueDecl *VD = MC.getAssociatedDeclaration()) { const auto *FD = dyn_cast(VD); if (FD && FD->getType()->isLValueReferenceType()) { const auto *ME = cast(MC.getAssociatedExpression()); LValue BaseLVal = EmitMemberExprBase(CGF, ME); ComponentLB = CGF.EmitLValueForFieldInitialization(BaseLVal, FD) .getAddress(CGF); } else { ComponentLB = CGF.EmitOMPSharedLValue(MC.getAssociatedExpression()) .getAddress(CGF); } Size = CGF.Builder.CreatePtrDiff( CGF.EmitCastToVoidPtr(ComponentLB.getPointer()), CGF.EmitCastToVoidPtr(LB.getPointer())); break; } } assert(Size && "Failed to determine structure size"); CombinedInfo.Exprs.emplace_back(MapDecl, MapExpr); CombinedInfo.BasePointers.push_back(BP.getPointer()); CombinedInfo.Pointers.push_back(LB.getPointer()); CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast( Size, CGF.Int64Ty, /*isSigned=*/true)); CombinedInfo.Types.push_back(Flags); CombinedInfo.Mappers.push_back(nullptr); CombinedInfo.NonContigInfo.Dims.push_back(IsNonContiguous ? DimSize : 1); LB = CGF.Builder.CreateConstGEP(ComponentLB, 1); } CombinedInfo.Exprs.emplace_back(MapDecl, MapExpr); CombinedInfo.BasePointers.push_back(BP.getPointer()); CombinedInfo.Pointers.push_back(LB.getPointer()); Size = CGF.Builder.CreatePtrDiff( CGF.Builder.CreateConstGEP(HB, 1).getPointer(), CGF.EmitCastToVoidPtr(LB.getPointer())); CombinedInfo.Sizes.push_back( CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true)); CombinedInfo.Types.push_back(Flags); CombinedInfo.Mappers.push_back(nullptr); CombinedInfo.NonContigInfo.Dims.push_back(IsNonContiguous ? DimSize : 1); break; } llvm::Value *Size = getExprTypeSize(I->getAssociatedExpression()); if (!IsMemberPointerOrAddr || (Next == CE && MapType != OMPC_MAP_unknown)) { CombinedInfo.Exprs.emplace_back(MapDecl, MapExpr); CombinedInfo.BasePointers.push_back(BP.getPointer()); CombinedInfo.Pointers.push_back(LB.getPointer()); CombinedInfo.Sizes.push_back( CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true)); CombinedInfo.NonContigInfo.Dims.push_back(IsNonContiguous ? DimSize : 1); // If Mapper is valid, the last component inherits the mapper. bool HasMapper = Mapper && Next == CE; CombinedInfo.Mappers.push_back(HasMapper ? Mapper : nullptr); // We need to add a pointer flag for each map that comes from the // same expression except for the first one. We also need to signal // this map is the first one that relates with the current capture // (there is a set of entries for each capture). OpenMPOffloadMappingFlags Flags = getMapTypeBits( MapType, MapModifiers, MotionModifiers, IsImplicit, !IsExpressionFirstInfo || RequiresReference || FirstPointerInComplexData || IsMemberReference, IsCaptureFirstInfo && !RequiresReference, IsNonContiguous); if (!IsExpressionFirstInfo || IsMemberReference) { // If we have a PTR_AND_OBJ pair where the OBJ is a pointer as well, // then we reset the TO/FROM/ALWAYS/DELETE/CLOSE flags. if (IsPointer || (IsMemberReference && Next != CE)) Flags &= ~(OMP_MAP_TO | OMP_MAP_FROM | OMP_MAP_ALWAYS | OMP_MAP_DELETE | OMP_MAP_CLOSE); if (ShouldBeMemberOf) { // Set placeholder value MEMBER_OF=FFFF to indicate that the flag // should be later updated with the correct value of MEMBER_OF. Flags |= OMP_MAP_MEMBER_OF; // From now on, all subsequent PTR_AND_OBJ entries should not be // marked as MEMBER_OF. ShouldBeMemberOf = false; } } CombinedInfo.Types.push_back(Flags); } // If we have encountered a member expression so far, keep track of the // mapped member. If the parent is "*this", then the value declaration // is nullptr. if (EncounteredME) { const auto *FD = cast(EncounteredME->getMemberDecl()); unsigned FieldIndex = FD->getFieldIndex(); // Update info about the lowest and highest elements for this struct if (!PartialStruct.Base.isValid()) { PartialStruct.LowestElem = {FieldIndex, LowestElem}; if (IsFinalArraySection) { Address HB = CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false) .getAddress(CGF); PartialStruct.HighestElem = {FieldIndex, HB}; } else { PartialStruct.HighestElem = {FieldIndex, LowestElem}; } PartialStruct.Base = BP; PartialStruct.LB = BP; } else if (FieldIndex < PartialStruct.LowestElem.first) { PartialStruct.LowestElem = {FieldIndex, LowestElem}; } else if (FieldIndex > PartialStruct.HighestElem.first) { PartialStruct.HighestElem = {FieldIndex, LowestElem}; } } // Need to emit combined struct for array sections. if (IsFinalArraySection || IsNonContiguous) PartialStruct.IsArraySection = true; // If we have a final array section, we are done with this expression. if (IsFinalArraySection) break; // The pointer becomes the base for the next element. if (Next != CE) BP = IsMemberReference ? LowestElem : LB; IsExpressionFirstInfo = false; IsCaptureFirstInfo = false; FirstPointerInComplexData = false; IsPrevMemberReference = IsMemberReference; } else if (FirstPointerInComplexData) { QualType Ty = Components.rbegin() ->getAssociatedDeclaration() ->getType() .getNonReferenceType(); BP = CGF.EmitLoadOfPointer(BP, Ty->castAs()); FirstPointerInComplexData = false; } } // If ran into the whole component - allocate the space for the whole // record. if (!EncounteredME) PartialStruct.HasCompleteRecord = true; if (!IsNonContiguous) return; const ASTContext &Context = CGF.getContext(); // For supporting stride in array section, we need to initialize the first // dimension size as 1, first offset as 0, and first count as 1 MapValuesArrayTy CurOffsets = {llvm::ConstantInt::get(CGF.CGM.Int64Ty, 0)}; MapValuesArrayTy CurCounts = {llvm::ConstantInt::get(CGF.CGM.Int64Ty, 1)}; MapValuesArrayTy CurStrides; MapValuesArrayTy DimSizes{llvm::ConstantInt::get(CGF.CGM.Int64Ty, 1)}; uint64_t ElementTypeSize; // Collect Size information for each dimension and get the element size as // the first Stride. For example, for `int arr[10][10]`, the DimSizes // should be [10, 10] and the first stride is 4 btyes. for (const OMPClauseMappableExprCommon::MappableComponent &Component : Components) { const Expr *AssocExpr = Component.getAssociatedExpression(); const auto *OASE = dyn_cast(AssocExpr); if (!OASE) continue; QualType Ty = OMPArraySectionExpr::getBaseOriginalType(OASE->getBase()); auto *CAT = Context.getAsConstantArrayType(Ty); auto *VAT = Context.getAsVariableArrayType(Ty); // We need all the dimension size except for the last dimension. assert((VAT || CAT || &Component == &*Components.begin()) && "Should be either ConstantArray or VariableArray if not the " "first Component"); // Get element size if CurStrides is empty. if (CurStrides.empty()) { const Type *ElementType = nullptr; if (CAT) ElementType = CAT->getElementType().getTypePtr(); else if (VAT) ElementType = VAT->getElementType().getTypePtr(); else assert(&Component == &*Components.begin() && "Only expect pointer (non CAT or VAT) when this is the " "first Component"); // If ElementType is null, then it means the base is a pointer // (neither CAT nor VAT) and we'll attempt to get ElementType again // for next iteration. if (ElementType) { // For the case that having pointer as base, we need to remove one // level of indirection. if (&Component != &*Components.begin()) ElementType = ElementType->getPointeeOrArrayElementType(); ElementTypeSize = Context.getTypeSizeInChars(ElementType).getQuantity(); CurStrides.push_back( llvm::ConstantInt::get(CGF.Int64Ty, ElementTypeSize)); } } // Get dimension value except for the last dimension since we don't need // it. if (DimSizes.size() < Components.size() - 1) { if (CAT) DimSizes.push_back(llvm::ConstantInt::get( CGF.Int64Ty, CAT->getSize().getZExtValue())); else if (VAT) DimSizes.push_back(CGF.Builder.CreateIntCast( CGF.EmitScalarExpr(VAT->getSizeExpr()), CGF.Int64Ty, /*IsSigned=*/false)); } } // Skip the dummy dimension since we have already have its information. auto DI = DimSizes.begin() + 1; // Product of dimension. llvm::Value *DimProd = llvm::ConstantInt::get(CGF.CGM.Int64Ty, ElementTypeSize); // Collect info for non-contiguous. Notice that offset, count, and stride // are only meaningful for array-section, so we insert a null for anything // other than array-section. // Also, the size of offset, count, and stride are not the same as // pointers, base_pointers, sizes, or dims. Instead, the size of offset, // count, and stride are the same as the number of non-contiguous // declaration in target update to/from clause. for (const OMPClauseMappableExprCommon::MappableComponent &Component : Components) { const Expr *AssocExpr = Component.getAssociatedExpression(); if (const auto *AE = dyn_cast(AssocExpr)) { llvm::Value *Offset = CGF.Builder.CreateIntCast( CGF.EmitScalarExpr(AE->getIdx()), CGF.Int64Ty, /*isSigned=*/false); CurOffsets.push_back(Offset); CurCounts.push_back(llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/1)); CurStrides.push_back(CurStrides.back()); continue; } const auto *OASE = dyn_cast(AssocExpr); if (!OASE) continue; // Offset const Expr *OffsetExpr = OASE->getLowerBound(); llvm::Value *Offset = nullptr; if (!OffsetExpr) { // If offset is absent, then we just set it to zero. Offset = llvm::ConstantInt::get(CGF.Int64Ty, 0); } else { Offset = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(OffsetExpr), CGF.Int64Ty, /*isSigned=*/false); } CurOffsets.push_back(Offset); // Count const Expr *CountExpr = OASE->getLength(); llvm::Value *Count = nullptr; if (!CountExpr) { // In Clang, once a high dimension is an array section, we construct all // the lower dimension as array section, however, for case like // arr[0:2][2], Clang construct the inner dimension as an array section // but it actually is not in an array section form according to spec. if (!OASE->getColonLocFirst().isValid() && !OASE->getColonLocSecond().isValid()) { Count = llvm::ConstantInt::get(CGF.Int64Ty, 1); } else { // OpenMP 5.0, 2.1.5 Array Sections, Description. // When the length is absent it defaults to ⌈(size − // lower-bound)/stride⌉, where size is the size of the array // dimension. const Expr *StrideExpr = OASE->getStride(); llvm::Value *Stride = StrideExpr ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(StrideExpr), CGF.Int64Ty, /*isSigned=*/false) : nullptr; if (Stride) Count = CGF.Builder.CreateUDiv( CGF.Builder.CreateNUWSub(*DI, Offset), Stride); else Count = CGF.Builder.CreateNUWSub(*DI, Offset); } } else { Count = CGF.EmitScalarExpr(CountExpr); } Count = CGF.Builder.CreateIntCast(Count, CGF.Int64Ty, /*isSigned=*/false); CurCounts.push_back(Count); // Stride_n' = Stride_n * (D_0 * D_1 ... * D_n-1) * Unit size // Take `int arr[5][5][5]` and `arr[0:2:2][1:2:1][0:2:2]` as an example: // Offset Count Stride // D0 0 1 4 (int) <- dummy dimension // D1 0 2 8 (2 * (1) * 4) // D2 1 2 20 (1 * (1 * 5) * 4) // D3 0 2 200 (2 * (1 * 5 * 4) * 4) const Expr *StrideExpr = OASE->getStride(); llvm::Value *Stride = StrideExpr ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(StrideExpr), CGF.Int64Ty, /*isSigned=*/false) : nullptr; DimProd = CGF.Builder.CreateNUWMul(DimProd, *(DI - 1)); if (Stride) CurStrides.push_back(CGF.Builder.CreateNUWMul(DimProd, Stride)); else CurStrides.push_back(DimProd); if (DI != DimSizes.end()) ++DI; } CombinedInfo.NonContigInfo.Offsets.push_back(CurOffsets); CombinedInfo.NonContigInfo.Counts.push_back(CurCounts); CombinedInfo.NonContigInfo.Strides.push_back(CurStrides); } /// Return the adjusted map modifiers if the declaration a capture refers to /// appears in a first-private clause. This is expected to be used only with /// directives that start with 'target'. MappableExprsHandler::OpenMPOffloadMappingFlags getMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap) const { assert(Cap.capturesVariable() && "Expected capture by reference only!"); // A first private variable captured by reference will use only the // 'private ptr' and 'map to' flag. Return the right flags if the captured // declaration is known as first-private in this handler. if (FirstPrivateDecls.count(Cap.getCapturedVar())) { if (Cap.getCapturedVar()->getType().isConstant(CGF.getContext()) && Cap.getCaptureKind() == CapturedStmt::VCK_ByRef) return MappableExprsHandler::OMP_MAP_ALWAYS | MappableExprsHandler::OMP_MAP_TO; if (Cap.getCapturedVar()->getType()->isAnyPointerType()) return MappableExprsHandler::OMP_MAP_TO | MappableExprsHandler::OMP_MAP_PTR_AND_OBJ; return MappableExprsHandler::OMP_MAP_PRIVATE | MappableExprsHandler::OMP_MAP_TO; } return MappableExprsHandler::OMP_MAP_TO | MappableExprsHandler::OMP_MAP_FROM; } static OpenMPOffloadMappingFlags getMemberOfFlag(unsigned Position) { // Rotate by getFlagMemberOffset() bits. return static_cast(((uint64_t)Position + 1) << getFlagMemberOffset()); } static void setCorrectMemberOfFlag(OpenMPOffloadMappingFlags &Flags, OpenMPOffloadMappingFlags MemberOfFlag) { // If the entry is PTR_AND_OBJ but has not been marked with the special // placeholder value 0xFFFF in the MEMBER_OF field, then it should not be // marked as MEMBER_OF. if ((Flags & OMP_MAP_PTR_AND_OBJ) && ((Flags & OMP_MAP_MEMBER_OF) != OMP_MAP_MEMBER_OF)) return; // Reset the placeholder value to prepare the flag for the assignment of the // proper MEMBER_OF value. Flags &= ~OMP_MAP_MEMBER_OF; Flags |= MemberOfFlag; } void getPlainLayout(const CXXRecordDecl *RD, llvm::SmallVectorImpl &Layout, bool AsBase) const { const CGRecordLayout &RL = CGF.getTypes().getCGRecordLayout(RD); llvm::StructType *St = AsBase ? RL.getBaseSubobjectLLVMType() : RL.getLLVMType(); unsigned NumElements = St->getNumElements(); llvm::SmallVector< llvm::PointerUnion, 4> RecordLayout(NumElements); // Fill bases. for (const auto &I : RD->bases()) { if (I.isVirtual()) continue; const auto *Base = I.getType()->getAsCXXRecordDecl(); // Ignore empty bases. if (Base->isEmpty() || CGF.getContext() .getASTRecordLayout(Base) .getNonVirtualSize() .isZero()) continue; unsigned FieldIndex = RL.getNonVirtualBaseLLVMFieldNo(Base); RecordLayout[FieldIndex] = Base; } // Fill in virtual bases. for (const auto &I : RD->vbases()) { const auto *Base = I.getType()->getAsCXXRecordDecl(); // Ignore empty bases. if (Base->isEmpty()) continue; unsigned FieldIndex = RL.getVirtualBaseIndex(Base); if (RecordLayout[FieldIndex]) continue; RecordLayout[FieldIndex] = Base; } // Fill in all the fields. assert(!RD->isUnion() && "Unexpected union."); for (const auto *Field : RD->fields()) { // Fill in non-bitfields. (Bitfields always use a zero pattern, which we // will fill in later.) if (!Field->isBitField() && !Field->isZeroSize(CGF.getContext())) { unsigned FieldIndex = RL.getLLVMFieldNo(Field); RecordLayout[FieldIndex] = Field; } } for (const llvm::PointerUnion &Data : RecordLayout) { if (Data.isNull()) continue; if (const auto *Base = Data.dyn_cast()) getPlainLayout(Base, Layout, /*AsBase=*/true); else Layout.push_back(Data.get()); } } /// Generate all the base pointers, section pointers, sizes, map types, and /// mappers for the extracted mappable expressions (all included in \a /// CombinedInfo). Also, for each item that relates with a device pointer, a /// pair of the relevant declaration and index where it occurs is appended to /// the device pointers info array. void generateAllInfoForClauses( ArrayRef Clauses, MapCombinedInfoTy &CombinedInfo, const llvm::DenseSet> &SkipVarSet = llvm::DenseSet>()) const { // We have to process the component lists that relate with the same // declaration in a single chunk so that we can generate the map flags // correctly. Therefore, we organize all lists in a map. enum MapKind { Present, Allocs, Other, Total }; llvm::MapVector, SmallVector, 4>> Info; // Helper function to fill the information map for the different supported // clauses. auto &&InfoGen = [&Info, &SkipVarSet]( const ValueDecl *D, MapKind Kind, OMPClauseMappableExprCommon::MappableExprComponentListRef L, OpenMPMapClauseKind MapType, ArrayRef MapModifiers, ArrayRef MotionModifiers, bool ReturnDevicePointer, bool IsImplicit, const ValueDecl *Mapper, const Expr *VarRef = nullptr, bool ForDeviceAddr = false) { if (SkipVarSet.contains(D)) return; auto It = Info.find(D); if (It == Info.end()) It = Info .insert(std::make_pair( D, SmallVector, 4>(Total))) .first; It->second[Kind].emplace_back( L, MapType, MapModifiers, MotionModifiers, ReturnDevicePointer, IsImplicit, Mapper, VarRef, ForDeviceAddr); }; for (const auto *Cl : Clauses) { const auto *C = dyn_cast(Cl); if (!C) continue; MapKind Kind = Other; if (!C->getMapTypeModifiers().empty() && llvm::any_of(C->getMapTypeModifiers(), [](OpenMPMapModifierKind K) { return K == OMPC_MAP_MODIFIER_present; })) Kind = Present; else if (C->getMapType() == OMPC_MAP_alloc) Kind = Allocs; const auto *EI = C->getVarRefs().begin(); for (const auto L : C->component_lists()) { const Expr *E = (C->getMapLoc().isValid()) ? *EI : nullptr; InfoGen(std::get<0>(L), Kind, std::get<1>(L), C->getMapType(), C->getMapTypeModifiers(), llvm::None, /*ReturnDevicePointer=*/false, C->isImplicit(), std::get<2>(L), E); ++EI; } } for (const auto *Cl : Clauses) { const auto *C = dyn_cast(Cl); if (!C) continue; MapKind Kind = Other; if (!C->getMotionModifiers().empty() && llvm::any_of(C->getMotionModifiers(), [](OpenMPMotionModifierKind K) { return K == OMPC_MOTION_MODIFIER_present; })) Kind = Present; const auto *EI = C->getVarRefs().begin(); for (const auto L : C->component_lists()) { InfoGen(std::get<0>(L), Kind, std::get<1>(L), OMPC_MAP_to, llvm::None, C->getMotionModifiers(), /*ReturnDevicePointer=*/false, C->isImplicit(), std::get<2>(L), *EI); ++EI; } } for (const auto *Cl : Clauses) { const auto *C = dyn_cast(Cl); if (!C) continue; MapKind Kind = Other; if (!C->getMotionModifiers().empty() && llvm::any_of(C->getMotionModifiers(), [](OpenMPMotionModifierKind K) { return K == OMPC_MOTION_MODIFIER_present; })) Kind = Present; const auto *EI = C->getVarRefs().begin(); for (const auto L : C->component_lists()) { InfoGen(std::get<0>(L), Kind, std::get<1>(L), OMPC_MAP_from, llvm::None, C->getMotionModifiers(), /*ReturnDevicePointer=*/false, C->isImplicit(), std::get<2>(L), *EI); ++EI; } } // Look at the use_device_ptr clause information and mark the existing map // entries as such. If there is no map information for an entry in the // use_device_ptr list, we create one with map type 'alloc' and zero size // section. It is the user fault if that was not mapped before. If there is // no map information and the pointer is a struct member, then we defer the // emission of that entry until the whole struct has been processed. llvm::MapVector, SmallVector> DeferredInfo; MapCombinedInfoTy UseDevicePtrCombinedInfo; for (const auto *Cl : Clauses) { const auto *C = dyn_cast(Cl); if (!C) continue; for (const auto L : C->component_lists()) { OMPClauseMappableExprCommon::MappableExprComponentListRef Components = std::get<1>(L); assert(!Components.empty() && "Not expecting empty list of components!"); const ValueDecl *VD = Components.back().getAssociatedDeclaration(); VD = cast(VD->getCanonicalDecl()); const Expr *IE = Components.back().getAssociatedExpression(); // If the first component is a member expression, we have to look into // 'this', which maps to null in the map of map information. Otherwise // look directly for the information. auto It = Info.find(isa(IE) ? nullptr : VD); // We potentially have map information for this declaration already. // Look for the first set of components that refer to it. if (It != Info.end()) { bool Found = false; for (auto &Data : It->second) { auto *CI = llvm::find_if(Data, [VD](const MapInfo &MI) { return MI.Components.back().getAssociatedDeclaration() == VD; }); // If we found a map entry, signal that the pointer has to be // returned and move on to the next declaration. Exclude cases where // the base pointer is mapped as array subscript, array section or // array shaping. The base address is passed as a pointer to base in // this case and cannot be used as a base for use_device_ptr list // item. if (CI != Data.end()) { auto PrevCI = std::next(CI->Components.rbegin()); const auto *VarD = dyn_cast(VD); if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() || isa(IE) || !VD->getType().getNonReferenceType()->isPointerType() || PrevCI == CI->Components.rend() || isa(PrevCI->getAssociatedExpression()) || !VarD || VarD->hasLocalStorage()) { CI->ReturnDevicePointer = true; Found = true; break; } } } if (Found) continue; } // We didn't find any match in our map information - generate a zero // size array section - if the pointer is a struct member we defer this // action until the whole struct has been processed. if (isa(IE)) { // Insert the pointer into Info to be processed by // generateInfoForComponentList. Because it is a member pointer // without a pointee, no entry will be generated for it, therefore // we need to generate one after the whole struct has been processed. // Nonetheless, generateInfoForComponentList must be called to take // the pointer into account for the calculation of the range of the // partial struct. InfoGen(nullptr, Other, Components, OMPC_MAP_unknown, llvm::None, llvm::None, /*ReturnDevicePointer=*/false, C->isImplicit(), nullptr); DeferredInfo[nullptr].emplace_back(IE, VD, /*ForDeviceAddr=*/false); } else { llvm::Value *Ptr = CGF.EmitLoadOfScalar(CGF.EmitLValue(IE), IE->getExprLoc()); UseDevicePtrCombinedInfo.Exprs.push_back(VD); UseDevicePtrCombinedInfo.BasePointers.emplace_back(Ptr, VD); UseDevicePtrCombinedInfo.Pointers.push_back(Ptr); UseDevicePtrCombinedInfo.Sizes.push_back( llvm::Constant::getNullValue(CGF.Int64Ty)); UseDevicePtrCombinedInfo.Types.push_back(OMP_MAP_RETURN_PARAM); UseDevicePtrCombinedInfo.Mappers.push_back(nullptr); } } } // Look at the use_device_addr clause information and mark the existing map // entries as such. If there is no map information for an entry in the // use_device_addr list, we create one with map type 'alloc' and zero size // section. It is the user fault if that was not mapped before. If there is // no map information and the pointer is a struct member, then we defer the // emission of that entry until the whole struct has been processed. llvm::SmallDenseSet, 4> Processed; for (const auto *Cl : Clauses) { const auto *C = dyn_cast(Cl); if (!C) continue; for (const auto L : C->component_lists()) { assert(!std::get<1>(L).empty() && "Not expecting empty list of components!"); const ValueDecl *VD = std::get<1>(L).back().getAssociatedDeclaration(); if (!Processed.insert(VD).second) continue; VD = cast(VD->getCanonicalDecl()); const Expr *IE = std::get<1>(L).back().getAssociatedExpression(); // If the first component is a member expression, we have to look into // 'this', which maps to null in the map of map information. Otherwise // look directly for the information. auto It = Info.find(isa(IE) ? nullptr : VD); // We potentially have map information for this declaration already. // Look for the first set of components that refer to it. if (It != Info.end()) { bool Found = false; for (auto &Data : It->second) { auto *CI = llvm::find_if(Data, [VD](const MapInfo &MI) { return MI.Components.back().getAssociatedDeclaration() == VD; }); // If we found a map entry, signal that the pointer has to be // returned and move on to the next declaration. if (CI != Data.end()) { CI->ReturnDevicePointer = true; Found = true; break; } } if (Found) continue; } // We didn't find any match in our map information - generate a zero // size array section - if the pointer is a struct member we defer this // action until the whole struct has been processed. if (isa(IE)) { // Insert the pointer into Info to be processed by // generateInfoForComponentList. Because it is a member pointer // without a pointee, no entry will be generated for it, therefore // we need to generate one after the whole struct has been processed. // Nonetheless, generateInfoForComponentList must be called to take // the pointer into account for the calculation of the range of the // partial struct. InfoGen(nullptr, Other, std::get<1>(L), OMPC_MAP_unknown, llvm::None, llvm::None, /*ReturnDevicePointer=*/false, C->isImplicit(), nullptr, nullptr, /*ForDeviceAddr=*/true); DeferredInfo[nullptr].emplace_back(IE, VD, /*ForDeviceAddr=*/true); } else { llvm::Value *Ptr; if (IE->isGLValue()) Ptr = CGF.EmitLValue(IE).getPointer(CGF); else Ptr = CGF.EmitScalarExpr(IE); CombinedInfo.Exprs.push_back(VD); CombinedInfo.BasePointers.emplace_back(Ptr, VD); CombinedInfo.Pointers.push_back(Ptr); CombinedInfo.Sizes.push_back( llvm::Constant::getNullValue(CGF.Int64Ty)); CombinedInfo.Types.push_back(OMP_MAP_RETURN_PARAM); CombinedInfo.Mappers.push_back(nullptr); } } } for (const auto &Data : Info) { StructRangeInfoTy PartialStruct; // Temporary generated information. MapCombinedInfoTy CurInfo; const Decl *D = Data.first; const ValueDecl *VD = cast_or_null(D); for (const auto &M : Data.second) { for (const MapInfo &L : M) { assert(!L.Components.empty() && "Not expecting declaration with no component lists."); // Remember the current base pointer index. unsigned CurrentBasePointersIdx = CurInfo.BasePointers.size(); CurInfo.NonContigInfo.IsNonContiguous = L.Components.back().isNonContiguous(); generateInfoForComponentList( L.MapType, L.MapModifiers, L.MotionModifiers, L.Components, CurInfo, PartialStruct, /*IsFirstComponentList=*/false, L.IsImplicit, L.Mapper, L.ForDeviceAddr, VD, L.VarRef); // If this entry relates with a device pointer, set the relevant // declaration and add the 'return pointer' flag. if (L.ReturnDevicePointer) { assert(CurInfo.BasePointers.size() > CurrentBasePointersIdx && "Unexpected number of mapped base pointers."); const ValueDecl *RelevantVD = L.Components.back().getAssociatedDeclaration(); assert(RelevantVD && "No relevant declaration related with device pointer??"); CurInfo.BasePointers[CurrentBasePointersIdx].setDevicePtrDecl( RelevantVD); CurInfo.Types[CurrentBasePointersIdx] |= OMP_MAP_RETURN_PARAM; } } } // Append any pending zero-length pointers which are struct members and // used with use_device_ptr or use_device_addr. auto CI = DeferredInfo.find(Data.first); if (CI != DeferredInfo.end()) { for (const DeferredDevicePtrEntryTy &L : CI->second) { llvm::Value *BasePtr; llvm::Value *Ptr; if (L.ForDeviceAddr) { if (L.IE->isGLValue()) Ptr = this->CGF.EmitLValue(L.IE).getPointer(CGF); else Ptr = this->CGF.EmitScalarExpr(L.IE); BasePtr = Ptr; // Entry is RETURN_PARAM. Also, set the placeholder value // MEMBER_OF=FFFF so that the entry is later updated with the // correct value of MEMBER_OF. CurInfo.Types.push_back(OMP_MAP_RETURN_PARAM | OMP_MAP_MEMBER_OF); } else { BasePtr = this->CGF.EmitLValue(L.IE).getPointer(CGF); Ptr = this->CGF.EmitLoadOfScalar(this->CGF.EmitLValue(L.IE), L.IE->getExprLoc()); // Entry is PTR_AND_OBJ and RETURN_PARAM. Also, set the // placeholder value MEMBER_OF=FFFF so that the entry is later // updated with the correct value of MEMBER_OF. CurInfo.Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_RETURN_PARAM | OMP_MAP_MEMBER_OF); } CurInfo.Exprs.push_back(L.VD); CurInfo.BasePointers.emplace_back(BasePtr, L.VD); CurInfo.Pointers.push_back(Ptr); CurInfo.Sizes.push_back( llvm::Constant::getNullValue(this->CGF.Int64Ty)); CurInfo.Mappers.push_back(nullptr); } } // If there is an entry in PartialStruct it means we have a struct with // individual members mapped. Emit an extra combined entry. if (PartialStruct.Base.isValid()) { CurInfo.NonContigInfo.Dims.push_back(0); emitCombinedEntry(CombinedInfo, CurInfo.Types, PartialStruct, VD); } // We need to append the results of this capture to what we already // have. CombinedInfo.append(CurInfo); } // Append data for use_device_ptr clauses. CombinedInfo.append(UseDevicePtrCombinedInfo); } public: MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF) : CurDir(&Dir), CGF(CGF) { // Extract firstprivate clause information. for (const auto *C : Dir.getClausesOfKind()) for (const auto *D : C->varlists()) FirstPrivateDecls.try_emplace( cast(cast(D)->getDecl()), C->isImplicit()); // Extract implicit firstprivates from uses_allocators clauses. for (const auto *C : Dir.getClausesOfKind()) { for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) { OMPUsesAllocatorsClause::Data D = C->getAllocatorData(I); if (const auto *DRE = dyn_cast_or_null(D.AllocatorTraits)) FirstPrivateDecls.try_emplace(cast(DRE->getDecl()), /*Implicit=*/true); else if (const auto *VD = dyn_cast( cast(D.Allocator->IgnoreParenImpCasts()) ->getDecl())) FirstPrivateDecls.try_emplace(VD, /*Implicit=*/true); } } // Extract device pointer clause information. for (const auto *C : Dir.getClausesOfKind()) for (auto L : C->component_lists()) DevPointersMap[std::get<0>(L)].push_back(std::get<1>(L)); } /// Constructor for the declare mapper directive. MappableExprsHandler(const OMPDeclareMapperDecl &Dir, CodeGenFunction &CGF) : CurDir(&Dir), CGF(CGF) {} /// Generate code for the combined entry if we have a partially mapped struct /// and take care of the mapping flags of the arguments corresponding to /// individual struct members. void emitCombinedEntry(MapCombinedInfoTy &CombinedInfo, MapFlagsArrayTy &CurTypes, const StructRangeInfoTy &PartialStruct, const ValueDecl *VD = nullptr, bool NotTargetParams = true) const { if (CurTypes.size() == 1 && ((CurTypes.back() & OMP_MAP_MEMBER_OF) != OMP_MAP_MEMBER_OF) && !PartialStruct.IsArraySection) return; Address LBAddr = PartialStruct.LowestElem.second; Address HBAddr = PartialStruct.HighestElem.second; if (PartialStruct.HasCompleteRecord) { LBAddr = PartialStruct.LB; HBAddr = PartialStruct.LB; } CombinedInfo.Exprs.push_back(VD); // Base is the base of the struct CombinedInfo.BasePointers.push_back(PartialStruct.Base.getPointer()); // Pointer is the address of the lowest element llvm::Value *LB = LBAddr.getPointer(); CombinedInfo.Pointers.push_back(LB); // There should not be a mapper for a combined entry. CombinedInfo.Mappers.push_back(nullptr); // Size is (addr of {highest+1} element) - (addr of lowest element) llvm::Value *HB = HBAddr.getPointer(); llvm::Value *HAddr = CGF.Builder.CreateConstGEP1_32(HB, /*Idx0=*/1); llvm::Value *CLAddr = CGF.Builder.CreatePointerCast(LB, CGF.VoidPtrTy); llvm::Value *CHAddr = CGF.Builder.CreatePointerCast(HAddr, CGF.VoidPtrTy); llvm::Value *Diff = CGF.Builder.CreatePtrDiff(CHAddr, CLAddr); llvm::Value *Size = CGF.Builder.CreateIntCast(Diff, CGF.Int64Ty, /*isSigned=*/false); CombinedInfo.Sizes.push_back(Size); // Map type is always TARGET_PARAM, if generate info for captures. CombinedInfo.Types.push_back(NotTargetParams ? OMP_MAP_NONE : OMP_MAP_TARGET_PARAM); // If any element has the present modifier, then make sure the runtime // doesn't attempt to allocate the struct. if (CurTypes.end() != llvm::find_if(CurTypes, [](OpenMPOffloadMappingFlags Type) { return Type & OMP_MAP_PRESENT; })) CombinedInfo.Types.back() |= OMP_MAP_PRESENT; // Remove TARGET_PARAM flag from the first element (*CurTypes.begin()) &= ~OMP_MAP_TARGET_PARAM; // All other current entries will be MEMBER_OF the combined entry // (except for PTR_AND_OBJ entries which do not have a placeholder value // 0xFFFF in the MEMBER_OF field). OpenMPOffloadMappingFlags MemberOfFlag = getMemberOfFlag(CombinedInfo.BasePointers.size() - 1); for (auto &M : CurTypes) setCorrectMemberOfFlag(M, MemberOfFlag); } /// Generate all the base pointers, section pointers, sizes, map types, and /// mappers for the extracted mappable expressions (all included in \a /// CombinedInfo). Also, for each item that relates with a device pointer, a /// pair of the relevant declaration and index where it occurs is appended to /// the device pointers info array. void generateAllInfo( MapCombinedInfoTy &CombinedInfo, const llvm::DenseSet> &SkipVarSet = llvm::DenseSet>()) const { assert(CurDir.is() && "Expect a executable directive"); const auto *CurExecDir = CurDir.get(); generateAllInfoForClauses(CurExecDir->clauses(), CombinedInfo, SkipVarSet); } /// Generate all the base pointers, section pointers, sizes, map types, and /// mappers for the extracted map clauses of user-defined mapper (all included /// in \a CombinedInfo). void generateAllInfoForMapper(MapCombinedInfoTy &CombinedInfo) const { assert(CurDir.is() && "Expect a declare mapper directive"); const auto *CurMapperDir = CurDir.get(); generateAllInfoForClauses(CurMapperDir->clauses(), CombinedInfo); } /// Emit capture info for lambdas for variables captured by reference. void generateInfoForLambdaCaptures( const ValueDecl *VD, llvm::Value *Arg, MapCombinedInfoTy &CombinedInfo, llvm::DenseMap &LambdaPointers) const { const auto *RD = VD->getType() .getCanonicalType() .getNonReferenceType() ->getAsCXXRecordDecl(); if (!RD || !RD->isLambda()) return; Address VDAddr = Address(Arg, CGF.getContext().getDeclAlign(VD)); LValue VDLVal = CGF.MakeAddrLValue( VDAddr, VD->getType().getCanonicalType().getNonReferenceType()); llvm::DenseMap Captures; FieldDecl *ThisCapture = nullptr; RD->getCaptureFields(Captures, ThisCapture); if (ThisCapture) { LValue ThisLVal = CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture); LValue ThisLValVal = CGF.EmitLValueForField(VDLVal, ThisCapture); LambdaPointers.try_emplace(ThisLVal.getPointer(CGF), VDLVal.getPointer(CGF)); CombinedInfo.Exprs.push_back(VD); CombinedInfo.BasePointers.push_back(ThisLVal.getPointer(CGF)); CombinedInfo.Pointers.push_back(ThisLValVal.getPointer(CGF)); CombinedInfo.Sizes.push_back( CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy), CGF.Int64Ty, /*isSigned=*/true)); CombinedInfo.Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL | OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT); CombinedInfo.Mappers.push_back(nullptr); } for (const LambdaCapture &LC : RD->captures()) { if (!LC.capturesVariable()) continue; const VarDecl *VD = LC.getCapturedVar(); if (LC.getCaptureKind() != LCK_ByRef && !VD->getType()->isPointerType()) continue; auto It = Captures.find(VD); assert(It != Captures.end() && "Found lambda capture without field."); LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second); if (LC.getCaptureKind() == LCK_ByRef) { LValue VarLValVal = CGF.EmitLValueForField(VDLVal, It->second); LambdaPointers.try_emplace(VarLVal.getPointer(CGF), VDLVal.getPointer(CGF)); CombinedInfo.Exprs.push_back(VD); CombinedInfo.BasePointers.push_back(VarLVal.getPointer(CGF)); CombinedInfo.Pointers.push_back(VarLValVal.getPointer(CGF)); CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast( CGF.getTypeSize( VD->getType().getCanonicalType().getNonReferenceType()), CGF.Int64Ty, /*isSigned=*/true)); } else { RValue VarRVal = CGF.EmitLoadOfLValue(VarLVal, RD->getLocation()); LambdaPointers.try_emplace(VarLVal.getPointer(CGF), VDLVal.getPointer(CGF)); CombinedInfo.Exprs.push_back(VD); CombinedInfo.BasePointers.push_back(VarLVal.getPointer(CGF)); CombinedInfo.Pointers.push_back(VarRVal.getScalarVal()); CombinedInfo.Sizes.push_back(llvm::ConstantInt::get(CGF.Int64Ty, 0)); } CombinedInfo.Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL | OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT); CombinedInfo.Mappers.push_back(nullptr); } } /// Set correct indices for lambdas captures. void adjustMemberOfForLambdaCaptures( const llvm::DenseMap &LambdaPointers, MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers, MapFlagsArrayTy &Types) const { for (unsigned I = 0, E = Types.size(); I < E; ++I) { // Set correct member_of idx for all implicit lambda captures. if (Types[I] != (OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL | OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT)) continue; llvm::Value *BasePtr = LambdaPointers.lookup(*BasePointers[I]); assert(BasePtr && "Unable to find base lambda address."); int TgtIdx = -1; for (unsigned J = I; J > 0; --J) { unsigned Idx = J - 1; if (Pointers[Idx] != BasePtr) continue; TgtIdx = Idx; break; } assert(TgtIdx != -1 && "Unable to find parent lambda."); // All other current entries will be MEMBER_OF the combined entry // (except for PTR_AND_OBJ entries which do not have a placeholder value // 0xFFFF in the MEMBER_OF field). OpenMPOffloadMappingFlags MemberOfFlag = getMemberOfFlag(TgtIdx); setCorrectMemberOfFlag(Types[I], MemberOfFlag); } } /// Generate the base pointers, section pointers, sizes, map types, and /// mappers associated to a given capture (all included in \a CombinedInfo). void generateInfoForCapture(const CapturedStmt::Capture *Cap, llvm::Value *Arg, MapCombinedInfoTy &CombinedInfo, StructRangeInfoTy &PartialStruct) const { assert(!Cap->capturesVariableArrayType() && "Not expecting to generate map info for a variable array type!"); // We need to know when we generating information for the first component const ValueDecl *VD = Cap->capturesThis() ? nullptr : Cap->getCapturedVar()->getCanonicalDecl(); // If this declaration appears in a is_device_ptr clause we just have to // pass the pointer by value. If it is a reference to a declaration, we just // pass its value. if (DevPointersMap.count(VD)) { CombinedInfo.Exprs.push_back(VD); CombinedInfo.BasePointers.emplace_back(Arg, VD); CombinedInfo.Pointers.push_back(Arg); CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast( CGF.getTypeSize(CGF.getContext().VoidPtrTy), CGF.Int64Ty, /*isSigned=*/true)); CombinedInfo.Types.push_back( (Cap->capturesVariable() ? OMP_MAP_TO : OMP_MAP_LITERAL) | OMP_MAP_TARGET_PARAM); CombinedInfo.Mappers.push_back(nullptr); return; } using MapData = std::tuple, bool, const ValueDecl *, const Expr *>; SmallVector DeclComponentLists; assert(CurDir.is() && "Expect a executable directive"); const auto *CurExecDir = CurDir.get(); for (const auto *C : CurExecDir->getClausesOfKind()) { const auto *EI = C->getVarRefs().begin(); for (const auto L : C->decl_component_lists(VD)) { const ValueDecl *VDecl, *Mapper; // The Expression is not correct if the mapping is implicit const Expr *E = (C->getMapLoc().isValid()) ? *EI : nullptr; OMPClauseMappableExprCommon::MappableExprComponentListRef Components; std::tie(VDecl, Components, Mapper) = L; assert(VDecl == VD && "We got information for the wrong declaration??"); assert(!Components.empty() && "Not expecting declaration with no component lists."); DeclComponentLists.emplace_back(Components, C->getMapType(), C->getMapTypeModifiers(), C->isImplicit(), Mapper, E); ++EI; } } llvm::stable_sort(DeclComponentLists, [](const MapData &LHS, const MapData &RHS) { ArrayRef MapModifiers = std::get<2>(LHS); OpenMPMapClauseKind MapType = std::get<1>(RHS); bool HasPresent = !MapModifiers.empty() && llvm::any_of(MapModifiers, [](OpenMPMapModifierKind K) { return K == clang::OMPC_MAP_MODIFIER_present; }); bool HasAllocs = MapType == OMPC_MAP_alloc; MapModifiers = std::get<2>(RHS); MapType = std::get<1>(LHS); bool HasPresentR = !MapModifiers.empty() && llvm::any_of(MapModifiers, [](OpenMPMapModifierKind K) { return K == clang::OMPC_MAP_MODIFIER_present; }); bool HasAllocsR = MapType == OMPC_MAP_alloc; return (HasPresent && !HasPresentR) || (HasAllocs && !HasAllocsR); }); // Find overlapping elements (including the offset from the base element). llvm::SmallDenseMap< const MapData *, llvm::SmallVector< OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>, 4> OverlappedData; size_t Count = 0; for (const MapData &L : DeclComponentLists) { OMPClauseMappableExprCommon::MappableExprComponentListRef Components; OpenMPMapClauseKind MapType; ArrayRef MapModifiers; bool IsImplicit; const ValueDecl *Mapper; const Expr *VarRef; std::tie(Components, MapType, MapModifiers, IsImplicit, Mapper, VarRef) = L; ++Count; for (const MapData &L1 : makeArrayRef(DeclComponentLists).slice(Count)) { OMPClauseMappableExprCommon::MappableExprComponentListRef Components1; std::tie(Components1, MapType, MapModifiers, IsImplicit, Mapper, VarRef) = L1; auto CI = Components.rbegin(); auto CE = Components.rend(); auto SI = Components1.rbegin(); auto SE = Components1.rend(); for (; CI != CE && SI != SE; ++CI, ++SI) { if (CI->getAssociatedExpression()->getStmtClass() != SI->getAssociatedExpression()->getStmtClass()) break; // Are we dealing with different variables/fields? if (CI->getAssociatedDeclaration() != SI->getAssociatedDeclaration()) break; } // Found overlapping if, at least for one component, reached the head // of the components list. if (CI == CE || SI == SE) { // Ignore it if it is the same component. if (CI == CE && SI == SE) continue; const auto It = (SI == SE) ? CI : SI; // If one component is a pointer and another one is a kind of // dereference of this pointer (array subscript, section, dereference, // etc.), it is not an overlapping. if (!isa(It->getAssociatedExpression()) || std::prev(It) ->getAssociatedExpression() ->getType() ->isPointerType()) continue; const MapData &BaseData = CI == CE ? L : L1; OMPClauseMappableExprCommon::MappableExprComponentListRef SubData = SI == SE ? Components : Components1; auto &OverlappedElements = OverlappedData.FindAndConstruct(&BaseData); OverlappedElements.getSecond().push_back(SubData); } } } // Sort the overlapped elements for each item. llvm::SmallVector Layout; if (!OverlappedData.empty()) { const Type *BaseType = VD->getType().getCanonicalType().getTypePtr(); const Type *OrigType = BaseType->getPointeeOrArrayElementType(); while (BaseType != OrigType) { BaseType = OrigType->getCanonicalTypeInternal().getTypePtr(); OrigType = BaseType->getPointeeOrArrayElementType(); } if (const auto *CRD = BaseType->getAsCXXRecordDecl()) getPlainLayout(CRD, Layout, /*AsBase=*/false); else { const auto *RD = BaseType->getAsRecordDecl(); Layout.append(RD->field_begin(), RD->field_end()); } } for (auto &Pair : OverlappedData) { llvm::stable_sort( Pair.getSecond(), [&Layout]( OMPClauseMappableExprCommon::MappableExprComponentListRef First, OMPClauseMappableExprCommon::MappableExprComponentListRef Second) { auto CI = First.rbegin(); auto CE = First.rend(); auto SI = Second.rbegin(); auto SE = Second.rend(); for (; CI != CE && SI != SE; ++CI, ++SI) { if (CI->getAssociatedExpression()->getStmtClass() != SI->getAssociatedExpression()->getStmtClass()) break; // Are we dealing with different variables/fields? if (CI->getAssociatedDeclaration() != SI->getAssociatedDeclaration()) break; } // Lists contain the same elements. if (CI == CE && SI == SE) return false; // List with less elements is less than list with more elements. if (CI == CE || SI == SE) return CI == CE; const auto *FD1 = cast(CI->getAssociatedDeclaration()); const