//===- ClangOpenCLBuiltinEmitter.cpp - Generate Clang OpenCL Builtin handling // // The LLVM Compiler Infrastructure // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This tablegen backend emits code for checking whether a function is an // OpenCL builtin function. If so, all overloads of this function are // added to the LookupResult. The generated include file is used by // SemaLookup.cpp // // For a successful lookup of e.g. the "cos" builtin, isOpenCLBuiltin("cos") // returns a pair . // BuiltinTable[Index] to BuiltinTable[Index + Len] contains the pairs // of the overloads of "cos". // SignatureTable[SigIndex] to SignatureTable[SigIndex + SigLen] contains // one of the signatures of "cos". The SignatureTable entry can be // referenced by other functions, e.g. "sin", to exploit the fact that // many OpenCL builtins share the same signature. // // The file generated by this TableGen emitter contains the following: // // * Structs and enums to represent types and function signatures. // // * const char *FunctionExtensionTable[] // List of space-separated OpenCL extensions. A builtin references an // entry in this table when the builtin requires a particular (set of) // extension(s) to be enabled. // // * OpenCLTypeStruct TypeTable[] // Type information for return types and arguments. // // * unsigned SignatureTable[] // A list of types representing function signatures. Each entry is an index // into the above TypeTable. Multiple entries following each other form a // signature, where the first entry is the return type and subsequent // entries are the argument types. // // * OpenCLBuiltinStruct BuiltinTable[] // Each entry represents one overload of an OpenCL builtin function and // consists of an index into the SignatureTable and the number of arguments. // // * std::pair isOpenCLBuiltin(llvm::StringRef Name) // Find out whether a string matches an existing OpenCL builtin function // name and return an index into BuiltinTable and the number of overloads. // // * void OCL2Qual(Sema&, OpenCLTypeStruct, std::vector&) // Convert an OpenCLTypeStruct type to a list of QualType instances. // One OpenCLTypeStruct can represent multiple types, primarily when using // GenTypes. // //===----------------------------------------------------------------------===// #include "TableGenBackends.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/StringMatcher.h" #include "llvm/TableGen/TableGenBackend.h" using namespace llvm; namespace { // A list of signatures that are shared by one or more builtin functions. struct BuiltinTableEntries { SmallVector Names; std::vector> Signatures; }; class BuiltinNameEmitter { public: BuiltinNameEmitter(RecordKeeper &Records, raw_ostream &OS) : Records(Records), OS(OS) {} // Entrypoint to generate the functions and structures for checking // whether a function is an OpenCL builtin function. void Emit(); private: // A list of indices into the builtin function table. using BuiltinIndexListTy = SmallVector; // Contains OpenCL builtin functions and related information, stored as // Record instances. They are coming from the associated TableGen file. RecordKeeper &Records; // The output file. raw_ostream &OS; // Helper function for BuiltinNameEmitter::EmitDeclarations. Generate enum // definitions in the Output string parameter, and save their Record instances // in the List parameter. // \param Types (in) List containing the Types to extract. // \param TypesSeen (inout) List containing the Types already extracted. // \param Output (out) String containing the enums to emit in the output file. // \param List (out) List containing the extracted Types, except the Types in // TypesSeen. void ExtractEnumTypes(std::vector &Types, StringMap &TypesSeen, std::string &Output, std::vector &List); // Emit the enum or struct used in the generated file. // Populate the TypeList at the same time. void EmitDeclarations(); // Parse the Records generated by TableGen to populate the SignaturesList, // FctOverloadMap and TypeMap. void GetOverloads(); // Compare two lists of signatures and check that e.g. the OpenCL version, // function attributes, and extension are equal for each signature. // \param Candidate (in) Entry in the SignatureListMap to check. // \param SignatureList (in) List of signatures of the considered function. // \returns true if the two lists of signatures are identical. bool CanReuseSignature( BuiltinIndexListTy *Candidate, std::vector> &SignatureList); // Group functions with the same list of signatures by populating the // SignatureListMap. // Some builtin functions have the same list of signatures, for example the // "sin" and "cos" functions. To save space in the BuiltinTable, the // "isOpenCLBuiltin" function will have the same output for these two // function names. void GroupBySignature(); // Emit the FunctionExtensionTable that lists all function extensions. void EmitExtensionTable(); // Emit the TypeTable containing all types used by OpenCL builtins. void EmitTypeTable(); // Emit the SignatureTable. This table contains all the possible signatures. // A signature is stored as a list of indexes of the TypeTable. // The first index references the return type (mandatory), and the followings // reference its arguments. // E.g.: // 15, 2, 15 can represent a function with the signature: // int func(float, int) // The "int" type being at the index 15 in the TypeTable. void EmitSignatureTable(); // Emit the BuiltinTable table. This table contains all the overloads of // each function, and is a struct OpenCLBuiltinDecl. // E.g.: // // 891 convert_float2_rtn // { 58, 2, 3, 100, 0 }, // This means that the signature of this convert_float2_rtn overload has // 1 argument (+1 for the return type), stored at index 58 in // the SignatureTable. This prototype requires extension "3" in the // FunctionExtensionTable. The last two values represent the minimum (1.0) // and maximum (0, meaning no max version) OpenCL version in which this // overload is supported. void EmitBuiltinTable(); // Emit a StringMatcher