auto *FD2 = cast(SI->getAssociatedDeclaration()); if (FD1->getParent() == FD2->getParent()) return FD1->getFieldIndex() < FD2->getFieldIndex(); const auto It = llvm::find_if(Layout, [FD1, FD2](const FieldDecl *FD) { return FD == FD1 || FD == FD2; }); return *It == FD1; }); } // Associated with a capture, because the mapping flags depend on it. // Go through all of the elements with the overlapped elements. bool IsFirstComponentList = true; for (const auto &Pair : OverlappedData) { const MapData &L = *Pair.getFirst(); OMPClauseMappableExprCommon::MappableExprComponentListRef Components; OpenMPMapClauseKind MapType; ArrayRef MapModifiers; bool IsImplicit; const ValueDecl *Mapper; const Expr *VarRef; std::tie(Components, MapType, MapModifiers, IsImplicit, Mapper, VarRef) = L; ArrayRef OverlappedComponents = Pair.getSecond(); generateInfoForComponentList( MapType, MapModifiers, llvm::None, Components, CombinedInfo, PartialStruct, IsFirstComponentList, IsImplicit, Mapper, /*ForDeviceAddr=*/false, VD, VarRef, OverlappedComponents); IsFirstComponentList = false; } // Go through other elements without overlapped elements. for (const MapData &L : DeclComponentLists) { OMPClauseMappableExprCommon::MappableExprComponentListRef Components; OpenMPMapClauseKind MapType; ArrayRef MapModifiers; bool IsImplicit; const ValueDecl *Mapper; const Expr *VarRef; std::tie(Components, MapType, MapModifiers, IsImplicit, Mapper, VarRef) = L; auto It = OverlappedData.find(&L); if (It == OverlappedData.end()) generateInfoForComponentList(MapType, MapModifiers, llvm::None, Components, CombinedInfo, PartialStruct, IsFirstComponentList, IsImplicit, Mapper, /*ForDeviceAddr=*/false, VD, VarRef); IsFirstComponentList = false; } } /// Generate the default map information for a given capture \a CI, /// record field declaration \a RI and captured value \a CV. void generateDefaultMapInfo(const CapturedStmt::Capture &CI, const FieldDecl &RI, llvm::Value *CV, MapCombinedInfoTy &CombinedInfo) const { bool IsImplicit = true; // Do the default mapping. if (CI.capturesThis()) { CombinedInfo.Exprs.push_back(nullptr); CombinedInfo.BasePointers.push_back(CV); CombinedInfo.Pointers.push_back(CV); const auto *PtrTy = cast(RI.getType().getTypePtr()); CombinedInfo.Sizes.push_back( CGF.Builder.CreateIntCast(CGF.getTypeSize(PtrTy->getPointeeType()), CGF.Int64Ty, /*isSigned=*/true)); // Default map type. CombinedInfo.Types.push_back(OMP_MAP_TO | OMP_MAP_FROM); } else if (CI.capturesVariableByCopy()) { const VarDecl *VD = CI.getCapturedVar(); CombinedInfo.Exprs.push_back(VD->getCanonicalDecl()); CombinedInfo.BasePointers.push_back(CV); CombinedInfo.Pointers.push_back(CV); if (!RI.getType()->isAnyPointerType()) { // We have to signal to the runtime captures passed by value that are // not pointers. CombinedInfo.Types.push_back(OMP_MAP_LITERAL); CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast( CGF.getTypeSize(RI.getType()), CGF.Int64Ty, /*isSigned=*/true)); } else { // Pointers are implicitly mapped with a zero size and no flags // (other than first map that is added for all implicit maps). CombinedInfo.Types.push_back(OMP_MAP_NONE); CombinedInfo.Sizes.push_back(llvm::Constant::getNullValue(CGF.Int64Ty)); } auto I = FirstPrivateDecls.find(VD); if (I != FirstPrivateDecls.end()) IsImplicit = I->getSecond(); } else { assert(CI.capturesVariable() && "Expected captured reference."); const auto *PtrTy = cast(RI.getType().getTypePtr()); QualType ElementType = PtrTy->getPointeeType(); CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast( CGF.getTypeSize(ElementType), CGF.Int64Ty, /*isSigned=*/true)); // The default map type for a scalar/complex type is 'to' because by // default the value doesn't have to be retrieved. For an aggregate // type, the default is 'tofrom'. CombinedInfo.Types.push_back(getMapModifiersForPrivateClauses(CI)); const VarDecl *VD = CI.getCapturedVar(); auto I = FirstPrivateDecls.find(VD); if (I != FirstPrivateDecls.end() && VD->getType().isConstant(CGF.getContext())) { llvm::Constant *Addr = CGF.CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(CGF, VD); // Copy the value of the original variable to the new global copy. CGF.Builder.CreateMemCpy( CGF.MakeNaturalAlignAddrLValue(Addr, ElementType).getAddress(CGF), Address(CV, CGF.getContext().getTypeAlignInChars(ElementType)), CombinedInfo.Sizes.back(), /*IsVolatile=*/false); // Use new global variable as the base pointers. CombinedInfo.Exprs.push_back(VD->getCanonicalDecl()); CombinedInfo.BasePointers.push_back(Addr); CombinedInfo.Pointers.push_back(Addr); } else { CombinedInfo.Exprs.push_back(VD->getCanonicalDecl()); CombinedInfo.BasePointers.push_back(CV); if (I != FirstPrivateDecls.end() && ElementType->isAnyPointerType()) { Address PtrAddr = CGF.EmitLoadOfReference(CGF.MakeAddrLValue( CV, ElementType, CGF.getContext().getDeclAlign(VD), AlignmentSource::Decl)); CombinedInfo.Pointers.push_back(PtrAddr.getPointer()); } else { CombinedInfo.Pointers.push_back(CV); } } if (I != FirstPrivateDecls.end()) IsImplicit = I->getSecond(); } // Every default map produces a single argument which is a target parameter. CombinedInfo.Types.back() |= OMP_MAP_TARGET_PARAM; // Add flag stating this is an implicit map. if (IsImplicit) CombinedInfo.Types.back() |= OMP_MAP_IMPLICIT; // No user-defined mapper for default mapping. CombinedInfo.Mappers.push_back(nullptr); } }; } // anonymous namespace static void emitNonContiguousDescriptor( CodeGenFunction &CGF, MappableExprsHandler::MapCombinedInfoTy &CombinedInfo, CGOpenMPRuntime::TargetDataInfo &Info) { CodeGenModule &CGM = CGF.CGM; MappableExprsHandler::MapCombinedInfoTy::StructNonContiguousInfo &NonContigInfo = CombinedInfo.NonContigInfo; // Build an array of struct descriptor_dim and then assign it to // offload_args. // // struct descriptor_dim { // uint64_t offset; // uint64_t count; // uint64_t stride // }; ASTContext &C = CGF.getContext(); QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0); RecordDecl *RD; RD = C.buildImplicitRecord("descriptor_dim"); RD->startDefinition(); addFieldToRecordDecl(C, RD, Int64Ty); addFieldToRecordDecl(C, RD, Int64Ty); addFieldToRecordDecl(C, RD, Int64Ty); RD->completeDefinition(); QualType DimTy = C.getRecordType(RD); enum { OffsetFD = 0, CountFD, StrideFD }; // We need two index variable here since the size of "Dims" is the same as the // size of Components, however, the size of offset, count, and stride is equal // to the size of base declaration that is non-contiguous. for (unsigned I = 0, L = 0, E = NonContigInfo.Dims.size(); I < E; ++I) { // Skip emitting ir if dimension size is 1 since it cannot be // non-contiguous. if (NonContigInfo.Dims[I] == 1) continue; llvm::APInt Size(/*numBits=*/32, NonContigInfo.Dims[I]); QualType ArrayTy = C.getConstantArrayType(DimTy, Size, nullptr, ArrayType::Normal, 0); Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims"); for (unsigned II = 0, EE = NonContigInfo.Dims[I]; II < EE; ++II) { unsigned RevIdx = EE - II - 1; LValue DimsLVal = CGF.MakeAddrLValue( CGF.Builder.CreateConstArrayGEP(DimsAddr, II), DimTy); // Offset LValue OffsetLVal = CGF.EmitLValueForField( DimsLVal, *std::next(RD->field_begin(), OffsetFD)); CGF.EmitStoreOfScalar(NonContigInfo.Offsets[L][RevIdx], OffsetLVal); // Count LValue CountLVal = CGF.EmitLValueForField( DimsLVal, *std::next(RD->field_begin(), CountFD)); CGF.EmitStoreOfScalar(NonContigInfo.Counts[L][RevIdx], CountLVal); // Stride LValue StrideLVal = CGF.EmitLValueForField( DimsLVal, *std::next(RD->field_begin(), StrideFD)); CGF.EmitStoreOfScalar(NonContigInfo.Strides[L][RevIdx], StrideLVal); } // args[I] = &dims Address DAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( DimsAddr, CGM.Int8PtrTy); llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32( llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), Info.PointersArray, 0, I); Address PAddr(P, CGF.getPointerAlign()); CGF.Builder.CreateStore(DAddr.getPointer(), PAddr); ++L; } } /// Emit a string constant containing the names of the values mapped to the /// offloading runtime library. llvm::Constant * emitMappingInformation(CodeGenFunction &CGF, llvm::OpenMPIRBuilder &OMPBuilder, MappableExprsHandler::MappingExprInfo &MapExprs) { llvm::Constant *SrcLocStr; if (!MapExprs.getMapDecl()) { SrcLocStr = OMPBuilder.getOrCreateDefaultSrcLocStr(); } else { std::string ExprName = ""; if (MapExprs.getMapExpr()) { PrintingPolicy P(CGF.getContext().getLangOpts()); llvm::raw_string_ostream OS(ExprName); MapExprs.getMapExpr()->printPretty(OS, nullptr, P); OS.flush(); } else { ExprName = MapExprs.getMapDecl()->getNameAsString(); } SourceLocation Loc = MapExprs.getMapDecl()->getLocation(); PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc); const char *FileName = PLoc.getFilename(); unsigned Line = PLoc.getLine(); unsigned Column = PLoc.getColumn(); SrcLocStr = OMPBuilder.getOrCreateSrcLocStr(FileName, ExprName.c_str(), Line, Column); } return SrcLocStr; } /// Emit the arrays used to pass the captures and map information to the /// offloading runtime library. If there is no map or capture information, /// return nullptr by reference. static void emitOffloadingArrays( CodeGenFunction &CGF, MappableExprsHandler::MapCombinedInfoTy &CombinedInfo, CGOpenMPRuntime::TargetDataInfo &Info, llvm::OpenMPIRBuilder &OMPBuilder, bool IsNonContiguous = false) { CodeGenModule &CGM = CGF.CGM; ASTContext &Ctx = CGF.getContext(); // Reset the array information. Info.clearArrayInfo(); Info.NumberOfPtrs = CombinedInfo.BasePointers.size(); if (Info.NumberOfPtrs) { // Detect if we have any capture size requiring runtime evaluation of the // size so that a constant array could be eventually used. bool hasRuntimeEvaluationCaptureSize = false; for (llvm::Value *S : CombinedInfo.Sizes) if (!isa(S)) { hasRuntimeEvaluationCaptureSize = true; break; } llvm::APInt PointerNumAP(32, Info.NumberOfPtrs, /*isSigned=*/true); QualType PointerArrayType = Ctx.getConstantArrayType( Ctx.VoidPtrTy, PointerNumAP, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0); Info.BasePointersArray = CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer(); Info.PointersArray = CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer(); Address MappersArray = CGF.CreateMemTemp(PointerArrayType, ".offload_mappers"); Info.MappersArray = MappersArray.getPointer(); // If we don't have any VLA types or other types that require runtime // evaluation, we can use a constant array for the map sizes, otherwise we // need to fill up the arrays as we do for the pointers. QualType Int64Ty = Ctx.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1); if (hasRuntimeEvaluationCaptureSize) { QualType SizeArrayType = Ctx.getConstantArrayType( Int64Ty, PointerNumAP, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0); Info.SizesArray = CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer(); } else { // We expect all the sizes to be constant, so we collect them to create // a constant array. SmallVector ConstSizes; for (unsigned I = 0, E = CombinedInfo.Sizes.size(); I < E; ++I) { if (IsNonContiguous && (CombinedInfo.Types[I] & MappableExprsHandler::OMP_MAP_NON_CONTIG)) { ConstSizes.push_back(llvm::ConstantInt::get( CGF.Int64Ty, CombinedInfo.NonContigInfo.Dims[I])); } else { ConstSizes.push_back(cast(CombinedInfo.Sizes[I])); } } auto *SizesArrayInit = llvm::ConstantArray::get( llvm::ArrayType::get(CGM.Int64Ty, ConstSizes.size()), ConstSizes); std::string Name = CGM.getOpenMPRuntime().getName({"offload_sizes"}); auto *SizesArrayGbl = new llvm::GlobalVariable( CGM.getModule(), SizesArrayInit->getType(), /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, SizesArrayInit, Name); SizesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); Info.SizesArray = SizesArrayGbl; } // The map types are always constant so we don't need to generate code to // fill arrays. Instead, we create an array constant. SmallVector Mapping(CombinedInfo.Types.size(), 0); llvm::copy(CombinedInfo.Types, Mapping.begin()); std::string MaptypesName = CGM.getOpenMPRuntime().getName({"offload_maptypes"}); auto *MapTypesArrayGbl = OMPBuilder.createOffloadMaptypes(Mapping, MaptypesName); Info.MapTypesArray = MapTypesArrayGbl; // The information types are only built if there is debug information // requested. if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo) { Info.MapNamesArray = llvm::Constant::getNullValue( llvm::Type::getInt8Ty(CGF.Builder.getContext())->getPointerTo()); } else { auto fillInfoMap = [&](MappableExprsHandler::MappingExprInfo &MapExpr) { return emitMappingInformation(CGF, OMPBuilder, MapExpr); }; SmallVector InfoMap(CombinedInfo.Exprs.size()); llvm::transform(CombinedInfo.Exprs, InfoMap.begin(), fillInfoMap); std::string MapnamesName = CGM.getOpenMPRuntime().getName({"offload_mapnames"}); auto *MapNamesArrayGbl = OMPBuilder.createOffloadMapnames(InfoMap, MapnamesName); Info.MapNamesArray = MapNamesArrayGbl; } // If there's a present map type modifier, it must not be applied to the end // of a region, so generate a separate map type array in that case. if (Info.separateBeginEndCalls()) { bool EndMapTypesDiffer = false; for (uint64_t &Type : Mapping) { if (Type & MappableExprsHandler::OMP_MAP_PRESENT) { Type &= ~MappableExprsHandler::OMP_MAP_PRESENT; EndMapTypesDiffer = true; } } if (EndMapTypesDiffer) { MapTypesArrayGbl = OMPBuilder.createOffloadMaptypes(Mapping, MaptypesName); Info.MapTypesArrayEnd = MapTypesArrayGbl; } } for (unsigned I = 0; I < Info.NumberOfPtrs; ++I) { llvm::Value *BPVal = *CombinedInfo.BasePointers[I]; llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32( llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), Info.BasePointersArray, 0, I); BP = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( BP, BPVal->getType()->getPointerTo(/*AddrSpace=*/0)); Address BPAddr(BP, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy)); CGF.Builder.CreateStore(BPVal, BPAddr); if (Info.requiresDevicePointerInfo()) if (const ValueDecl *DevVD = CombinedInfo.BasePointers[I].getDevicePtrDecl()) Info.CaptureDeviceAddrMap.try_emplace(DevVD, BPAddr); llvm::Value *PVal = CombinedInfo.Pointers[I]; llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32( llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), Info.PointersArray, 0, I); P = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( P, PVal->getType()->getPointerTo(/*AddrSpace=*/0)); Address PAddr(P, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy)); CGF.Builder.CreateStore(PVal, PAddr); if (hasRuntimeEvaluationCaptureSize) { llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32( llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs), Info.SizesArray, /*Idx0=*/0, /*Idx1=*/I); Address SAddr(S, Ctx.getTypeAlignInChars(Int64Ty)); CGF.Builder.CreateStore(CGF.Builder.CreateIntCast(CombinedInfo.Sizes[I], CGM.Int64Ty, /*isSigned=*/true), SAddr); } // Fill up the mapper array. llvm::Value *MFunc = llvm::ConstantPointerNull::get(CGM.VoidPtrTy); if (CombinedInfo.Mappers[I]) { MFunc = CGM.getOpenMPRuntime().getOrCreateUserDefinedMapperFunc( cast(CombinedInfo.Mappers[I])); MFunc = CGF.Builder.CreatePointerCast(MFunc, CGM.VoidPtrTy); Info.HasMapper = true; } Address MAddr = CGF.Builder.CreateConstArrayGEP(MappersArray, I); CGF.Builder.CreateStore(MFunc, MAddr); } } if (!IsNonContiguous || CombinedInfo.NonContigInfo.Offsets.empty() || Info.NumberOfPtrs == 0) return; emitNonContiguousDescriptor(CGF, CombinedInfo, Info); } namespace { /// Additional arguments for emitOffloadingArraysArgument function. struct ArgumentsOptions { bool ForEndCall = false; ArgumentsOptions() = default; ArgumentsOptions(bool ForEndCall) : ForEndCall(ForEndCall) {} }; } // namespace /// Emit the arguments to be passed to the runtime library based on the /// arrays of base pointers, pointers, sizes, map types, and mappers. If /// ForEndCall, emit map types to be passed for the end of the region instead of /// the beginning. static void emitOffloadingArraysArgument( CodeGenFunction &CGF, llvm::Value *&BasePointersArrayArg, llvm::Value *&PointersArrayArg, llvm::Value *&SizesArrayArg, llvm::Value *&MapTypesArrayArg, llvm::Value *&MapNamesArrayArg, llvm::Value *&MappersArrayArg, CGOpenMPRuntime::TargetDataInfo &Info, const ArgumentsOptions &Options = ArgumentsOptions()) { assert((!Options.ForEndCall || Info.separateBeginEndCalls()) && "expected region end call to runtime only when end call is separate"); CodeGenModule &CGM = CGF.CGM; if (Info.NumberOfPtrs) { BasePointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), Info.BasePointersArray, /*Idx0=*/0, /*Idx1=*/0); PointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), Info.PointersArray, /*Idx0=*/0, /*Idx1=*/0); SizesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs), Info.SizesArray, /*Idx0=*/0, /*Idx1=*/0); MapTypesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs), Options.ForEndCall && Info.MapTypesArrayEnd ? Info.MapTypesArrayEnd : Info.MapTypesArray, /*Idx0=*/0, /*Idx1=*/0); // Only emit the mapper information arrays if debug information is // requested. if (CGF.CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo) MapNamesArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy); else MapNamesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), Info.MapNamesArray, /*Idx0=*/0, /*Idx1=*/0); // If there is no user-defined mapper, set the mapper array to nullptr to // avoid an unnecessary data privatization if (!Info.HasMapper) MappersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy); else MappersArrayArg = CGF.Builder.CreatePointerCast(Info.MappersArray, CGM.VoidPtrPtrTy); } else { BasePointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy); PointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy); SizesArrayArg = llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo()); MapTypesArrayArg = llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo()); MapNamesArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy); MappersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy); } } /// Check for inner distribute directive. static const OMPExecutableDirective * getNestedDistributeDirective(ASTContext &Ctx, const OMPExecutableDirective &D) { const auto *CS = D.getInnermostCapturedStmt(); const auto *Body = CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); const Stmt *ChildStmt = CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body); if (const auto *NestedDir = dyn_cast_or_null(ChildStmt)) { OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); switch (D.getDirectiveKind()) { case OMPD_target: if (isOpenMPDistributeDirective(DKind)) return NestedDir; if (DKind == OMPD_teams) { Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( /*IgnoreCaptured=*/true); if (!Body) return nullptr; ChildStmt = CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body); if (const auto *NND = dyn_cast_or_null(ChildStmt)) { DKind = NND->getDirectiveKind(); if (isOpenMPDistributeDirective(DKind)) return NND; } } return nullptr; case OMPD_target_teams: if (isOpenMPDistributeDirective(DKind)) return NestedDir; return nullptr; case OMPD_target_parallel: case OMPD_target_simd: case OMPD_target_parallel_for: case OMPD_target_parallel_for_simd: return nullptr; case OMPD_target_teams_distribute: case OMPD_target_teams_distribute_simd: case OMPD_target_teams_distribute_parallel_for: case OMPD_target_teams_distribute_parallel_for_simd: case OMPD_parallel: case OMPD_for: case OMPD_parallel_for: case OMPD_parallel_master: case OMPD_parallel_sections: case OMPD_for_simd: case OMPD_parallel_for_simd: case OMPD_cancel: case OMPD_cancellation_point: case OMPD_ordered: case OMPD_threadprivate: case OMPD_allocate: case OMPD_task: case OMPD_simd: case OMPD_tile: case OMPD_sections: case OMPD_section: case OMPD_single: case OMPD_master: case OMPD_critical: case OMPD_taskyield: case OMPD_barrier: case OMPD_taskwait: case OMPD_taskgroup: case OMPD_atomic: case OMPD_flush: case OMPD_depobj: case OMPD_scan: case OMPD_teams: case OMPD_target_data: case OMPD_target_exit_data: case OMPD_target_enter_data: case OMPD_distribute: case OMPD_distribute_simd: case OMPD_distribute_parallel_for: case OMPD_distribute_parallel_for_simd: case OMPD_teams_distribute: case OMPD_teams_distribute_simd: case OMPD_teams_distribute_parallel_for: case OMPD_teams_distribute_parallel_for_simd: case OMPD_target_update: case OMPD_declare_simd: case OMPD_declare_variant: case OMPD_begin_declare_variant: case OMPD_end_declare_variant: case OMPD_declare_target: case OMPD_end_declare_target: case OMPD_declare_reduction: case OMPD_declare_mapper: case OMPD_taskloop: case OMPD_taskloop_simd: case OMPD_master_taskloop: case OMPD_master_taskloop_simd: case OMPD_parallel_master_taskloop: case OMPD_parallel_master_taskloop_simd: case OMPD_requires: case OMPD_unknown: default: llvm_unreachable("Unexpected directive."); } } return nullptr; } /// Emit the user-defined mapper function. The code generation follows the /// pattern in the example below. /// \code /// void .omp_mapper...(void *rt_mapper_handle, /// void *base, void *begin, /// int64_t size, int64_t type, /// void *name = nullptr) { /// // Allocate space for an array section first or add a base/begin for /// // pointer dereference. /// if ((size > 1 || (base != begin && maptype.IsPtrAndObj)) && /// !maptype.IsDelete) /// __tgt_push_mapper_component(rt_mapper_handle, base, begin, /// size*sizeof(Ty), clearToFromMember(type)); /// // Map members. /// for (unsigned i = 0; i < size; i++) { /// // For each component specified by this mapper: /// for (auto c : begin[i]->all_components) { /// if (c.hasMapper()) /// (*c.Mapper())(rt_mapper_handle, c.arg_base, c.arg_begin, c.arg_size, /// c.arg_type, c.arg_name); /// else /// __tgt_push_mapper_component(rt_mapper_handle, c.arg_base, /// c.arg_begin, c.arg_size, c.arg_type, /// c.arg_name); /// } /// } /// // Delete the array section. /// if (size > 1 && maptype.IsDelete) /// __tgt_push_mapper_component(rt_mapper_handle, base, begin, /// size*sizeof(Ty), clearToFromMember(type)); /// } /// \endcode void CGOpenMPRuntime::emitUserDefinedMapper(const OMPDeclareMapperDecl *D, CodeGenFunction *CGF) { if (UDMMap.count(D) > 0) return; ASTContext &C = CGM.getContext(); QualType Ty = D->getType(); QualType PtrTy = C.getPointerType(Ty).withRestrict(); QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true); auto *MapperVarDecl = cast(cast(D->getMapperVarRef())->getDecl()); SourceLocation Loc = D->getLocation(); CharUnits ElementSize = C.getTypeSizeInChars(Ty); // Prepare mapper function arguments and attributes. ImplicitParamDecl HandleArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, ImplicitParamDecl::Other); ImplicitParamDecl BaseArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, ImplicitParamDecl::Other); ImplicitParamDecl BeginArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, ImplicitParamDecl::Other); ImplicitParamDecl SizeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int64Ty, ImplicitParamDecl::Other); ImplicitParamDecl TypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int64Ty, ImplicitParamDecl::Other); ImplicitParamDecl NameArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, ImplicitParamDecl::Other); FunctionArgList Args; Args.push_back(&HandleArg); Args.push_back(&BaseArg); Args.push_back(&BeginArg); Args.push_back(&SizeArg); Args.push_back(&TypeArg); Args.push_back(&NameArg); const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo); SmallString<64> TyStr; llvm::raw_svector_ostream Out(TyStr); CGM.getCXXABI().getMangleContext().mangleTypeName(Ty, Out); std::string Name = getName({"omp_mapper", TyStr, D->getName()}); auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule()); CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo); Fn->removeFnAttr(llvm::Attribute::OptimizeNone); // Start the mapper function code generation. CodeGenFunction MapperCGF(CGM); MapperCGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc); // Compute the starting and end addresses of array elements. llvm::Value *Size = MapperCGF.EmitLoadOfScalar( MapperCGF.GetAddrOfLocalVar(&SizeArg), /*Volatile=*/false, C.getPointerType(Int64Ty), Loc); // Prepare common arguments for array initiation and deletion. llvm::Value *Handle = MapperCGF.EmitLoadOfScalar( MapperCGF.GetAddrOfLocalVar(&HandleArg), /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); llvm::Value *BaseIn = MapperCGF.EmitLoadOfScalar( MapperCGF.GetAddrOfLocalVar(&BaseArg), /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); llvm::Value *BeginIn = MapperCGF.EmitLoadOfScalar( MapperCGF.GetAddrOfLocalVar(&BeginArg), /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); // Convert the size in bytes into the number of array elements. Size = MapperCGF.Builder.CreateExactUDiv( Size, MapperCGF.Builder.getInt64(ElementSize.getQuantity())); llvm::Value *PtrBegin = MapperCGF.Builder.CreateBitCast( BeginIn, CGM.getTypes().ConvertTypeForMem(PtrTy)); llvm::Value *PtrEnd = MapperCGF.Builder.CreateGEP(PtrBegin, Size); llvm::Value *MapType = MapperCGF.EmitLoadOfScalar( MapperCGF.GetAddrOfLocalVar(&TypeArg), /*Volatile=*/false, C.getPointerType(Int64Ty), Loc); llvm::Value *MapName = MapperCGF.EmitLoadOfScalar( MapperCGF.GetAddrOfLocalVar(&NameArg), /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); // Emit array initiation if this is an array section and \p MapType indicates // that memory allocation is required. llvm::BasicBlock *HeadBB = MapperCGF.createBasicBlock("omp.arraymap.head"); emitUDMapperArrayInitOrDel(MapperCGF, Handle, BaseIn, BeginIn, Size, MapType, MapName, ElementSize, HeadBB, /*IsInit=*/true); // Emit a for loop to iterate through SizeArg of elements and map all of them. // Emit the loop header block. MapperCGF.EmitBlock(HeadBB); llvm::BasicBlock *BodyBB = MapperCGF.createBasicBlock("omp.arraymap.body"); llvm::BasicBlock *DoneBB = MapperCGF.createBasicBlock("omp.done"); // Evaluate whether the initial condition is satisfied. llvm::Value *IsEmpty = MapperCGF.Builder.CreateICmpEQ(PtrBegin, PtrEnd, "omp.arraymap.isempty"); MapperCGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); llvm::BasicBlock *EntryBB = MapperCGF.Builder.GetInsertBlock(); // Emit the loop body block. MapperCGF.EmitBlock(BodyBB); llvm::BasicBlock *LastBB = BodyBB; llvm::PHINode *PtrPHI = MapperCGF.Builder.CreatePHI( PtrBegin->getType(), 2, "omp.arraymap.ptrcurrent"); PtrPHI->addIncoming(PtrBegin, EntryBB); Address PtrCurrent = Address(PtrPHI, MapperCGF.GetAddrOfLocalVar(&BeginArg) .getAlignment() .alignmentOfArrayElement(ElementSize)); // Privatize the declared variable of mapper to be the current array element. CodeGenFunction::OMPPrivateScope Scope(MapperCGF); Scope.addPrivate(MapperVarDecl, [PtrCurrent]() { return PtrCurrent; }); (void)Scope.Privatize(); // Get map clause information. Fill up the arrays with all mapped variables. MappableExprsHandler::MapCombinedInfoTy Info; MappableExprsHandler MEHandler(*D, MapperCGF); MEHandler.generateAllInfoForMapper(Info); // Call the runtime API __tgt_mapper_num_components to get the number of // pre-existing components. llvm::Value *OffloadingArgs[] = {Handle}; llvm::Value *PreviousSize = MapperCGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), OMPRTL___tgt_mapper_num_components), OffloadingArgs); llvm::Value *ShiftedPreviousSize = MapperCGF.Builder.CreateShl( PreviousSize, MapperCGF.Builder.getInt64(MappableExprsHandler::getFlagMemberOffset())); // Fill up the runtime mapper handle for all components. for (unsigned I = 0; I < Info.BasePointers.size(); ++I) { llvm::Value *CurBaseArg = MapperCGF.Builder.CreateBitCast( *Info.BasePointers[I], CGM.getTypes().ConvertTypeForMem(C.VoidPtrTy)); llvm::Value *CurBeginArg = MapperCGF.Builder.CreateBitCast( Info.Pointers[I], CGM.getTypes().ConvertTypeForMem(C.VoidPtrTy)); llvm::Value *CurSizeArg = Info.Sizes[I]; llvm::Value *CurNameArg = (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo) ? llvm::ConstantPointerNull::get(CGM.VoidPtrTy) : emitMappingInformation(MapperCGF, OMPBuilder, Info.Exprs[I]); // Extract the MEMBER_OF field from the map type. llvm::Value *OriMapType = MapperCGF.Builder.getInt64(Info.Types[I]); llvm::Value *MemberMapType = MapperCGF.Builder.CreateNUWAdd(OriMapType, ShiftedPreviousSize); // Combine the map type inherited from user-defined mapper with that // specified in the program. According to the OMP_MAP_TO and OMP_MAP_FROM // bits of the \a MapType, which is the input argument of the mapper // function, the following code will set the OMP_MAP_TO and OMP_MAP_FROM // bits of MemberMapType. // [OpenMP 5.0], 1.2.6. map-type decay. // | alloc | to | from | tofrom | release | delete // ---------------------------------------------------------- // alloc | alloc | alloc | alloc | alloc | release | delete // to | alloc | to | alloc | to | release | delete // from | alloc | alloc | from | from | release | delete // tofrom | alloc | to | from | tofrom | release | delete llvm::Value *LeftToFrom = MapperCGF.Builder.CreateAnd( MapType, MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_TO | MappableExprsHandler::OMP_MAP_FROM)); llvm::BasicBlock *AllocBB = MapperCGF.createBasicBlock("omp.type.alloc"); llvm::BasicBlock *AllocElseBB = MapperCGF.createBasicBlock("omp.type.alloc.else"); llvm::BasicBlock *ToBB = MapperCGF.createBasicBlock("omp.type.to"); llvm::BasicBlock *ToElseBB = MapperCGF.createBasicBlock("omp.type.to.else"); llvm::BasicBlock *FromBB = MapperCGF.createBasicBlock("omp.type.from"); llvm::BasicBlock *EndBB = MapperCGF.createBasicBlock("omp.type.end"); llvm::Value *IsAlloc = MapperCGF.Builder.CreateIsNull(LeftToFrom); MapperCGF.Builder.CreateCondBr(IsAlloc, AllocBB, AllocElseBB); // In case of alloc, clear OMP_MAP_TO and OMP_MAP_FROM. MapperCGF.EmitBlock(AllocBB); llvm::Value *AllocMapType = MapperCGF.Builder.CreateAnd( MemberMapType, MapperCGF.Builder.getInt64(~(MappableExprsHandler::OMP_MAP_TO | MappableExprsHandler::OMP_MAP_FROM))); MapperCGF.Builder.CreateBr(EndBB); MapperCGF.EmitBlock(AllocElseBB); llvm::Value *IsTo = MapperCGF.Builder.CreateICmpEQ( LeftToFrom, MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_TO)); MapperCGF.Builder.CreateCondBr(IsTo, ToBB, ToElseBB); // In case of to, clear OMP_MAP_FROM. MapperCGF.EmitBlock(ToBB); llvm::Value *ToMapType = MapperCGF.Builder.CreateAnd( MemberMapType, MapperCGF.Builder.getInt64(~MappableExprsHandler::OMP_MAP_FROM)); MapperCGF.Builder.CreateBr(EndBB); MapperCGF.EmitBlock(ToElseBB); llvm::Value *IsFrom = MapperCGF.Builder.CreateICmpEQ( LeftToFrom, MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_FROM)); MapperCGF.Builder.CreateCondBr(IsFrom, FromBB, EndBB); // In case of from, clear OMP_MAP_TO. MapperCGF.EmitBlock(FromBB); llvm::Value *FromMapType = MapperCGF.Builder.CreateAnd( MemberMapType, MapperCGF.Builder.getInt64(~MappableExprsHandler::OMP_MAP_TO)); // In case of tofrom, do nothing. MapperCGF.EmitBlock(EndBB); LastBB = EndBB; llvm::PHINode *CurMapType = MapperCGF.Builder.CreatePHI(CGM.Int64Ty, 4, "omp.maptype"); CurMapType->addIncoming(AllocMapType, AllocBB); CurMapType->addIncoming(ToMapType, ToBB); CurMapType->addIncoming(FromMapType, FromBB); CurMapType->addIncoming(MemberMapType, ToElseBB); llvm::Value *OffloadingArgs[] = {Handle, CurBaseArg, CurBeginArg, CurSizeArg, CurMapType, CurNameArg}; if (Info.Mappers[I]) { // Call the corresponding mapper function. llvm::Function *MapperFunc = getOrCreateUserDefinedMapperFunc( cast(Info.Mappers[I])); assert(MapperFunc && "Expect a valid mapper function is available."); MapperCGF.EmitNounwindRuntimeCall(MapperFunc, OffloadingArgs); } else { // Call the runtime API __tgt_push_mapper_component to fill up the runtime // data structure. MapperCGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___tgt_push_mapper_component), OffloadingArgs); } } // Update the pointer to point to the next element that needs to be mapped, // and check whether we have mapped all elements. llvm::Value *PtrNext = MapperCGF.Builder.CreateConstGEP1_32( PtrPHI, /*Idx0=*/1, "omp.arraymap.next"); PtrPHI->addIncoming(PtrNext, LastBB); llvm::Value *IsDone = MapperCGF.Builder.CreateICmpEQ(PtrNext, PtrEnd, "omp.arraymap.isdone"); llvm::BasicBlock *ExitBB = MapperCGF.createBasicBlock("omp.arraymap.exit"); MapperCGF.Builder.CreateCondBr(IsDone, ExitBB, BodyBB); MapperCGF.EmitBlock(ExitBB); // Emit array deletion if this is an array section and \p MapType indicates // that deletion is required. emitUDMapperArrayInitOrDel(MapperCGF, Handle, BaseIn, BeginIn, Size, MapType, MapName, ElementSize, DoneBB, /*IsInit=*/false); // Emit the function exit block. MapperCGF.EmitBlock(DoneBB, /*IsFinished=*/true); MapperCGF.FinishFunction(); UDMMap.try_emplace(D, Fn); if (CGF) { auto &Decls = FunctionUDMMap.FindAndConstruct(CGF->CurFn); Decls.second.push_back(D); } } /// Emit the array initialization or deletion portion for user-defined mapper /// code generation. First, it evaluates whether an array section is mapped and /// whether the \a MapType instructs to delete this section. If \a IsInit is /// true, and \a MapType indicates to not delete this array, array /// initialization code is generated. If \a IsInit is false, and \a MapType /// indicates to not this array, array deletion code is generated. void CGOpenMPRuntime::emitUDMapperArrayInitOrDel( CodeGenFunction &MapperCGF, llvm::Value *Handle, llvm::Value *Base, llvm::Value *Begin, llvm::Value *Size, llvm::Value *MapType, llvm::Value *MapName, CharUnits ElementSize, llvm::BasicBlock *ExitBB, bool IsInit) { StringRef Prefix = IsInit ? ".init" : ".del"; // Evaluate if this is an array section. llvm::BasicBlock *BodyBB = MapperCGF.createBasicBlock(getName({"omp.array", Prefix})); llvm::Value *IsArray = MapperCGF.Builder.CreateICmpSGT( Size, MapperCGF.Builder.getInt64(1), "omp.arrayinit.isarray"); llvm::Value *DeleteBit = MapperCGF.Builder.CreateAnd( MapType, MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_DELETE)); llvm::Value *DeleteCond; llvm::Value *Cond; if (IsInit) { // base != begin? llvm::Value *BaseIsBegin = MapperCGF.Builder.CreateIsNotNull( MapperCGF.Builder.CreatePtrDiff(Base, Begin)); // IsPtrAndObj? llvm::Value *PtrAndObjBit = MapperCGF.Builder.CreateAnd( MapType, MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_PTR_AND_OBJ)); PtrAndObjBit = MapperCGF.Builder.CreateIsNotNull(PtrAndObjBit); BaseIsBegin = MapperCGF.Builder.CreateAnd(BaseIsBegin, PtrAndObjBit); Cond = MapperCGF.Builder.CreateOr(IsArray, BaseIsBegin); DeleteCond = MapperCGF.Builder.CreateIsNull( DeleteBit, getName({"omp.array", Prefix, ".delete"})); } else { Cond = IsArray; DeleteCond = MapperCGF.Builder.CreateIsNotNull( DeleteBit, getName({"omp.array", Prefix, ".delete"})); } Cond = MapperCGF.Builder.CreateAnd(Cond, DeleteCond); MapperCGF.Builder.CreateCondBr(Cond, BodyBB, ExitBB); MapperCGF.EmitBlock(BodyBB); // Get the array size by multiplying element size and element number (i.e., \p // Size). llvm::Value *ArraySize = MapperCGF.Builder.CreateNUWMul( Size, MapperCGF.Builder.getInt64(ElementSize.getQuantity())); // Remove OMP_MAP_TO and OMP_MAP_FROM from the map type, so that it achieves // memory allocation/deletion purpose only. llvm::Value *MapTypeArg = MapperCGF.Builder.CreateAnd( MapType, MapperCGF.Builder.getInt64(~(MappableExprsHandler::OMP_MAP_TO | MappableExprsHandler::OMP_MAP_FROM))); MapTypeArg = MapperCGF.Builder.CreateOr( MapTypeArg, MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_IMPLICIT)); // Call the runtime API __tgt_push_mapper_component to fill up the runtime // data structure. llvm::Value *OffloadingArgs[] = {Handle, Base, Begin, ArraySize, MapTypeArg, MapName}; MapperCGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), OMPRTL___tgt_push_mapper_component), OffloadingArgs); } llvm::Function *CGOpenMPRuntime::getOrCreateUserDefinedMapperFunc( const OMPDeclareMapperDecl *D) { auto I = UDMMap.find(D); if (I != UDMMap.end()) return I->second; emitUserDefinedMapper(D); return UDMMap.lookup(D); } void CGOpenMPRuntime::emitTargetNumIterationsCall( CodeGenFunction &CGF, const OMPExecutableDirective &D, llvm::Value *DeviceID, llvm::function_ref SizeEmitter) { OpenMPDirectiveKind Kind = D.getDirectiveKind(); const OMPExecutableDirective *TD = &D; // Get nested teams distribute kind directive, if any. if (!isOpenMPDistributeDirective(Kind) || !isOpenMPTeamsDirective(Kind)) TD = getNestedDistributeDirective(CGM.getContext(), D); if (!TD) return; const auto *LD = cast(TD); auto &&CodeGen = [LD, DeviceID, SizeEmitter, &D, this](CodeGenFunction &CGF, PrePostActionTy &) { if (llvm::Value *NumIterations = SizeEmitter(CGF, *LD)) { llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc()); llvm::Value *Args[] = {RTLoc, DeviceID, NumIterations}; CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_push_target_tripcount_mapper), Args); } }; emitInlinedDirective(CGF, OMPD_unknown, CodeGen); } void CGOpenMPRuntime::emitTargetCall( CodeGenFunction &CGF, const OMPExecutableDirective &D, llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond, llvm::PointerIntPair Device, llvm::function_ref SizeEmitter) { if (!CGF.HaveInsertPoint()) return; assert(OutlinedFn && "Invalid outlined function!"); const bool RequiresOuterTask = D.hasClausesOfKind() || D.hasClausesOfKind(); llvm::SmallVector CapturedVars; const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target); auto &&ArgsCodegen = [&CS, &CapturedVars](CodeGenFunction &CGF, PrePostActionTy &) { CGF.GenerateOpenMPCapturedVars(CS, CapturedVars); }; emitInlinedDirective(CGF, OMPD_unknown, ArgsCodegen); CodeGenFunction::OMPTargetDataInfo InputInfo; llvm::Value *MapTypesArray = nullptr; llvm::Value *MapNamesArray = nullptr; // Fill up the pointer arrays and transfer execution to the device. auto &&ThenGen = [this, Device, OutlinedFn, OutlinedFnID, &D, &InputInfo, &MapTypesArray, &MapNamesArray, &CS, RequiresOuterTask, &CapturedVars, SizeEmitter](CodeGenFunction &CGF, PrePostActionTy &) { if (Device.getInt() == OMPC_DEVICE_ancestor) { // Reverse offloading is not supported, so just execute on the host. if (RequiresOuterTask) { CapturedVars.clear(); CGF.GenerateOpenMPCapturedVars(CS, CapturedVars); } emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars); return; } // On top of the arrays that were filled up, the target offloading call // takes as arguments the device id as well as the host pointer. The host // pointer is used by the runtime library to identify the current target // region, so it only has to be unique and not necessarily point to // anything. It could be the pointer to the outlined function that // implements the target region, but we aren't using that so that the // compiler doesn't need to keep that, and could therefore inline the host // function if proven worthwhile during optimization. // From this point on, we need to have an ID of the target region defined. assert(OutlinedFnID && "Invalid outlined function ID!"); // Emit device ID if any. llvm::Value *DeviceID; if (Device.getPointer()) { assert((Device.getInt() == OMPC_DEVICE_unknown || Device.getInt() == OMPC_DEVICE_device_num) && "Expected device_num modifier."); llvm::Value *DevVal = CGF.EmitScalarExpr(Device.getPointer()); DeviceID = CGF.Builder.CreateIntCast(DevVal, CGF.Int64Ty, /*isSigned=*/true); } else { DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF); } // Emit the number of elements in the offloading arrays. llvm::Value *PointerNum = CGF.Builder.getInt32(InputInfo.NumberOfTargetItems); // Return value of the runtime offloading call. llvm::Value *Return; llvm::Value *NumTeams = emitNumTeamsForTargetDirective(CGF, D); llvm::Value *NumThreads = emitNumThreadsForTargetDirective(CGF, D); // Source location for the ident struct llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc()); // Emit tripcount for the target loop-based directive. emitTargetNumIterationsCall(CGF, D, DeviceID, SizeEmitter); bool HasNowait = D.hasClausesOfKind(); // The target region is an outlined function launched by the runtime // via calls __tgt_target() or __tgt_target_teams(). // // __tgt_target() launches a target region with one team and one thread, // executing a serial region. This master thread may in turn launch // more threads within its team upon encountering a parallel region, // however, no additional teams can be launched on the device. // // __tgt_target_teams() launches a target region with one or more teams, // each with one or more threads. This call is required for target // constructs such as: // 'target teams' // 'target' / 'teams' // 'target teams distribute parallel for' // 'target parallel' // and so on. // // Note that on the host and CPU targets, the runtime implementation of // these calls simply call the outlined function without forking threads. // The outlined functions themselves have runtime calls to // __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by // the compiler in emitTeamsCall() and emitParallelCall(). // // In contrast, on the NVPTX target, the implementation of // __tgt_target_teams() launches a GPU kernel with the requested number // of teams and threads so no additional calls to the runtime are required. if (NumTeams) { // If we have NumTeams defined this means that we have an enclosed teams // region. Therefore we also expect to have NumThreads defined. These two // values should be defined in the presence of a teams directive, // regardless of having any clauses associated. If the user is using teams // but no clauses, these two values will be the default that should be // passed to the runtime library - a 32-bit integer with the value zero. assert(NumThreads && "Thread limit expression should be available along " "with number of teams."); llvm::Value *OffloadingArgs[] = {RTLoc, DeviceID, OutlinedFnID, PointerNum, InputInfo.BasePointersArray.getPointer(), InputInfo.PointersArray.getPointer(), InputInfo.SizesArray.getPointer(), MapTypesArray, MapNamesArray, InputInfo.MappersArray.getPointer(), NumTeams, NumThreads}; Return = CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), HasNowait ? OMPRTL___tgt_target_teams_nowait_mapper : OMPRTL___tgt_target_teams_mapper), OffloadingArgs); } else { llvm::Value *OffloadingArgs[] = {RTLoc, DeviceID, OutlinedFnID, PointerNum, InputInfo.BasePointersArray.getPointer(), InputInfo.PointersArray.getPointer(), InputInfo.SizesArray.getPointer(), MapTypesArray, MapNamesArray, InputInfo.MappersArray.getPointer()}; Return = CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), HasNowait ? OMPRTL___tgt_target_nowait_mapper : OMPRTL___tgt_target_mapper), OffloadingArgs); } // Check the error code and execute the host version if required. llvm::BasicBlock *OffloadFailedBlock = CGF.createBasicBlock("omp_offload.failed"); llvm::BasicBlock *OffloadContBlock = CGF.createBasicBlock("omp_offload.cont"); llvm::Value *Failed = CGF.Builder.CreateIsNotNull(Return); CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock); CGF.EmitBlock(OffloadFailedBlock); if (RequiresOuterTask) { CapturedVars.clear(); CGF.GenerateOpenMPCapturedVars(CS, CapturedVars); } emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars); CGF.EmitBranch(OffloadContBlock); CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true); }; // Notify that the host version must be executed. auto &&ElseGen = [this, &D, OutlinedFn, &CS, &CapturedVars, RequiresOuterTask](CodeGenFunction &CGF, PrePostActionTy &) { if (RequiresOuterTask) { CapturedVars.clear(); CGF.GenerateOpenMPCapturedVars(CS, CapturedVars); } emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars); }; auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray, &MapNamesArray, &CapturedVars, RequiresOuterTask, &CS](CodeGenFunction &CGF, PrePostActionTy &) { // Fill up the arrays with all the captured variables. MappableExprsHandler::MapCombinedInfoTy CombinedInfo; // Get mappable expression information. MappableExprsHandler MEHandler(D, CGF); llvm::DenseMap LambdaPointers; llvm::DenseSet> MappedVarSet; auto RI = CS.getCapturedRecordDecl()->field_begin(); auto *CV = CapturedVars.begin(); for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(), CE = CS.capture_end(); CI != CE; ++CI, ++RI, ++CV) { MappableExprsHandler::MapCombinedInfoTy CurInfo; MappableExprsHandler::StructRangeInfoTy PartialStruct; // VLA sizes are passed to the outlined region by copy and do not have map // information associated. if (CI->capturesVariableArrayType()) { CurInfo.Exprs.push_back(nullptr); CurInfo.BasePointers.push_back(*CV); CurInfo.Pointers.push_back(*CV); CurInfo.Sizes.push_back(CGF.Builder.CreateIntCast( CGF.getTypeSize(RI->getType()), CGF.Int64Ty, /*isSigned=*/true)); // Copy to the device as an argument. No need to retrieve it. CurInfo.Types.push_back(MappableExprsHandler::OMP_MAP_LITERAL | MappableExprsHandler::OMP_MAP_TARGET_PARAM | MappableExprsHandler::OMP_MAP_IMPLICIT); CurInfo.Mappers.push_back(nullptr); } else { // If we have any information in the map clause, we use it, otherwise we // just do a default mapping. MEHandler.generateInfoForCapture(CI, *CV, CurInfo, PartialStruct); if (!CI->capturesThis()) MappedVarSet.insert(CI->getCapturedVar()); else MappedVarSet.insert(nullptr); if (CurInfo.BasePointers.empty() && !PartialStruct.Base.isValid()) MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurInfo); // Generate correct mapping for variables captured by reference in // lambdas. if (CI->capturesVariable()) MEHandler.generateInfoForLambdaCaptures(CI->getCapturedVar(), *CV, CurInfo, LambdaPointers); } // We expect to have at least an element of information for this capture. assert((!CurInfo.BasePointers.empty() || PartialStruct.Base.isValid()) && "Non-existing map pointer for capture!"); assert(CurInfo.BasePointers.size() == CurInfo.Pointers.size() && CurInfo.BasePointers.size() == CurInfo.Sizes.size() && CurInfo.BasePointers.size() == CurInfo.Types.size() && CurInfo.BasePointers.size() == CurInfo.Mappers.size() && "Inconsistent map information sizes!"); // If there is an entry in PartialStruct it means we have a struct with // individual members mapped. Emit an extra combined entry. if (PartialStruct.Base.isValid()) { CombinedInfo.append(PartialStruct.PreliminaryMapData); MEHandler.emitCombinedEntry( CombinedInfo, CurInfo.Types, PartialStruct, nullptr, !PartialStruct.PreliminaryMapData.BasePointers.empty()); } // We need to append the results of this capture to what we already have. CombinedInfo.append(CurInfo); } // Adjust MEMBER_OF flags for the lambdas captures. MEHandler.adjustMemberOfForLambdaCaptures( LambdaPointers, CombinedInfo.BasePointers, CombinedInfo.Pointers, CombinedInfo.Types); // Map any list items in a map clause that were not captures because they // weren't referenced within the construct. MEHandler.generateAllInfo(CombinedInfo, MappedVarSet); TargetDataInfo Info; // Fill up the arrays and create the arguments. emitOffloadingArrays(CGF, CombinedInfo, Info, OMPBuilder); emitOffloadingArraysArgument( CGF, Info.BasePointersArray, Info.PointersArray, Info.SizesArray, Info.MapTypesArray, Info.MapNamesArray, Info.MappersArray, Info, {/*ForEndTask=*/false}); InputInfo.NumberOfTargetItems = Info.NumberOfPtrs; InputInfo.BasePointersArray = Address(Info.BasePointersArray, CGM.getPointerAlign()); InputInfo.PointersArray = Address(Info.PointersArray, CGM.getPointerAlign()); InputInfo.SizesArray = Address(Info.SizesArray, CGM.getPointerAlign()); InputInfo.MappersArray = Address(Info.MappersArray, CGM.getPointerAlign()); MapTypesArray = Info.MapTypesArray; MapNamesArray = Info.MapNamesArray; if (RequiresOuterTask) CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo); else emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen); }; auto &&TargetElseGen = [this, &ElseGen, &D, RequiresOuterTask]( CodeGenFunction &CGF, PrePostActionTy &) { if (RequiresOuterTask) { CodeGenFunction::OMPTargetDataInfo InputInfo; CGF.EmitOMPTargetTaskBasedDirective(D, ElseGen, InputInfo); } else { emitInlinedDirective(CGF, D.getDirectiveKind(), ElseGen); } }; // If we have a target function ID it means that we need to support // offloading, otherwise, just execute on the host. We need to execute on host // regardless of the conditional in the if clause if, e.g., the user do not // specify target triples. if (OutlinedFnID) { if (IfCond) { emitIfClause(CGF, IfCond, TargetThenGen, TargetElseGen); } else { RegionCodeGenTy ThenRCG(TargetThenGen); ThenRCG(CGF); } } else { RegionCodeGenTy ElseRCG(TargetElseGen); ElseRCG(CGF); } } void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S, StringRef ParentName) { if (!S) return; // Codegen OMP target directives that offload compute to the device. bool RequiresDeviceCodegen = isa(S) && isOpenMPTargetExecutionDirective( cast(S)->getDirectiveKind()); if (RequiresDeviceCodegen) { const auto &E = *cast(S); unsigned DeviceID; unsigned FileID; unsigned Line; getTargetEntryUniqueInfo(CGM.getContext(), E.getBeginLoc(), DeviceID, FileID, Line); // Is this a target region that should not be emitted as an entry point? If // so just signal we are done with this target region. if (!OffloadEntriesInfoManager.hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, Line)) return; switch (E.getDirectiveKind()) { case OMPD_target: CodeGenFunction::EmitOMPTargetDeviceFunction(CGM, ParentName, cast(E)); break; case OMPD_target_parallel: CodeGenFunction::EmitOMPTargetParallelDeviceFunction( CGM, ParentName, cast(E)); break; case OMPD_target_teams: CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( CGM, ParentName, cast(E)); break; case OMPD_target_teams_distribute: CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( CGM, ParentName, cast(E)); break; case OMPD_target_teams_distribute_simd: CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( CGM, ParentName, cast(E)); break; case OMPD_target_parallel_for: CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( CGM, ParentName, cast(E)); break; case OMPD_target_parallel_for_simd: CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( CGM, ParentName, cast(E)); break; case OMPD_target_simd: CodeGenFunction::EmitOMPTargetSimdDeviceFunction( CGM, ParentName, cast(E)); break; case OMPD_target_teams_distribute_parallel_for: CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( CGM, ParentName, cast(E)); break; case OMPD_target_teams_distribute_parallel_for_simd: CodeGenFunction:: EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( CGM, ParentName, cast(E)); break; case OMPD_parallel: case OMPD_for: case OMPD_parallel_for: case OMPD_parallel_master: case OMPD_parallel_sections: case OMPD_for_simd: case OMPD_parallel_for_simd: case OMPD_cancel: case OMPD_cancellation_point: case OMPD_ordered: case OMPD_threadprivate: case OMPD_allocate: case OMPD_task: case OMPD_simd: case OMPD_tile: case OMPD_sections: case OMPD_section: case OMPD_single: case OMPD_master: case OMPD_critical: case OMPD_taskyield: case OMPD_barrier: case OMPD_taskwait: case OMPD_taskgroup: case OMPD_atomic: case OMPD_flush: case OMPD_depobj: case OMPD_scan: case OMPD_teams: case OMPD_target_data: case OMPD_target_exit_data: case OMPD_target_enter_data: case OMPD_distribute: case OMPD_distribute_simd: case OMPD_distribute_parallel_for: case OMPD_distribute_parallel_for_simd: case OMPD_teams_distribute: case OMPD_teams_distribute_simd: case OMPD_teams_distribute_parallel_for: case OMPD_teams_distribute_parallel_for_simd: case OMPD_target_update: case OMPD_declare_simd: case OMPD_declare_variant: case OMPD_begin_declare_variant: case OMPD_end_declare_variant: case OMPD_declare_target: case OMPD_end_declare_target: case OMPD_declare_reduction: case OMPD_declare_mapper: case OMPD_taskloop: case OMPD_taskloop_simd: case OMPD_master_taskloop: case OMPD_master_taskloop_simd: case OMPD_parallel_master_taskloop: case OMPD_parallel_master_taskloop_simd: case OMPD_requires: case OMPD_unknown: default: llvm_unreachable("Unknown target directive for OpenMP device codegen."); } return; } if (const auto *E = dyn_cast(S)) { if (!E->hasAssociatedStmt() || !E->getAssociatedStmt()) return; scanForTargetRegionsFunctions(E->getRawStmt(), ParentName); return; } // If this is a lambda function, look into its body. if (const auto *L = dyn_cast(S)) S = L->getBody(); // Keep looking for target regions recursively. for (const Stmt *II : S->children()) scanForTargetRegionsFunctions(II, ParentName); } static bool isAssumedToBeNotEmitted(const ValueDecl *VD, bool IsDevice) { Optional DevTy = OMPDeclareTargetDeclAttr::getDeviceType(VD); if (!DevTy) return false; // Do not emit device_type(nohost) functions for the host. if (!IsDevice && DevTy == OMPDeclareTargetDeclAttr::DT_NoHost) return true; // Do not emit device_type(host) functions for the device. if (IsDevice && DevTy == OMPDeclareTargetDeclAttr::DT_Host) return true; return false; } bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) { // If emitting code for the host, we do not process FD here. Instead we do // the normal code generation. if (!CGM.getLangOpts().OpenMPIsDevice) { if (const auto *FD = dyn_cast(GD.getDecl())) if (isAssumedToBeNotEmitted(cast(FD), CGM.getLangOpts().OpenMPIsDevice)) return true; return false; } const ValueDecl *VD = cast(GD.getDecl()); // Try to detect target regions in the function. if (const auto *FD = dyn_cast(VD)) { StringRef Name = CGM.getMangledName(GD); scanForTargetRegionsFunctions(FD->getBody(), Name); if (isAssumedToBeNotEmitted(cast(FD), CGM.getLangOpts().OpenMPIsDevice)) return true; } // Do not to emit function if it is not marked as declare target. return !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD) && AlreadyEmittedTargetDecls.count(VD) == 0; } bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) { if (isAssumedToBeNotEmitted(cast(GD.getDecl()), CGM.getLangOpts().OpenMPIsDevice)) return true; if (!CGM.getLangOpts().OpenMPIsDevice) return false; // Check if there are Ctors/Dtors in this declaration and look for target // regions in it. We use the complete variant to produce the kernel name // mangling. QualType RDTy = cast(GD.getDecl())->getType(); if (const auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) { for (const CXXConstructorDecl *Ctor : RD->ctors()) { StringRef ParentName = CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete)); scanForTargetRegionsFunctions(Ctor->getBody(), ParentName); } if (const CXXDestructorDecl *Dtor = RD->getDestructor()) { StringRef ParentName = CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete)); scanForTargetRegionsFunctions(Dtor->getBody(), ParentName); } } // Do not to emit variable if it is not marked as declare target. llvm::Optional Res = OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration( cast(GD.getDecl())); if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link || (*Res == OMPDeclareTargetDeclAttr::MT_To && HasRequiresUnifiedSharedMemory)) { DeferredGlobalVariables.insert(cast(GD.getDecl())); return true; } return false; } llvm::Constant * CGOpenMPRuntime::registerTargetFirstprivateCopy(CodeGenFunction &CGF, const VarDecl *VD) { assert(VD->getType().isConstant(CGM.getContext()) && "Expected constant variable."); StringRef VarName; llvm::Constant *Addr; llvm::GlobalValue::LinkageTypes Linkage; QualType Ty = VD->getType(); SmallString<128> Buffer; { unsigned DeviceID; unsigned FileID; unsigned Line; getTargetEntryUniqueInfo(CGM.getContext(), VD->getLocation(), DeviceID, FileID, Line); llvm::raw_svector_ostream OS(Buffer); OS << "__omp_offloading_firstprivate_" << llvm::format("_%x", DeviceID) << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line; VarName = OS.str(); } Linkage = llvm::GlobalValue::InternalLinkage; Addr = getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(Ty), VarName, getDefaultFirstprivateAddressSpace()); cast(Addr)->setLinkage(Linkage); CharUnits VarSize = CGM.getContext().getTypeSizeInChars(Ty); CGM.addCompilerUsedGlobal(cast(Addr)); OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo( VarName, Addr, VarSize, OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo, Linkage); return Addr; } void CGOpenMPRuntime::registerTargetGlobalVariable(const VarDecl *VD, llvm::Constant *Addr) { if (CGM.getLangOpts().OMPTargetTriples.empty() && !CGM.getLangOpts().OpenMPIsDevice) return; // If we have host/nohost variables, they do not need to be registered. Optional DevTy = OMPDeclareTargetDeclAttr::getDeviceType(VD); if (DevTy && DevTy.getValue() != OMPDeclareTargetDeclAttr::DT_Any) return; llvm::Optional Res = OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); if (!Res) { if (CGM.getLangOpts().OpenMPIsDevice) { // Register non-target variables being emitted in device code (debug info // may cause this). StringRef VarName = CGM.getMangledName(VD); EmittedNonTargetVariables.try_emplace(VarName, Addr); } return; } // Register declare target variables. OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags; StringRef VarName; CharUnits VarSize; llvm::GlobalValue::LinkageTypes Linkage; if (*Res == OMPDeclareTargetDeclAttr::MT_To && !HasRequiresUnifiedSharedMemory) { Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo; VarName = CGM.getMangledName(VD); if (VD->hasDefinition(CGM.getContext()) != VarDecl::DeclarationOnly) { VarSize = CGM.getContext().getTypeSizeInChars(VD->getType()); assert(!VarSize.isZero() && "Expected non-zero size of the variable"); } else { VarSize = CharUnits::Zero(); } Linkage = CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false); // Temp solution to prevent optimizations of the internal variables. if (CGM.getLangOpts().OpenMPIsDevice && !VD->isExternallyVisible()) { // Do not create a "ref-variable" if the original is not also available // on the host. if (!OffloadEntriesInfoManager.hasDeviceGlobalVarEntryInfo(VarName)) return; std::string RefName = getName({VarName, "ref"}); if (!CGM.GetGlobalValue(RefName)) { llvm::Constant *AddrRef = getOrCreateInternalVariable(Addr->getType(), RefName); auto *GVAddrRef = cast(AddrRef); GVAddrRef->setConstant(/*Val=*/true); GVAddrRef->setLinkage(llvm::GlobalValue::InternalLinkage); GVAddrRef->setInitializer(Addr); CGM.addCompilerUsedGlobal(GVAddrRef); } } } else { assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && HasRequiresUnifiedSharedMemory)) && "Declare target attribute must link or to with unified memory."); if (*Res == OMPDeclareTargetDeclAttr::MT_Link) Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink; else Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo; if (CGM.getLangOpts().OpenMPIsDevice) { VarName = Addr->getName(); Addr = nullptr; } else { VarName = getAddrOfDeclareTargetVar(VD).getName(); Addr = cast(getAddrOfDeclareTargetVar(VD).getPointer()); } VarSize = CGM.getPointerSize(); Linkage = llvm::GlobalValue::WeakAnyLinkage; } OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo( VarName, Addr, VarSize, Flags, Linkage); } bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) { if (isa(GD.getDecl()) || isa(GD.getDecl())) return emitTargetFunctions(GD); return emitTargetGlobalVariable(GD); } void CGOpenMPRuntime::emitDeferredTargetDecls() const { for (const VarDecl *VD : DeferredGlobalVariables) { llvm::Optional Res = OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); if (!Res) continue; if (*Res == OMPDeclareTargetDeclAttr::MT_To && !HasRequiresUnifiedSharedMemory) { CGM.EmitGlobal(VD); } else { assert((*Res == OMPDeclareTargetDeclAttr::MT_Link || (*Res == OMPDeclareTargetDeclAttr::MT_To && HasRequiresUnifiedSharedMemory)) && "Expected link clause or to clause with unified memory."); (void)CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); } } } void CGOpenMPRuntime::adjustTargetSpecificDataForLambdas( CodeGenFunction &CGF, const OMPExecutableDirective &D) const { assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && " Expected target-based directive."); } void CGOpenMPRuntime::processRequiresDirective(const OMPRequiresDecl *D) { for (const OMPClause *Clause : D->clauselists()) { if (Clause->getClauseKind() == OMPC_unified_shared_memory) { HasRequiresUnifiedSharedMemory = true; } else if (const auto *AC = dyn_cast(Clause)) { switch (AC->getAtomicDefaultMemOrderKind()) { case OMPC_ATOMIC_DEFAULT_MEM_ORDER_acq_rel: RequiresAtomicOrdering = llvm::AtomicOrdering::AcquireRelease; break; case OMPC_ATOMIC_DEFAULT_MEM_ORDER_seq_cst: RequiresAtomicOrdering = llvm::AtomicOrdering::SequentiallyConsistent; break; case OMPC_ATOMIC_DEFAULT_MEM_ORDER_relaxed: RequiresAtomicOrdering = llvm::AtomicOrdering::Monotonic; break; case OMPC_ATOMIC_DEFAULT_MEM_ORDER_unknown: break; } } } } llvm::AtomicOrdering CGOpenMPRuntime::getDefaultMemoryOrdering() const { return RequiresAtomicOrdering; } bool CGOpenMPRuntime::hasAllocateAttributeForGlobalVar(const VarDecl *VD, LangAS &AS) { if (!VD || !VD->hasAttr()) return false; const auto *A = VD->getAttr(); switch(A->getAllocatorType()) { case OMPAllocateDeclAttr::OMPNullMemAlloc: case OMPAllocateDeclAttr::OMPDefaultMemAlloc: // Not supported, fallback to the default mem space. case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: case OMPAllocateDeclAttr::OMPCGroupMemAlloc: case OMPAllocateDeclAttr::OMPHighBWMemAlloc: case OMPAllocateDeclAttr::OMPLowLatMemAlloc: case OMPAllocateDeclAttr::OMPThreadMemAlloc: case OMPAllocateDeclAttr::OMPConstMemAlloc: case OMPAllocateDeclAttr::OMPPTeamMemAlloc: AS = LangAS::Default; return true; case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: llvm_unreachable("Expected predefined allocator for the variables with the " "static storage."); } return false; } bool CGOpenMPRuntime::hasRequiresUnifiedSharedMemory() const { return HasRequiresUnifiedSharedMemory; } CGOpenMPRuntime::DisableAutoDeclareTargetRAII::DisableAutoDeclareTargetRAII( CodeGenModule &CGM) : CGM(CGM) { if (CGM.getLangOpts().OpenMPIsDevice) { SavedShouldMarkAsGlobal = CGM.getOpenMPRuntime().ShouldMarkAsGlobal; CGM.getOpenMPRuntime().ShouldMarkAsGlobal = false; } } CGOpenMPRuntime::DisableAutoDeclareTargetRAII::~DisableAutoDeclareTargetRAII() { if (CGM.getLangOpts().OpenMPIsDevice) CGM.getOpenMPRuntime().ShouldMarkAsGlobal = SavedShouldMarkAsGlobal; } bool CGOpenMPRuntime::markAsGlobalTarget(GlobalDecl GD) { if (!CGM.getLangOpts().OpenMPIsDevice || !ShouldMarkAsGlobal) return true; const auto *D = cast(GD.getDecl()); // Do not to emit function if it is marked as declare target as it was already // emitted. if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(D)) { if (D->hasBody() && AlreadyEmittedTargetDecls.count(D) == 0) { if (auto *F = dyn_cast_or_null( CGM.GetGlobalValue(CGM.getMangledName(GD)))) return !F->isDeclaration(); return false; } return true; } return !AlreadyEmittedTargetDecls.insert(D).second; } llvm::Function *CGOpenMPRuntime::emitRequiresDirectiveRegFun() { // If we don't have entries or if we are emitting code for the device, we // don't need to do anything. if (CGM.getLangOpts().OMPTargetTriples.empty() || CGM.getLangOpts().OpenMPSimd || CGM.getLangOpts().OpenMPIsDevice || (OffloadEntriesInfoManager.empty() && !HasEmittedDeclareTargetRegion && !HasEmittedTargetRegion)) return nullptr; // Create and register the function that handles the requires directives. ASTContext &C = CGM.getContext(); llvm::Function *RequiresRegFn; { CodeGenFunction CGF(CGM); const auto &FI = CGM.getTypes().arrangeNullaryFunction(); llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI); std::string ReqName = getName({"omp_offloading", "requires_reg"}); RequiresRegFn = CGM.CreateGlobalInitOrCleanUpFunction(FTy, ReqName, FI); CGF.StartFunction(GlobalDecl(), C.VoidTy, RequiresRegFn, FI, {}); OpenMPOffloadingRequiresDirFlags Flags = OMP_REQ_NONE; // TODO: check for other requires clauses. // The requires directive takes effect only when a target region is // present in the compilation unit. Otherwise it is ignored and not // passed to the runtime. This avoids the runtime from throwing an error // for mismatching requires clauses across compilation units that don't // contain at least 1 target region. assert((HasEmittedTargetRegion || HasEmittedDeclareTargetRegion || !OffloadEntriesInfoManager.empty()) && "Target or declare target region expected."); if (HasRequiresUnifiedSharedMemory) Flags = OMP_REQ_UNIFIED_SHARED_MEMORY; CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___tgt_register_requires), llvm::ConstantInt::get(CGM.Int64Ty, Flags)); CGF.FinishFunction(); } return RequiresRegFn; } void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF, const OMPExecutableDirective &D, SourceLocation Loc, llvm::Function *OutlinedFn, ArrayRef CapturedVars) { if (!CGF.HaveInsertPoint()) return; llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); CodeGenFunction::RunCleanupsScope Scope(CGF); // Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn); llvm::Value *Args[] = { RTLoc, CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())}; llvm::SmallVector RealArgs; RealArgs.append(std::begin(Args), std::end(Args)); RealArgs.append(CapturedVars.begin(), CapturedVars.end()); llvm::FunctionCallee RTLFn = OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_fork_teams); CGF.EmitRuntimeCall(RTLFn, RealArgs); } void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF, const Expr *NumTeams, const Expr *ThreadLimit, SourceLocation Loc) { if (!CGF.HaveInsertPoint()) return; llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); llvm::Value *NumTeamsVal = NumTeams ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams), CGF.CGM.Int32Ty, /* isSigned = */ true) : CGF.Builder.getInt32(0); llvm::Value *ThreadLimitVal = ThreadLimit ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit), CGF.CGM.Int32Ty, /* isSigned = */ true) : CGF.Builder.getInt32(0); // Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit) llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal, ThreadLimitVal}; CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_push_num_teams), PushNumTeamsArgs); } void CGOpenMPRuntime::emitTargetDataCalls( CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond, const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) { if (!CGF.HaveInsertPoint()) return; // Action used to replace the default codegen action and turn privatization // off. PrePostActionTy NoPrivAction; // Generate the code for the opening of the data environment. Capture all the // arguments of the runtime call by reference because they are used in the // closing of the region. auto &&BeginThenGen = [this, &D, Device, &Info, &CodeGen](CodeGenFunction &CGF, PrePostActionTy &) { // Fill up the arrays with all the mapped variables. MappableExprsHandler::MapCombinedInfoTy CombinedInfo; // Get map clause information. MappableExprsHandler MEHandler(D, CGF); MEHandler.generateAllInfo(CombinedInfo); // Fill up the arrays and create the arguments. emitOffloadingArrays(CGF, CombinedInfo, Info, OMPBuilder, /*IsNonContiguous=*/true); llvm::Value *BasePointersArrayArg = nullptr; llvm::Value *PointersArrayArg = nullptr; llvm::Value *SizesArrayArg = nullptr; llvm::Value *MapTypesArrayArg = nullptr; llvm::Value *MapNamesArrayArg = nullptr; llvm::Value *MappersArrayArg = nullptr; emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg, SizesArrayArg, MapTypesArrayArg, MapNamesArrayArg, MappersArrayArg, Info); // Emit device ID if any. llvm::Value *DeviceID = nullptr; if (Device) { DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), CGF.Int64Ty, /*isSigned=*/true); } else { DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF); } // Emit the number of elements in the offloading arrays. llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs); // // Source location for the ident struct llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc()); llvm::Value *OffloadingArgs[] = {RTLoc, DeviceID, PointerNum, BasePointersArrayArg, PointersArrayArg, SizesArrayArg, MapTypesArrayArg, MapNamesArrayArg, MappersArrayArg}; CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___tgt_target_data_begin_mapper), OffloadingArgs); // If device pointer privatization is required, emit the body of the region // here. It will have to be duplicated: with and without privatization. if (!Info.CaptureDeviceAddrMap.empty()) CodeGen(CGF); }; // Generate code for the closing of the data region. auto &&EndThenGen = [this, Device, &Info, &D](CodeGenFunction &CGF, PrePostActionTy &) { assert(Info.isValid() && "Invalid data environment closing arguments."); llvm::Value *BasePointersArrayArg = nullptr; llvm::Value *PointersArrayArg = nullptr; llvm::Value *SizesArrayArg = nullptr; llvm::Value *MapTypesArrayArg = nullptr; llvm::Value *MapNamesArrayArg = nullptr; llvm::Value *MappersArrayArg = nullptr; emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg, SizesArrayArg, MapTypesArrayArg, MapNamesArrayArg, MappersArrayArg, Info, {/*ForEndCall=*/true}); // Emit device ID if any. llvm::Value *DeviceID = nullptr; if (Device) { DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), CGF.Int64Ty, /*isSigned=*/true); } else { DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF); } // Emit the number of elements in the offloading arrays. llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs); // Source location for the ident struct llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc()); llvm::Value *OffloadingArgs[] = {RTLoc, DeviceID, PointerNum, BasePointersArrayArg, PointersArrayArg, SizesArrayArg, MapTypesArrayArg, MapNamesArrayArg, MappersArrayArg}; CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___tgt_target_data_end_mapper), OffloadingArgs); }; // If we need device pointer privatization, we need to emit the body of the // region with no privatization in the 'else' branch of the conditional. // Otherwise, we don't have to do anything. auto &&BeginElseGen = [&Info, &CodeGen, &NoPrivAction](CodeGenFunction &CGF, PrePostActionTy &) { if (!Info.CaptureDeviceAddrMap.empty()) { CodeGen.setAction(NoPrivAction); CodeGen(CGF); } }; // We don't have to do anything to close the region if the if clause evaluates // to false. auto &&EndElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {}; if (IfCond) { emitIfClause(CGF, IfCond, BeginThenGen, BeginElseGen); } else { RegionCodeGenTy RCG(BeginThenGen); RCG(CGF); } // If we don't require privatization of device pointers, we emit the body in // between the runtime calls. This avoids duplicating the body code. if (Info.CaptureDeviceAddrMap.empty()) { CodeGen.setAction(NoPrivAction); CodeGen(CGF); } if (IfCond) { emitIfClause(CGF, IfCond, EndThenGen, EndElseGen); } else { RegionCodeGenTy RCG(EndThenGen); RCG(CGF); } } void CGOpenMPRuntime::emitTargetDataStandAloneCall( CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond, const Expr *Device) { if (!CGF.HaveInsertPoint()) return; assert((isa(D) || isa(D) || isa(D)) && "Expecting either target enter, exit data, or update directives."); CodeGenFunction::OMPTargetDataInfo InputInfo; llvm::Value *MapTypesArray = nullptr; llvm::Value *MapNamesArray = nullptr; // Generate the code for the opening of the data environment. auto &&ThenGen = [this, &D, Device, &InputInfo, &MapTypesArray, &MapNamesArray](CodeGenFunction &CGF, PrePostActionTy &) { // Emit device ID if any. llvm::Value *DeviceID = nullptr; if (Device) { DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), CGF.Int64Ty, /*isSigned=*/true); } else { DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF); } // Emit the number of elements in the offloading arrays. llvm::Constant *PointerNum = CGF.Builder.getInt32(InputInfo.NumberOfTargetItems); // Source location for the ident struct llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc()); llvm::Value *OffloadingArgs[] = {RTLoc, DeviceID, PointerNum, InputInfo.BasePointersArray.getPointer(), InputInfo.PointersArray.getPointer(), InputInfo.SizesArray.getPointer(), MapTypesArray, MapNamesArray, InputInfo.MappersArray.getPointer()}; // Select the right runtime function call for each standalone // directive. const bool HasNowait = D.hasClausesOfKind(); RuntimeFunction RTLFn; switch (D.getDirectiveKind()) { case OMPD_target_enter_data: RTLFn = HasNowait ? OMPRTL___tgt_target_data_begin_nowait_mapper : OMPRTL___tgt_target_data_begin_mapper; break; case OMPD_target_exit_data: RTLFn = HasNowait ? OMPRTL___tgt_target_data_end_nowait_mapper : OMPRTL___tgt_target_data_end_mapper; break; case OMPD_target_update: RTLFn = HasNowait ? OMPRTL___tgt_target_data_update_nowait_mapper : OMPRTL___tgt_target_data_update_mapper; break; case OMPD_parallel: case OMPD_for: case OMPD_parallel_for: case OMPD_parallel_master: case OMPD_parallel_sections: case OMPD_for_simd: case OMPD_parallel_for_simd: case OMPD_cancel: case OMPD_cancellation_point: case OMPD_ordered: case OMPD_threadprivate: case OMPD_allocate: case OMPD_task: case OMPD_simd: case OMPD_tile: case OMPD_sections: case OMPD_section: case OMPD_single: case OMPD_master: case OMPD_critical: case OMPD_taskyield: case OMPD_barrier: case OMPD_taskwait: case OMPD_taskgroup: case OMPD_atomic: case OMPD_flush: case OMPD_depobj: case OMPD_scan: case OMPD_teams: case OMPD_target_data: case OMPD_distribute: case OMPD_distribute_simd: case OMPD_distribute_parallel_for: case OMPD_distribute_parallel_for_simd: case OMPD_teams_distribute: case OMPD_teams_distribute_simd: case OMPD_teams_distribute_parallel_for: case OMPD_teams_distribute_parallel_for_simd: case OMPD_declare_simd: case OMPD_declare_variant: case OMPD_begin_declare_variant: case OMPD_end_declare_variant: case OMPD_declare_target: case OMPD_end_declare_target: case OMPD_declare_reduction: case OMPD_declare_mapper: case OMPD_taskloop: case OMPD_taskloop_simd: case OMPD_master_taskloop: case OMPD_master_taskloop_simd: case OMPD_parallel_master_taskloop: case OMPD_parallel_master_taskloop_simd: case OMPD_target: case OMPD_target_simd: case OMPD_target_teams_distribute: case OMPD_target_teams_distribute_simd: case OMPD_target_teams_distribute_parallel_for: case OMPD_target_teams_distribute_parallel_for_simd: case OMPD_target_teams: case OMPD_target_parallel: case OMPD_target_parallel_for: case OMPD_target_parallel_for_simd: case OMPD_requires: case OMPD_unknown: default: llvm_unreachable("Unexpected standalone target data directive."); break; } CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), RTLFn), OffloadingArgs); }; auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray, &MapNamesArray](CodeGenFunction &CGF, PrePostActionTy &) { // Fill up the arrays with all the mapped variables. MappableExprsHandler::MapCombinedInfoTy CombinedInfo; // Get map clause information. MappableExprsHandler MEHandler(D, CGF); MEHandler.generateAllInfo(CombinedInfo); TargetDataInfo Info; // Fill up the arrays and create the arguments. emitOffloadingArrays(CGF, CombinedInfo, Info, OMPBuilder, /*IsNonContiguous=*/true); bool RequiresOuterTask = D.hasClausesOfKind() || D.hasClausesOfKind(); emitOffloadingArraysArgument( CGF, Info.BasePointersArray, Info.PointersArray, Info.SizesArray, Info.MapTypesArray, Info.MapNamesArray, Info.MappersArray, Info, {/*ForEndTask=*/false}); InputInfo.NumberOfTargetItems = Info.NumberOfPtrs; InputInfo.BasePointersArray = Address(Info.BasePointersArray, CGM.getPointerAlign()); InputInfo.PointersArray = Address(Info.PointersArray, CGM.getPointerAlign()); InputInfo.SizesArray = Address(Info.SizesArray, CGM.getPointerAlign()); InputInfo.MappersArray = Address(Info.MappersArray, CGM.getPointerAlign()); MapTypesArray = Info.MapTypesArray; MapNamesArray = Info.MapNamesArray; if (RequiresOuterTask) CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo); else emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen); }; if (IfCond) { emitIfClause(CGF, IfCond, TargetThenGen, [](CodeGenFunction &CGF, PrePostActionTy &) {}); } else { RegionCodeGenTy ThenRCG(TargetThenGen); ThenRCG(CGF); } } namespace { /// Kind of parameter in a function with 'declare simd' directive. enum ParamKindTy { LinearWithVarStride, Linear, Uniform, Vector }; /// Attribute set of the parameter. struct ParamAttrTy { ParamKindTy Kind = Vector; llvm::APSInt StrideOrArg; llvm::APSInt Alignment; }; } // namespace static unsigned evaluateCDTSize(const FunctionDecl *FD, ArrayRef ParamAttrs) { // Every vector variant of a SIMD-enabled function has a vector length (VLEN). // If OpenMP clause "simdlen" is used, the VLEN is the value of the argument // of that clause. The VLEN value must be power of 2. // In other case the notion of the function`s "characteristic data type" (CDT) // is used to compute the vector length. // CDT is defined in the following order: // a) For non-void function, the CDT is the return type. // b) If the function has any non-uniform, non-linear parameters, then the // CDT is the type of the first such parameter. // c) If the CDT determined by a) or b) above is struct, union, or class // type which is pass-by-value (except for the type that maps to the // built-in complex data type), the characteristic data type is int. // d) If none of the above three cases is applicable, the CDT is int. // The VLEN is then determined based on the CDT and the size of vector // register of that ISA for which current vector version is generated. The // VLEN is computed using the formula below: // VLEN = sizeof(vector_register) / sizeof(CDT), // where vector register size specified in section 3.2.1 Registers and the // Stack Frame of original AMD64 ABI document. QualType RetType = FD->getReturnType(); if (RetType.isNull()) return 0; ASTContext &C = FD->getASTContext(); QualType CDT; if (!RetType.isNull() && !RetType->isVoidType()) { CDT = RetType; } else { unsigned Offset = 0; if (const auto *MD = dyn_cast(FD)) { if (ParamAttrs[Offset].Kind == Vector) CDT = C.getPointerType(C.getRecordType(MD->getParent())); ++Offset; } if (CDT.isNull()) { for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) { if (ParamAttrs[I + Offset].Kind == Vector) { CDT = FD->getParamDecl(I)->getType(); break; } } } } if (CDT.isNull()) CDT = C.IntTy; CDT = CDT->getCanonicalTypeUnqualified(); if (CDT->isRecordType() || CDT->isUnionType()) CDT = C.IntTy; return C.getTypeSize(CDT); } static void emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn, const llvm::APSInt &VLENVal, ArrayRef ParamAttrs, OMPDeclareSimdDeclAttr::BranchStateTy State) { struct ISADataTy { char ISA; unsigned VecRegSize; }; ISADataTy ISAData[] = { { 'b', 128 }, // SSE { 'c', 256 }, // AVX { 'd', 256 }, // AVX2 { 'e', 512 }, // AVX512 }; llvm::SmallVector Masked; switch (State) { case OMPDeclareSimdDeclAttr::BS_Undefined: Masked.push_back('N'); Masked.push_back('M'); break; case OMPDeclareSimdDeclAttr::BS_Notinbranch: Masked.push_back('N'); break; case OMPDeclareSimdDeclAttr::BS_Inbranch: Masked.push_back('M'); break; } for (char Mask : Masked) { for (const ISADataTy &Data : ISAData) { SmallString<256> Buffer; llvm::raw_svector_ostream Out(Buffer); Out << "_ZGV" << Data.ISA << Mask; if (!VLENVal) { unsigned NumElts = evaluateCDTSize(FD, ParamAttrs); assert(NumElts && "Non-zero simdlen/cdtsize expected"); Out << llvm::APSInt::getUnsigned(Data.VecRegSize / NumElts); } else { Out << VLENVal; } for (const ParamAttrTy &ParamAttr : ParamAttrs) { switch (ParamAttr.Kind){ case LinearWithVarStride: Out << 's' << ParamAttr.StrideOrArg; break; case Linear: Out << 'l'; if (ParamAttr.StrideOrArg != 1) Out << ParamAttr.StrideOrArg; break; case Uniform: Out << 'u'; break; case Vector: Out << 'v'; break; } if (!!ParamAttr.Alignment) Out << 'a' << ParamAttr.Alignment; } Out << '_' << Fn->getName(); Fn->addFnAttr(Out.str()); } } } // This are the Functions that are needed to mangle the name of the // vector functions generated by the compiler, according to the rules // defined in the "Vector Function ABI specifications for AArch64", // available at // https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi. /// Maps To Vector (MTV), as defined in 3.1.1 of the AAVFABI. /// /// TODO: Need to implement the behavior for reference marked with a /// var or no linear modifiers (1.b in the section). For this, we /// need to extend ParamKindTy to support the linear modifiers. static bool getAArch64MTV(QualType QT, ParamKindTy Kind) { QT = QT.getCanonicalType(); if (QT->isVoidType()) return false; if (Kind == ParamKindTy::Uniform) return false; if (Kind == ParamKindTy::Linear) return false; // TODO: Handle linear references with modifiers if (Kind == ParamKindTy::LinearWithVarStride) return false; return true; } /// Pass By Value (PBV), as defined in 3.1.2 of the AAVFABI. static bool getAArch64PBV(QualType QT, ASTContext &C) { QT = QT.getCanonicalType(); unsigned Size = C.getTypeSize(QT); // Only scalars and complex within 16 bytes wide set PVB to true. if (Size != 8 && Size != 16 && Size != 32 && Size != 64 && Size != 128) return false; if (QT->isFloatingType()) return true; if (QT->isIntegerType()) return true; if (QT->isPointerType()) return true; // TODO: Add support for complex types (section 3.1.2, item 2). return false; } /// Computes the lane size (LS) of a return type or of an input parameter, /// as defined by `LS(P)` in 3.2.1 of the AAVFABI. /// TODO: Add support for references, section 3.2.1, item 1. static unsigned getAArch64LS(QualType QT, ParamKindTy Kind, ASTContext &C) { if (!getAArch64MTV(QT, Kind) && QT.getCanonicalType()->isPointerType()) { QualType PTy = QT.getCanonicalType()->getPointeeType(); if (getAArch64PBV(PTy, C)) return C.getTypeSize(PTy); } if (getAArch64PBV(QT, C)) return C.getTypeSize(QT); return C.getTypeSize(C.getUIntPtrType()); } // Get Narrowest Data Size (NDS) and Widest Data Size (WDS) from the // signature of the scalar function, as defined in 3.2.2 of the // AAVFABI. static std::tuple getNDSWDS(const FunctionDecl *FD, ArrayRef ParamAttrs) { QualType RetType = FD->getReturnType().getCanonicalType(); ASTContext &C = FD->getASTContext(); bool OutputBecomesInput = false; llvm::SmallVector Sizes; if (!RetType->isVoidType()) { Sizes.push_back(getAArch64LS(RetType, ParamKindTy::Vector, C)); if (!getAArch64PBV(RetType, C) && getAArch64MTV(RetType, {})) OutputBecomesInput = true; } for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) { QualType QT = FD->getParamDecl(I)->getType().getCanonicalType(); Sizes.push_back(getAArch64LS(QT, ParamAttrs[I].Kind, C)); } assert(!Sizes.empty() && "Unable to determine NDS and WDS."); // The LS of a function parameter / return value can only be a power // of 2, starting from 8 bits, up to 128. assert(std::all_of(Sizes.begin(), Sizes.end(), [](unsigned Size) { return Size == 8 || Size == 16 || Size == 32 || Size == 64 || Size == 128; }) && "Invalid size"); return std::make_tuple(*std::min_element(std::begin(Sizes), std::end(Sizes)), *std::max_element(std::begin(Sizes), std::end(Sizes)), OutputBecomesInput); } /// Mangle the parameter part of the vector function name according to /// their OpenMP classification. The mangling function is defined in /// section 3.5 of the AAVFABI. static std::string mangleVectorParameters(ArrayRef ParamAttrs) { SmallString<256> Buffer; llvm::raw_svector_ostream Out(Buffer); for (const auto &ParamAttr : ParamAttrs) { switch (ParamAttr.Kind) { case LinearWithVarStride: Out << "ls" << ParamAttr.StrideOrArg; break; case Linear: Out << 'l'; // Don't print the step value if it is not present or if it is // equal to 1. if (ParamAttr.StrideOrArg != 1) Out << ParamAttr.StrideOrArg; break; case Uniform: Out << 'u'; break; case Vector: Out << 'v'; break; } if (!!ParamAttr.Alignment) Out << 'a' << ParamAttr.Alignment; } return std::string(Out.str()); } // Function used to add the attribute. The parameter `VLEN` is // templated to allow the use of "x" when targeting scalable functions // for SVE. template static void addAArch64VectorName(T VLEN, StringRef LMask, StringRef Prefix, char ISA, StringRef ParSeq, StringRef MangledName, bool OutputBecomesInput, llvm::Function *Fn) { SmallString<256> Buffer; llvm::raw_svector_ostream Out(Buffer); Out << Prefix << ISA << LMask << VLEN; if (OutputBecomesInput) Out << "v"; Out << ParSeq << "_" << MangledName; Fn->addFnAttr(Out.str()); } // Helper function to generate the Advanced SIMD names depending on // the value of the NDS when simdlen is not present. static void addAArch64AdvSIMDNDSNames(unsigned NDS, StringRef Mask, StringRef Prefix, char ISA, StringRef ParSeq, StringRef MangledName, bool OutputBecomesInput, llvm::Function *Fn) { switch (NDS) { case 8: addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName, OutputBecomesInput, Fn); addAArch64VectorName(16, Mask, Prefix, ISA, ParSeq, MangledName, OutputBecomesInput, Fn); break; case 16: addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName, OutputBecomesInput, Fn); addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName, OutputBecomesInput, Fn); break; case 32: addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName, OutputBecomesInput, Fn); addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName, OutputBecomesInput, Fn); break; case 64: case 128: addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName, OutputBecomesInput, Fn); break; default: llvm_unreachable("Scalar type is too wide."); } } /// Emit vector function attributes for AArch64, as defined in the AAVFABI. static void emitAArch64DeclareSimdFunction( CodeGenModule &CGM, const FunctionDecl *FD, unsigned UserVLEN, ArrayRef ParamAttrs, OMPDeclareSimdDeclAttr::BranchStateTy State, StringRef MangledName, char ISA, unsigned VecRegSize, llvm::Function *Fn, SourceLocation SLoc) { // Get basic data for building the vector signature. const auto Data = getNDSWDS(FD, ParamAttrs); const unsigned NDS = std::get<0>(Data); const unsigned WDS = std::get<1>(Data); const bool OutputBecomesInput = std::get<2>(Data); // Check the values provided via `simdlen` by the user. // 1. A `simdlen(1)` doesn't produce vector signatures, if (UserVLEN == 1) { unsigned DiagID = CGM.getDiags().getCustomDiagID( DiagnosticsEngine::Warning, "The clause simdlen(1) has no effect when targeting aarch64."); CGM.getDiags().Report(SLoc, DiagID); return; } // 2. Section 3.3.1, item 1: user input must be a power of 2 for // Advanced SIMD output. if (ISA == 'n' && UserVLEN && !llvm::isPowerOf2_32(UserVLEN)) { unsigned DiagID = CGM.getDiags().getCustomDiagID( DiagnosticsEngine::Warning, "The value specified in simdlen must be a " "power of 2 when targeting Advanced SIMD."); CGM.getDiags().Report(SLoc, DiagID); return; } // 3. Section 3.4.1. SVE fixed lengh must obey the architectural // limits. if (ISA == 's' && UserVLEN != 0) { if ((UserVLEN * WDS > 2048) || (UserVLEN * WDS % 128 != 0)) { unsigned DiagID = CGM.getDiags().getCustomDiagID( DiagnosticsEngine::Warning, "The clause simdlen must fit the %0-bit " "lanes in the architectural constraints " "for SVE (min is 128-bit, max is " "2048-bit, by steps of 128-bit)"); CGM.getDiags().Report(SLoc, DiagID) << WDS; return; } } // Sort out parameter sequence. const std::string ParSeq = mangleVectorParameters(ParamAttrs); StringRef Prefix = "_ZGV"; // Generate simdlen from user input (if any). if (UserVLEN) { if (ISA == 's') { // SVE generates only a masked function. addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName, OutputBecomesInput, Fn); } else { assert(ISA == 'n' && "Expected ISA either 's' or 'n'."); // Advanced SIMD generates one or two functions, depending on // the `[not]inbranch` clause. switch (State) { case OMPDeclareSimdDeclAttr::BS_Undefined: addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName, OutputBecomesInput, Fn); addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName, OutputBecomesInput, Fn); break; case OMPDeclareSimdDeclAttr::BS_Notinbranch: addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName, OutputBecomesInput, Fn); break; case OMPDeclareSimdDeclAttr::BS_Inbranch: addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName, OutputBecomesInput, Fn); break; } } } else { // If no user simdlen is provided, follow the AAVFABI rules for // generating the vector length. if (ISA == 's') { // SVE, section 3.4.1, item 1. addAArch64VectorName("x", "M", Prefix, ISA, ParSeq, MangledName, OutputBecomesInput, Fn); } else { assert(ISA == 'n' && "Expected ISA either 's' or 'n'."); // Advanced SIMD, Section 3.3.1 of the AAVFABI, generates one or // two vector names depending on the use of the clause // `[not]inbranch`. switch (State) { case OMPDeclareSimdDeclAttr::BS_Undefined: addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName, OutputBecomesInput, Fn); addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName, OutputBecomesInput, Fn); break; case OMPDeclareSimdDeclAttr::BS_Notinbranch: addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName, OutputBecomesInput, Fn); break; case OMPDeclareSimdDeclAttr::BS_Inbranch: addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName, OutputBecomesInput, Fn); break; } } } } void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn) { ASTContext &C = CGM.getContext(); FD = FD->getMostRecentDecl(); // Map params to their positions in function decl. llvm::DenseMap ParamPositions; if (isa(FD)) ParamPositions.try_emplace(FD, 0); unsigned ParamPos = ParamPositions.size(); for (const ParmVarDecl *P : FD->parameters()) { ParamPositions.try_emplace(P->getCanonicalDecl(), ParamPos); ++ParamPos; } while (FD) { for (const auto *Attr : FD->specific_attrs()) { llvm::SmallVector ParamAttrs(ParamPositions.size()); // Mark uniform parameters. for (const Expr *E : Attr->uniforms()) { E = E->IgnoreParenImpCasts(); unsigned Pos; if (isa(E)) { Pos = ParamPositions[FD]; } else { const auto *PVD = cast(cast(E)->getDecl()) ->getCanonicalDecl(); Pos = ParamPositions[PVD]; } ParamAttrs[Pos].Kind = Uniform; } // Get alignment info. auto NI = Attr->alignments_begin(); for (const Expr *E : Attr->aligneds()) { E = E->IgnoreParenImpCasts(); unsigned Pos; QualType ParmTy; if (isa(E)) { Pos = ParamPositions[FD]; ParmTy = E->getType(); } else { const auto *PVD = cast(cast(E)->getDecl()) ->getCanonicalDecl(); Pos = ParamPositions[PVD]; ParmTy = PVD->getType(); } ParamAttrs[Pos].Alignment = (*NI) ? (*NI)->EvaluateKnownConstInt(C) : llvm::APSInt::getUnsigned( C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy)) .getQuantity()); ++NI; } // Mark linear parameters. auto SI = Attr->steps_begin(); auto MI = Attr->modifiers_begin(); for (const Expr *E : Attr->linears()) { E = E->IgnoreParenImpCasts(); unsigned Pos; // Rescaling factor needed to compute the linear parameter // value in the mangled name. unsigned PtrRescalingFactor = 1; if (isa(E)) { Pos = ParamPositions[FD]; } else { const auto *PVD = cast(cast(E)->getDecl()) ->getCanonicalDecl(); Pos = ParamPositions[PVD]; if (auto *P = dyn_cast(PVD->getType())) PtrRescalingFactor = CGM.getContext() .getTypeSizeInChars(P->getPointeeType()) .getQuantity(); } ParamAttrTy &ParamAttr = ParamAttrs[Pos]; ParamAttr.Kind = Linear; // Assuming a stride of 1, for `linear` without modifiers. ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(1); if (*SI) { Expr::EvalResult Result; if (!(*SI)->EvaluateAsInt(Result, C, Expr::SE_AllowSideEffects)) { if (const auto *DRE = cast((*SI)->IgnoreParenImpCasts())) { if (const auto *StridePVD = cast(DRE->getDecl())) { ParamAttr.Kind = LinearWithVarStride; ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned( ParamPositions[StridePVD->getCanonicalDecl()]); } } } else { ParamAttr.StrideOrArg = Result.Val.getInt(); } } // If we are using a linear clause on a pointer, we need to // rescale the value of linear_step with the byte size of the // pointee type. if (Linear == ParamAttr.Kind) ParamAttr.StrideOrArg = ParamAttr.StrideOrArg * PtrRescalingFactor; ++SI; ++MI; } llvm::APSInt VLENVal; SourceLocation ExprLoc; const Expr *VLENExpr = Attr->getSimdlen(); if (VLENExpr) { VLENVal = VLENExpr->EvaluateKnownConstInt(C); ExprLoc = VLENExpr->getExprLoc(); } OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState(); if (CGM.getTriple().isX86()) { emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State); } else if (CGM.getTriple().getArch() == llvm::Triple::aarch64) { unsigned VLEN = VLENVal.getExtValue(); StringRef MangledName = Fn->getName(); if (CGM.getTarget().hasFeature("sve")) emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State, MangledName, 's', 128, Fn, ExprLoc); if (CGM.getTarget().hasFeature("neon")) emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State, MangledName, 'n', 128, Fn, ExprLoc); } } FD = FD->getPreviousDecl(); } } namespace { /// Cleanup action for doacross support. class DoacrossCleanupTy final : public EHScopeStack::Cleanup { public: static const int DoacrossFinArgs = 2; private: llvm::FunctionCallee RTLFn; llvm::Value *Args[DoacrossFinArgs]; public: DoacrossCleanupTy(llvm::FunctionCallee RTLFn, ArrayRef CallArgs) : RTLFn(RTLFn) { assert(CallArgs.size() == DoacrossFinArgs); std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args)); } void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { if (!CGF.HaveInsertPoint()) return; CGF.EmitRuntimeCall(RTLFn, Args); } }; } // namespace void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF, const OMPLoopDirective &D, ArrayRef NumIterations) { if (!CGF.HaveInsertPoint()) return; ASTContext &C = CGM.getContext(); QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true); RecordDecl *RD; if (KmpDimTy.isNull()) { // Build struct kmp_dim { // loop bounds info casted to kmp_int64 // kmp_int64 lo; // lower // kmp_int64 up; // upper // kmp_int64 st; // stride // }; RD = C.buildImplicitRecord("kmp_dim"); RD->startDefinition(); addFieldToRecordDecl(C, RD, Int64Ty); addFieldToRecordDecl(C, RD, Int64Ty); addFieldToRecordDecl(C, RD, Int64Ty); RD->completeDefinition(); KmpDimTy = C.getRecordType(RD); } else { RD = cast(KmpDimTy->getAsTagDecl()); } llvm::APInt Size(/*numBits=*/32, NumIterations.size()); QualType ArrayTy = C.getConstantArrayType(KmpDimTy, Size, nullptr, ArrayType::Normal, 0); Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims"); CGF.EmitNullInitialization(DimsAddr, ArrayTy); enum { LowerFD = 0, UpperFD, StrideFD }; // Fill dims with data. for (unsigned I = 0, E = NumIterations.size(); I < E; ++I) { LValue DimsLVal = CGF.MakeAddrLValue( CGF.Builder.CreateConstArrayGEP(DimsAddr, I), KmpDimTy); // dims.upper = num_iterations; LValue UpperLVal = CGF.EmitLValueForField( DimsLVal, *std::next(RD->field_begin(), UpperFD)); llvm::Value *NumIterVal = CGF.EmitScalarConversion( CGF.EmitScalarExpr(NumIterations[I]), NumIterations[I]->getType(), Int64Ty, NumIterations[I]->getExprLoc()); CGF.EmitStoreOfScalar(NumIterVal, UpperLVal); // dims.stride = 1; LValue StrideLVal = CGF.EmitLValueForField( DimsLVal, *std::next(RD->field_begin(), StrideFD)); CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1), StrideLVal); } // Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, // kmp_int32 num_dims, struct kmp_dim * dims); llvm::Value *Args[] = { emitUpdateLocation(CGF, D.getBeginLoc()), getThreadID(CGF, D.getBeginLoc()), llvm::ConstantInt::getSigned(CGM.Int32Ty, NumIterations.size()), CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( CGF.Builder.CreateConstArrayGEP(DimsAddr, 0).getPointer(), CGM.VoidPtrTy)}; llvm::FunctionCallee RTLFn = OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_doacross_init); CGF.EmitRuntimeCall(RTLFn, Args); llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = { emitUpdateLocation(CGF, D.getEndLoc()), getThreadID(CGF, D.getEndLoc())}; llvm::FunctionCallee FiniRTLFn = OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_doacross_fini); CGF.EHStack.pushCleanup(NormalAndEHCleanup, FiniRTLFn, llvm::makeArrayRef(FiniArgs)); } void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF, const OMPDependClause *C) { QualType Int64Ty = CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1); llvm::APInt Size(/*numBits=*/32, C->getNumLoops()); QualType ArrayTy = CGM.getContext().getConstantArrayType( Int64Ty, Size, nullptr, ArrayType::Normal, 0); Address CntAddr = CGF.CreateMemTemp(ArrayTy, ".cnt.addr"); for (unsigned I = 0, E = C->getNumLoops(); I < E; ++I) { const Expr *CounterVal = C->getLoopData(I); assert(CounterVal); llvm::Value *CntVal = CGF.EmitScalarConversion( CGF.EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty, CounterVal->getExprLoc()); CGF.EmitStoreOfScalar(CntVal, CGF.Builder.CreateConstArrayGEP(CntAddr, I), /*Volatile=*/false, Int64Ty); } llvm::Value *Args[] = { emitUpdateLocation(CGF, C->getBeginLoc()), getThreadID(CGF, C->getBeginLoc()), CGF.Builder.CreateConstArrayGEP(CntAddr, 0).getPointer()}; llvm::FunctionCallee RTLFn; if (C->getDependencyKind() == OMPC_DEPEND_source) { RTLFn = OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), OMPRTL___kmpc_doacross_post); } else { assert(C->getDependencyKind() == OMPC_DEPEND_sink); RTLFn = OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), OMPRTL___kmpc_doacross_wait); } CGF.EmitRuntimeCall(RTLFn, Args); } void CGOpenMPRuntime::emitCall(CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee Callee, ArrayRef Args) const { assert(Loc.isValid() && "Outlined function call location must be valid."); auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc); if (auto *Fn = dyn_cast(Callee.getCallee())) { if (Fn->doesNotThrow()) { CGF.EmitNounwindRuntimeCall(Fn, Args); return; } } CGF.EmitRuntimeCall(Callee, Args); } void CGOpenMPRuntime::emitOutlinedFunctionCall( CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, ArrayRef Args) const { emitCall(CGF, Loc, OutlinedFn, Args); } void CGOpenMPRuntime::emitFunctionProlog(CodeGenFunction &CGF, const Decl *D) { if (const auto *FD = dyn_cast(D)) if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(FD)) HasEmittedDeclareTargetRegion = true; } Address CGOpenMPRuntime::getParameterAddress(CodeGenFunction &CGF, const VarDecl *NativeParam, const VarDecl *TargetParam) const { return CGF.GetAddrOfLocalVar(NativeParam); } Address CGOpenMPRuntime::getAddressOfLocalVariable(CodeGenFunction &CGF, const VarDecl *VD) { if (!VD) return Address::invalid(); Address UntiedAddr = Address::invalid(); Address UntiedRealAddr = Address::invalid(); auto It = FunctionToUntiedTaskStackMap.find(CGF.CurFn); if (It != FunctionToUntiedTaskStackMap.end()) { const UntiedLocalVarsAddressesMap &UntiedData = UntiedLocalVarsStack[It->second]; auto I = UntiedData.find(VD); if (I != UntiedData.end()) { UntiedAddr = I->second.first; UntiedRealAddr = I->second.second; } } const VarDecl *CVD = VD->getCanonicalDecl(); if (CVD->hasAttr()) { // Use the default allocation. if (!isAllocatableDecl(VD)) return UntiedAddr; llvm::Value *Size; CharUnits Align = CGM.getContext().getDeclAlign(CVD); if (CVD->getType()->isVariablyModifiedType()) { Size = CGF.getTypeSize(CVD->getType()); // Align the size: ((size + align - 1) / align) * align Size = CGF.Builder.CreateNUWAdd( Size, CGM.getSize(Align - CharUnits::fromQuantity(1))); Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align)); Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align)); } else { CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType()); Size = CGM.getSize(Sz.alignTo(Align)); } llvm::Value *ThreadID = getThreadID(CGF, CVD->getBeginLoc()); const auto *AA = CVD->getAttr(); assert(AA->getAllocator() && "Expected allocator expression for non-default allocator."); llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator()); // According to the standard, the original allocator type is a enum // (integer). Convert to pointer type, if required. Allocator = CGF.EmitScalarConversion( Allocator, AA->getAllocator()->getType(), CGF.getContext().VoidPtrTy, AA->getAllocator()->getExprLoc()); llvm::Value *Args[] = {ThreadID, Size, Allocator}; llvm::Value *Addr = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_alloc), Args, getName({CVD->getName(), ".void.addr"})); llvm::FunctionCallee FiniRTLFn = OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_free); QualType Ty = CGM.getContext().getPointerType(CVD->getType()); Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( Addr, CGF.ConvertTypeForMem(Ty), getName({CVD->getName(), ".addr"})); if (UntiedAddr.isValid()) CGF.EmitStoreOfScalar(Addr, UntiedAddr, /*Volatile=*/false, Ty); // Cleanup action for allocate support. class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { llvm::FunctionCallee RTLFn; unsigned LocEncoding; Address Addr; const Expr *Allocator; public: OMPAllocateCleanupTy(llvm::FunctionCallee RTLFn, unsigned LocEncoding, Address Addr, const Expr *Allocator) : RTLFn(RTLFn), LocEncoding(LocEncoding), Addr(Addr), Allocator(Allocator) {} void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { if (!CGF.HaveInsertPoint()) return; llvm::Value *Args[3]; Args[0] = CGF.CGM.getOpenMPRuntime().getThreadID( CGF, SourceLocation::getFromRawEncoding(LocEncoding)); Args[1] = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( Addr.getPointer(), CGF.VoidPtrTy); llvm::Value *AllocVal = CGF.EmitScalarExpr(Allocator); // According to the standard, the original allocator type is a enum // (integer). Convert to pointer type, if required. AllocVal = CGF.EmitScalarConversion(AllocVal, Allocator->getType(), CGF.getContext().VoidPtrTy, Allocator->getExprLoc()); Args[2] = AllocVal; CGF.EmitRuntimeCall(RTLFn, Args); } }; Address VDAddr = UntiedRealAddr.isValid() ? UntiedRealAddr : Address(Addr, Align); CGF.EHStack.pushCleanup( NormalAndEHCleanup, FiniRTLFn, CVD->getLocation().getRawEncoding(), VDAddr, AA->getAllocator()); if (UntiedRealAddr.isValid()) if (auto *Region = dyn_cast_or_null(CGF.CapturedStmtInfo)) Region->emitUntiedSwitch(CGF); return VDAddr; } return UntiedAddr; } bool CGOpenMPRuntime::isLocalVarInUntiedTask(CodeGenFunction &CGF, const VarDecl *VD) const { auto It = FunctionToUntiedTaskStackMap.find(CGF.CurFn); if (It == FunctionToUntiedTaskStackMap.end()) return false; return UntiedLocalVarsStack[It->second].count(VD) > 0; } CGOpenMPRuntime::NontemporalDeclsRAII::NontemporalDeclsRAII( CodeGenModule &CGM, const OMPLoopDirective &S) : CGM(CGM), NeedToPush(S.hasClausesOfKind()) { assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode."); if (!NeedToPush) return; NontemporalDeclsSet &DS = CGM.getOpenMPRuntime().NontemporalDeclsStack.emplace_back(); for (const auto *C : S.getClausesOfKind()) { for (const Stmt *Ref : C->private_refs()) { const auto *SimpleRefExpr = cast(Ref)->IgnoreParenImpCasts(); const ValueDecl *VD; if (const auto *DRE = dyn_cast(SimpleRefExpr)) { VD = DRE->getDecl(); } else { const auto *ME = cast(SimpleRefExpr); assert((ME->isImplicitCXXThis() || isa(ME->getBase()->IgnoreParenImpCasts())) && "Expected member of current class."); VD = ME->getMemberDecl(); } DS.insert(VD); } } } CGOpenMPRuntime::NontemporalDeclsRAII::~NontemporalDeclsRAII() { if (!NeedToPush) return; CGM.getOpenMPRuntime().NontemporalDeclsStack.pop_back(); } CGOpenMPRuntime::UntiedTaskLocalDeclsRAII::UntiedTaskLocalDeclsRAII( CodeGenFunction &CGF, const llvm::MapVector, std::pair> &LocalVars) : CGM(CGF.CGM), NeedToPush(!LocalVars.empty()) { if (!NeedToPush) return; CGM.getOpenMPRuntime().FunctionToUntiedTaskStackMap.try_emplace( CGF.CurFn, CGM.getOpenMPRuntime().UntiedLocalVarsStack.size()); CGM.getOpenMPRuntime().UntiedLocalVarsStack.push_back(LocalVars); } CGOpenMPRuntime::UntiedTaskLocalDeclsRAII::~UntiedTaskLocalDeclsRAII() { if (!NeedToPush) return; CGM.getOpenMPRuntime().UntiedLocalVarsStack.pop_back(); } bool CGOpenMPRuntime::isNontemporalDecl(const ValueDecl *VD) const { assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode."); return llvm::any_of( CGM.getOpenMPRuntime().NontemporalDeclsStack, [VD](const NontemporalDeclsSet &Set) { return Set.count(VD) > 0; }); } void CGOpenMPRuntime::LastprivateConditionalRAII::tryToDisableInnerAnalysis( const OMPExecutableDirective &S, llvm::DenseSet> &NeedToAddForLPCsAsDisabled) const { llvm::DenseSet> NeedToCheckForLPCs; // Vars in target/task regions must be excluded completely. if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()) || isOpenMPTaskingDirective(S.getDirectiveKind())) { SmallVector CaptureRegions; getOpenMPCaptureRegions(CaptureRegions, S.getDirectiveKind()); const CapturedStmt *CS = S.getCapturedStmt(CaptureRegions.front()); for (const CapturedStmt::Capture &Cap : CS->captures()) { if (Cap.capturesVariable() || Cap.capturesVariableByCopy()) NeedToCheckForLPCs.insert(Cap.getCapturedVar()); } } // Exclude vars in private clauses. for (const auto *C : S.getClausesOfKind()) { for (const Expr *Ref : C->varlists()) { if (!Ref->getType()->isScalarType()) continue; const auto *DRE = dyn_cast(Ref->IgnoreParenImpCasts()); if (!DRE) continue; NeedToCheckForLPCs.insert(DRE->getDecl()); } } for (const auto *C : S.getClausesOfKind()) { for (const Expr *Ref : C->varlists()) { if (!Ref->getType()->isScalarType()) continue; const auto *DRE = dyn_cast(Ref->IgnoreParenImpCasts()); if (!DRE) continue; NeedToCheckForLPCs.insert(DRE->getDecl()); } } for (const auto *C : S.getClausesOfKind()) { for (const Expr *Ref : C->varlists()) { if (!Ref->getType()->isScalarType()) continue; const auto *DRE = dyn_cast(Ref->IgnoreParenImpCasts()); if (!DRE) continue; NeedToCheckForLPCs.insert(DRE->getDecl()); } } for (const auto *C : S.getClausesOfKind()) { for (const Expr *Ref : C->varlists()) { if (!Ref->getType()->isScalarType()) continue; const auto *DRE = dyn_cast(Ref->IgnoreParenImpCasts()); if (!DRE) continue; NeedToCheckForLPCs.insert(DRE->getDecl()); } } for (const auto *C : S.getClausesOfKind()) { for (const Expr *Ref : C->varlists()) { if (!Ref->getType()->isScalarType()) continue; const auto *DRE = dyn_cast(Ref->IgnoreParenImpCasts()); if (!DRE) continue; NeedToCheckForLPCs.insert(DRE->getDecl()); } } for (const Decl *VD : NeedToCheckForLPCs) { for (const LastprivateConditionalData &Data : llvm::reverse(CGM.getOpenMPRuntime().LastprivateConditionalStack)) { if (Data.DeclToUniqueName.count(VD) > 0) { if (!Data.Disabled) NeedToAddForLPCsAsDisabled.insert(VD); break; } } } } CGOpenMPRuntime::LastprivateConditionalRAII::LastprivateConditionalRAII( CodeGenFunction &CGF, const OMPExecutableDirective &S, LValue IVLVal) : CGM(CGF.CGM), Action((CGM.getLangOpts().OpenMP >= 50 && llvm::any_of(S.getClausesOfKind(), [](const OMPLastprivateClause *C) { return C->getKind() == OMPC_LASTPRIVATE_conditional; })) ? ActionToDo::PushAsLastprivateConditional : ActionToDo::DoNotPush) { assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode."); if (CGM.getLangOpts().OpenMP < 50 || Action == ActionToDo::DoNotPush) return; assert(Action == ActionToDo::PushAsLastprivateConditional && "Expected a push action."); LastprivateConditionalData &Data = CGM.getOpenMPRuntime().LastprivateConditionalStack.emplace_back(); for (const auto *C : S.getClausesOfKind()) { if (C->getKind() != OMPC_LASTPRIVATE_conditional) continue; for (const Expr *Ref : C->varlists()) { Data.DeclToUniqueName.insert(std::make_pair( cast(Ref->IgnoreParenImpCasts())->getDecl(), SmallString<16>(generateUniqueName(CGM, "pl_cond", Ref)))); } } Data.IVLVal = IVLVal; Data.Fn = CGF.CurFn; } CGOpenMPRuntime::LastprivateConditionalRAII::LastprivateConditionalRAII( CodeGenFunction &CGF, const OMPExecutableDirective &S) : CGM(CGF.CGM), Action(ActionToDo::DoNotPush) { assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode."); if (CGM.getLangOpts().OpenMP < 50) return; llvm::DenseSet> NeedToAddForLPCsAsDisabled; tryToDisableInnerAnalysis(S, NeedToAddForLPCsAsDisabled); if (!NeedToAddForLPCsAsDisabled.empty()) { Action = ActionToDo::DisableLastprivateConditional; LastprivateConditionalData &Data = CGM.getOpenMPRuntime().LastprivateConditionalStack.emplace_back(); for (const Decl *VD : NeedToAddForLPCsAsDisabled) Data.DeclToUniqueName.insert(std::make_pair(VD, SmallString<16>())); Data.Fn = CGF.CurFn; Data.Disabled = true; } } CGOpenMPRuntime::LastprivateConditionalRAII CGOpenMPRuntime::LastprivateConditionalRAII::disable( CodeGenFunction &CGF, const OMPExecutableDirective &S) { return LastprivateConditionalRAII(CGF, S); } CGOpenMPRuntime::LastprivateConditionalRAII::~LastprivateConditionalRAII() { if (CGM.getLangOpts().OpenMP < 50) return; if (Action == ActionToDo::DisableLastprivateConditional) { assert(CGM.getOpenMPRuntime().LastprivateConditionalStack.back().Disabled && "Expected list of disabled private vars."); CGM.getOpenMPRuntime().LastprivateConditionalStack.pop_back(); } if (Action == ActionToDo::PushAsLastprivateConditional) { assert( !CGM.getOpenMPRuntime().LastprivateConditionalStack.back().Disabled && "Expected list of lastprivate conditional vars."); CGM.getOpenMPRuntime().LastprivateConditionalStack.pop_back(); } } Address CGOpenMPRuntime::emitLastprivateConditionalInit(CodeGenFunction &CGF, const VarDecl *VD) { ASTContext &C = CGM.getContext(); auto I = LastprivateConditionalToTypes.find(CGF.CurFn); if (I == LastprivateConditionalToTypes.end()) I = LastprivateConditionalToTypes.try_emplace(CGF.CurFn).first; QualType NewType; const FieldDecl *VDField; const FieldDecl *FiredField; LValue BaseLVal; auto VI = I->getSecond().find(VD); if (VI == I->getSecond().end()) { RecordDecl *RD = C.buildImplicitRecord("lasprivate.conditional"); RD->startDefinition(); VDField = addFieldToRecordDecl(C, RD, VD->getType().getNonReferenceType()); FiredField = addFieldToRecordDecl(C, RD, C.CharTy); RD->completeDefinition(); NewType = C.getRecordType(RD); Address Addr = CGF.CreateMemTemp(NewType, C.getDeclAlign(VD), VD->getName()); BaseLVal = CGF.MakeAddrLValue(Addr, NewType, AlignmentSource::Decl); I->getSecond().try_emplace(VD, NewType, VDField, FiredField, BaseLVal); } else { NewType = std::get<0>(VI->getSecond()); VDField = std::get<1>(VI->getSecond()); FiredField = std::get<2>(VI->getSecond()); BaseLVal = std::get<3>(VI->getSecond()); } LValue FiredLVal = CGF.EmitLValueForField(BaseLVal, FiredField); CGF.EmitStoreOfScalar( llvm::ConstantInt::getNullValue(CGF.ConvertTypeForMem(C.CharTy)), FiredLVal); return CGF.EmitLValueForField(BaseLVal, VDField).getAddress(CGF); } namespace { /// Checks if the lastprivate conditional variable is referenced in LHS. class LastprivateConditionalRefChecker final : public ConstStmtVisitor { ArrayRef LPM; const Expr *FoundE = nullptr; const Decl *FoundD = nullptr; StringRef UniqueDeclName; LValue IVLVal; llvm::Function *FoundFn = nullptr; SourceLocation Loc; public: bool VisitDeclRefExpr(const DeclRefExpr *E) { for (const CGOpenMPRuntime::LastprivateConditionalData &D : llvm::reverse(LPM)) { auto It = D.DeclToUniqueName.find(E->getDecl()); if (It == D.DeclToUniqueName.end()) continue; if (D.Disabled) return false; FoundE = E; FoundD = E->getDecl()->getCanonicalDecl(); UniqueDeclName = It->second; IVLVal = D.IVLVal; FoundFn = D.Fn; break; } return FoundE == E; } bool VisitMemberExpr(const MemberExpr *E) { if (!CodeGenFunction::IsWrappedCXXThis(E->getBase())) return false; for (const CGOpenMPRuntime::LastprivateConditionalData &D : llvm::reverse(LPM)) { auto It = D.DeclToUniqueName.find(E->getMemberDecl()); if (It == D.DeclToUniqueName.end()) continue; if (D.Disabled) return false; FoundE = E; FoundD = E->getMemberDecl()->getCanonicalDecl(); UniqueDeclName = It->second; IVLVal = D.IVLVal; FoundFn = D.Fn; break; } return FoundE == E; } bool VisitStmt(const Stmt *S) { for (const Stmt *Child : S->children()) { if (!Child) continue; if (const auto *E = dyn_cast(Child)) if (!E->isGLValue()) continue; if (Visit(Child)) return true; } return false; } explicit LastprivateConditionalRefChecker( ArrayRef LPM) : LPM(LPM) {} std::tuple getFoundData() const { return std::make_tuple(FoundE, FoundD, UniqueDeclName, IVLVal, FoundFn); } }; } // namespace void CGOpenMPRuntime::emitLastprivateConditionalUpdate(CodeGenFunction &CGF, LValue IVLVal, StringRef UniqueDeclName, LValue LVal, SourceLocation Loc) { // Last updated loop counter for the lastprivate conditional var. // int last_iv = 0; llvm::Type *LLIVTy = CGF.ConvertTypeForMem(IVLVal.getType()); llvm::Constant *LastIV = getOrCreateInternalVariable(LLIVTy, getName({UniqueDeclName, "iv"})); cast(LastIV)->setAlignment( IVLVal.getAlignment().getAsAlign()); LValue LastIVLVal = CGF.MakeNaturalAlignAddrLValue(LastIV, IVLVal.getType()); // Last value of the lastprivate conditional. // decltype(priv_a) last_a; llvm::Constant *Last = getOrCreateInternalVariable( CGF.ConvertTypeForMem(LVal.getType()), UniqueDeclName); cast(Last)->setAlignment( LVal.getAlignment().getAsAlign()); LValue LastLVal = CGF.MakeAddrLValue(Last, LVal.getType(), LVal.getAlignment()); // Global loop counter. Required to handle inner parallel-for regions. // iv llvm::Value *IVVal = CGF.EmitLoadOfScalar(IVLVal, Loc); // #pragma omp critical(a) // if (last_iv <= iv) { // last_iv = iv; // last_a = priv_a; // } auto &&CodeGen = [&LastIVLVal, &IVLVal, IVVal, &LVal, &LastLVal, Loc](CodeGenFunction &CGF, PrePostActionTy &Action) { Action.Enter(CGF); llvm::Value *LastIVVal = CGF.EmitLoadOfScalar(LastIVLVal, Loc); // (last_iv <= iv) ? Check if the variable is updated and store new // value in global var. llvm::Value *CmpRes; if (IVLVal.getType()->isSignedIntegerType()) { CmpRes = CGF.Builder.CreateICmpSLE(LastIVVal, IVVal); } else { assert(IVLVal.getType()->isUnsignedIntegerType() && "Loop iteration variable must be integer."); CmpRes = CGF.Builder.CreateICmpULE(LastIVVal, IVVal); } llvm::BasicBlock *ThenBB = CGF.createBasicBlock("lp_cond_then"); llvm::BasicBlock *ExitBB = CGF.createBasicBlock("lp_cond_exit"); CGF.Builder.CreateCondBr(CmpRes, ThenBB, ExitBB); // { CGF.EmitBlock(ThenBB); // last_iv = iv; CGF.EmitStoreOfScalar(IVVal, LastIVLVal); // last_a = priv_a; switch (CGF.getEvaluationKind(LVal.getType())) { case TEK_Scalar: { llvm::Value *PrivVal = CGF.EmitLoadOfScalar(LVal, Loc); CGF.EmitStoreOfScalar(PrivVal, LastLVal); break; } case TEK_Complex: { CodeGenFunction::ComplexPairTy PrivVal = CGF.EmitLoadOfComplex(LVal, Loc); CGF.EmitStoreOfComplex(PrivVal, LastLVal, /*isInit=*/false); break; } case TEK_Aggregate: llvm_unreachable( "Aggregates are not supported in lastprivate conditional."); } // } CGF.EmitBranch(ExitBB); // There is no need to emit line number for unconditional branch. (void)ApplyDebugLocation::CreateEmpty(CGF); CGF.EmitBlock(ExitBB, /*IsFinished=*/true); }; if (CGM.getLangOpts().OpenMPSimd) { // Do not emit as a critical region as no parallel region could be emitted. RegionCodeGenTy ThenRCG(CodeGen); ThenRCG(CGF); } else { emitCriticalRegion(CGF, UniqueDeclName, CodeGen, Loc); } } void CGOpenMPRuntime::checkAndEmitLastprivateConditional(CodeGenFunction &CGF, const Expr *LHS) { if (CGF.getLangOpts().OpenMP < 50 || LastprivateConditionalStack.empty()) return; LastprivateConditionalRefChecker Checker(LastprivateConditionalStack); if (!Checker.Visit(LHS)) return; const Expr *FoundE; const Decl *FoundD; StringRef UniqueDeclName; LValue IVLVal; llvm::Function *FoundFn; std::tie(FoundE, FoundD, UniqueDeclName, IVLVal, FoundFn) = Checker.getFoundData(); if (FoundFn != CGF.CurFn) { // Special codegen for inner parallel regions. // ((struct.lastprivate.conditional*)&priv_a)->Fired = 1; auto It = LastprivateConditionalToTypes[FoundFn].find(FoundD); assert(It != LastprivateConditionalToTypes[FoundFn].end() && "Lastprivate conditional is not found in outer region."); QualType StructTy = std::get<0>(It->getSecond()); const FieldDecl* FiredDecl = std::get<2>(It->getSecond()); LValue PrivLVal = CGF.EmitLValue(FoundE); Address StructAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( PrivLVal.getAddress(CGF), CGF.ConvertTypeForMem(CGF.getContext().getPointerType(StructTy))); LValue BaseLVal = CGF.MakeAddrLValue(StructAddr, StructTy, AlignmentSource::Decl); LValue FiredLVal = CGF.EmitLValueForField(BaseLVal, FiredDecl); CGF.EmitAtomicStore(RValue::get(llvm::ConstantInt::get( CGF.ConvertTypeForMem(FiredDecl->getType()), 1)), FiredLVal, llvm::AtomicOrdering::Unordered, /*IsVolatile=*/true, /*isInit=*/false); return; } // Private address of the lastprivate conditional in the current context. // priv_a LValue LVal = CGF.EmitLValue(FoundE); emitLastprivateConditionalUpdate(CGF, IVLVal, UniqueDeclName, LVal, FoundE->getExprLoc()); } void CGOpenMPRuntime::checkAndEmitSharedLastprivateConditional( CodeGenFunction &CGF, const OMPExecutableDirective &D, const llvm::DenseSet> &IgnoredDecls) { if (CGF.getLangOpts().OpenMP < 50 || LastprivateConditionalStack.empty()) return; auto Range = llvm::reverse(LastprivateConditionalStack); auto It = llvm::find_if( Range, [](const LastprivateConditionalData &D) { return !D.Disabled; }); if (It == Range.end() || It->Fn != CGF.CurFn) return; auto LPCI = LastprivateConditionalToTypes.find(It->Fn); assert(LPCI != LastprivateConditionalToTypes.end() && "Lastprivates must be registered already."); SmallVector CaptureRegions; getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); const CapturedStmt *CS = D.getCapturedStmt(CaptureRegions.back()); for (const auto &Pair : It->DeclToUniqueName) { const auto *VD = cast(Pair.first->getCanonicalDecl()); if (!CS->capturesVariable(VD) || IgnoredDecls.count(VD) > 0) continue; auto I = LPCI->getSecond().find(Pair.first); assert(I != LPCI->getSecond().end() && "Lastprivate must be rehistered already."); // bool Cmp = priv_a.Fired != 0; LValue BaseLVal = std::get<3>(I->getSecond()); LValue FiredLVal = CGF.EmitLValueForField(BaseLVal, std::get<2>(I->getSecond())); llvm::Value *Res = CGF.EmitLoadOfScalar(FiredLVal, D.getBeginLoc()); llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Res); llvm::BasicBlock *ThenBB = CGF.createBasicBlock("lpc.then"); llvm::BasicBlock *DoneBB = CGF.createBasicBlock("lpc.done"); // if (Cmp) { CGF.Builder.CreateCondBr(Cmp, ThenBB, DoneBB); CGF.EmitBlock(ThenBB); Address Addr = CGF.GetAddrOfLocalVar(VD); LValue LVal; if (VD->getType()->isReferenceType()) LVal = CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), AlignmentSource::Decl); else LVal = CGF.MakeAddrLValue(Addr, VD->getType().getNonReferenceType(), AlignmentSource::Decl); emitLastprivateConditionalUpdate(CGF, It->IVLVal, Pair.second, LVal, D.getBeginLoc()); auto AL = ApplyDebugLocation::CreateArtificial(CGF); CGF.EmitBlock(DoneBB, /*IsFinal=*/true); // } } } void CGOpenMPRuntime::emitLastprivateConditionalFinalUpdate( CodeGenFunction &CGF, LValue PrivLVal, const VarDecl *VD, SourceLocation Loc) { if (CGF.getLangOpts().OpenMP < 50) return; auto It = LastprivateConditionalStack.back().DeclToUniqueName.find(VD); assert(It != LastprivateConditionalStack.back().DeclToUniqueName.end() && "Unknown lastprivate conditional variable."); StringRef UniqueName = It->second; llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(UniqueName); // The variable was not updated in the region - exit. if (!GV) return; LValue LPLVal = CGF.MakeAddrLValue( GV, PrivLVal.getType().getNonReferenceType(), PrivLVal.getAlignment()); llvm::Value *Res = CGF.EmitLoadOfScalar(LPLVal, Loc); CGF.EmitStoreOfScalar(Res, PrivLVal); } llvm::Function *CGOpenMPSIMDRuntime::emitParallelOutlinedFunction( const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { llvm_unreachable("Not supported in SIMD-only mode"); } llvm::Function *CGOpenMPSIMDRuntime::emitTeamsOutlinedFunction( const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { llvm_unreachable("Not supported in SIMD-only mode"); } llvm::Function *CGOpenMPSIMDRuntime::emitTaskOutlinedFunction( const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, const VarDecl *PartIDVar, const VarDecl *TaskTVar, OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, bool Tied, unsigned &NumberOfParts) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc, llvm::Function *OutlinedFn, ArrayRef CapturedVars, const Expr *IfCond) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitCriticalRegion( CodeGenFunction &CGF, StringRef CriticalName, const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, const Expr *Hint) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitMasterRegion(CodeGenFunction &CGF, const RegionCodeGenTy &MasterOpGen, SourceLocation Loc) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitMaskedRegion(CodeGenFunction &CGF, const RegionCodeGenTy &MasterOpGen, SourceLocation Loc, const Expr *Filter) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitTaskyieldCall(CodeGenFunction &CGF, SourceLocation Loc) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitTaskgroupRegion( CodeGenFunction &CGF, const RegionCodeGenTy &TaskgroupOpGen, SourceLocation Loc) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitSingleRegion( CodeGenFunction &CGF, const RegionCodeGenTy &SingleOpGen, SourceLocation Loc, ArrayRef CopyprivateVars, ArrayRef DestExprs, ArrayRef SrcExprs, ArrayRef AssignmentOps) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitOrderedRegion(CodeGenFunction &CGF, const RegionCodeGenTy &OrderedOpGen, SourceLocation Loc, bool IsThreads) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind Kind, bool EmitChecks, bool ForceSimpleCall) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitForDispatchInit( CodeGenFunction &CGF, SourceLocation Loc, const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned, bool Ordered, const DispatchRTInput &DispatchValues) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitForStaticInit( CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind DKind, const OpenMPScheduleTy &ScheduleKind, const StaticRTInput &Values) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitDistributeStaticInit( CodeGenFunction &CGF, SourceLocation Loc, OpenMPDistScheduleClauseKind SchedKind, const StaticRTInput &Values) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF, SourceLocation Loc, unsigned IVSize, bool IVSigned) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitForStaticFinish(CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind DKind) { llvm_unreachable("Not supported in SIMD-only mode"); } llvm::Value *CGOpenMPSIMDRuntime::emitForNext(CodeGenFunction &CGF, SourceLocation Loc, unsigned IVSize, bool IVSigned, Address IL, Address LB, Address UB, Address ST) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitNumThreadsClause(CodeGenFunction &CGF, llvm::Value *NumThreads, SourceLocation Loc) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitProcBindClause(CodeGenFunction &CGF, ProcBindKind ProcBind, SourceLocation Loc) { llvm_unreachable("Not supported in SIMD-only mode"); } Address CGOpenMPSIMDRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF, const VarDecl *VD, Address VDAddr, SourceLocation Loc) { llvm_unreachable("Not supported in SIMD-only mode"); } llvm::Function *CGOpenMPSIMDRuntime::emitThreadPrivateVarDefinition( const VarDecl *VD, Address VDAddr, SourceLocation Loc, bool PerformInit, CodeGenFunction *CGF) { llvm_unreachable("Not supported in SIMD-only mode"); } Address CGOpenMPSIMDRuntime::getAddrOfArtificialThreadPrivate( CodeGenFunction &CGF, QualType VarType, StringRef Name) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef Vars, SourceLocation Loc, llvm::AtomicOrdering AO) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc, const OMPExecutableDirective &D, llvm::Function *TaskFunction, QualType SharedsTy, Address Shareds, const Expr *IfCond, const OMPTaskDataTy &Data) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitTaskLoopCall( CodeGenFunction &CGF, SourceLocation Loc, const OMPLoopDirective &D, llvm::Function *TaskFunction, QualType SharedsTy, Address Shareds, const Expr *IfCond, const OMPTaskDataTy &Data) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitReduction( CodeGenFunction &CGF, SourceLocation Loc, ArrayRef Privates, ArrayRef LHSExprs, ArrayRef RHSExprs, ArrayRef ReductionOps, ReductionOptionsTy Options) { assert(Options.SimpleReduction && "Only simple reduction is expected."); CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs, ReductionOps, Options); } llvm::Value *CGOpenMPSIMDRuntime::emitTaskReductionInit( CodeGenFunction &CGF, SourceLocation Loc, ArrayRef LHSExprs, ArrayRef RHSExprs, const OMPTaskDataTy &Data) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitTaskReductionFini(CodeGenFunction &CGF, SourceLocation Loc, bool IsWorksharingReduction) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitTaskReductionFixups(CodeGenFunction &CGF, SourceLocation Loc, ReductionCodeGen &RCG, unsigned N) { llvm_unreachable("Not supported in SIMD-only mode"); } Address CGOpenMPSIMDRuntime::getTaskReductionItem(CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *ReductionsPtr, LValue SharedLVal) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitTaskwaitCall(CodeGenFunction &CGF, SourceLocation Loc) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitCancellationPointCall( CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind CancelRegion) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc, const Expr *IfCond, OpenMPDirectiveKind CancelRegion) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitTargetOutlinedFunction( const OMPExecutableDirective &D, StringRef ParentName, llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitTargetCall( CodeGenFunction &CGF, const OMPExecutableDirective &D, llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond, llvm::PointerIntPair Device, llvm::function_ref SizeEmitter) { llvm_unreachable("Not supported in SIMD-only mode"); } bool CGOpenMPSIMDRuntime::emitTargetFunctions(GlobalDecl GD) { llvm_unreachable("Not supported in SIMD-only mode"); } bool CGOpenMPSIMDRuntime::emitTargetGlobalVariable(GlobalDecl GD) { llvm_unreachable("Not supported in SIMD-only mode"); } bool CGOpenMPSIMDRuntime::emitTargetGlobal(GlobalDecl GD) { return false; } void CGOpenMPSIMDRuntime::emitTeamsCall(CodeGenFunction &CGF, const OMPExecutableDirective &D, SourceLocation Loc, llvm::Function *OutlinedFn, ArrayRef CapturedVars) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitNumTeamsClause(CodeGenFunction &CGF, const Expr *NumTeams, const Expr *ThreadLimit, SourceLocation Loc) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitTargetDataCalls( CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond, const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitTargetDataStandAloneCall( CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond, const Expr *Device) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitDoacrossInit(CodeGenFunction &CGF, const OMPLoopDirective &D, ArrayRef NumIterations) { llvm_unreachable("Not supported in SIMD-only mode"); } void CGOpenMPSIMDRuntime::emitDoacrossOrdered(CodeGenFunction &CGF, const OMPDependClause *C) { llvm_unreachable("Not supported in SIMD-only mode"); } const VarDecl * CGOpenMPSIMDRuntime::translateParameter(const FieldDecl *FD, const VarDecl *NativeParam) const { llvm_unreachable("Not supported in SIMD-only mode"); } Address CGOpenMPSIMDRuntime::getParameterAddress(CodeGenFunction &CGF, const VarDecl *NativeParam, const VarDecl *TargetParam) const { llvm_unreachable("Not supported in SIMD-only mode"); }