function to check whether a function name is an // OpenCL builtin function name. void EmitStringMatcher(); // Emit a function returning the clang QualType instance associated with // the TableGen Record Type. void EmitQualTypeFinder(); // Contains a list of the available signatures, without the name of the // function. Each pair consists of a signature and a cumulative index. // E.g.: <, 0>, // <>, // <, 5>, // ... // <, 35>. std::vector, unsigned>> SignaturesList; // Map the name of a builtin function to its prototypes (instances of the // TableGen "Builtin" class). // Each prototype is registered as a pair of: // // E.g.: The function cos: (float cos(float), double cos(double), ...) // <"cos", <, // , // > // ptrToPrototype1 has the following signature: MapVector>> FctOverloadMap; // Contains the map of OpenCL types to their index in the TypeTable. MapVector TypeMap; // List of OpenCL function extensions mapping extension strings to // an index into the FunctionExtensionTable. StringMap FunctionExtensionIndex; // List of OpenCL type names in the same order as in enum OpenCLTypeID. // This list does not contain generic types. std::vector TypeList; // Same as TypeList, but for generic types only. std::vector GenTypeList; // Map an ordered vector of signatures to their original Record instances, // and to a list of function names that share these signatures. // // For example, suppose the "cos" and "sin" functions have only three // signatures, and these signatures are at index Ix in the SignatureTable: // cos | sin | Signature | Index // float cos(float) | float sin(float) | Signature1 | I1 // double cos(double) | double sin(double) | Signature2 | I2 // half cos(half) | half sin(half) | Signature3 | I3 // // Then we will create a mapping of the vector of signatures: // SignatureListMap[] = < // <"cos", "sin">, // > // The function "tan", having the same signatures, would be mapped to the // same entry (). MapVector SignatureListMap; }; } // namespace void BuiltinNameEmitter::Emit() { emitSourceFileHeader("OpenCL Builtin handling", OS); OS << "#include \"llvm/ADT/StringRef.h\"\n"; OS << "using namespace clang;\n\n"; // Emit enums and structs. EmitDeclarations(); // Parse the Records to populate the internal lists. GetOverloads(); GroupBySignature(); // Emit tables. EmitExtensionTable(); EmitTypeTable(); EmitSignatureTable(); EmitBuiltinTable(); // Emit functions. EmitStringMatcher(); EmitQualTypeFinder(); } void BuiltinNameEmitter::ExtractEnumTypes(std::vector &Types, StringMap &TypesSeen, std::string &Output, std::vector &List) { raw_string_ostream SS(Output); for (const auto *T : Types) { if (TypesSeen.find(T->getValueAsString("Name")) == TypesSeen.end()) { SS << " OCLT_" + T->getValueAsString("Name") << ",\n"; // Save the type names in the same order as their enum value. Note that // the Record can be a VectorType or something else, only the name is // important. List.push_back(T); TypesSeen.insert(std::make_pair(T->getValueAsString("Name"), true)); } } SS.flush(); } void BuiltinNameEmitter::EmitDeclarations() { // Enum of scalar type names (float, int, ...) and generic type sets. OS << "enum OpenCLTypeID {\n"; StringMap TypesSeen; std::string GenTypeEnums; std::string TypeEnums; // Extract generic types and non-generic types separately, to keep // gentypes at the end of the enum which simplifies the special handling // for gentypes in SemaLookup. std::vector GenTypes = Records.getAllDerivedDefinitions("GenericType"); ExtractEnumTypes(GenTypes, TypesSeen, GenTypeEnums, GenTypeList); std::vector Types = Records.getAllDerivedDefinitions("Type"); ExtractEnumTypes(Types, TypesSeen, TypeEnums, TypeList); OS << TypeEnums; OS << GenTypeEnums; OS << "};\n"; // Structure definitions. OS << R"( // Image access qualifier. enum OpenCLAccessQual : unsigned char { OCLAQ_None, OCLAQ_ReadOnly, OCLAQ_WriteOnly, OCLAQ_ReadWrite }; // Represents a return type or argument type. struct OpenCLTypeStruct { // A type (e.g. float, int, ...). const OpenCLTypeID ID; // Vector size (if applicable; 0 for scalars and generic types). const unsigned VectorWidth; // 0 if the type is not a pointer. const bool IsPointer : 1; // 0 if the type is not const. const bool IsConst : 1; // 0 if the type is not volatile. const bool IsVolatile : 1; // Access qualifier. const OpenCLAccessQual AccessQualifier; // Address space of the pointer (if applicable). const LangAS AS; }; // One overload of an OpenCL builtin function. struct OpenCLBuiltinStruct { // Index of the signature in the OpenCLTypeStruct table. const unsigned SigTableIndex; // Entries between index SigTableIndex and (SigTableIndex + NumTypes - 1) in // the SignatureTable represent the complete signature. The first type at // index SigTableIndex is the return type. const unsigned NumTypes; // Function attribute __attribute__((pure)) const bool IsPure : 1; // Function attribute __attribute__((const)) const bool IsConst : 1; // Function attribute __attribute__((convergent)) const bool IsConv : 1; // OpenCL extension(s) required for this overload. const unsigned short Extension; // OpenCL versions in which this overload is available. const unsigned short Versions; }; )"; } // Verify that the combination of GenTypes in a signature is supported. // To simplify the logic for creating overloads in SemaLookup, only allow // a signature to contain different GenTypes if these GenTypes represent // the same number of actual scalar or vector types. // // Exit with a fatal error if an unsupported construct is encountered. static void VerifySignature(const std::vector &Signature, const Record *BuiltinRec) { unsigned GenTypeVecSizes = 1; unsigned GenTypeTypes = 1; for (const auto *T : Signature) { // Check all GenericType arguments in this signature. if (T->isSubClassOf("GenericType")) { // Check number of vector sizes. unsigned NVecSizes = T->getValueAsDef("VectorList")->getValueAsListOfInts("List").size(); if (NVecSizes != GenTypeVecSizes && NVecSizes != 1) { if (GenTypeVecSizes > 1) { // We already saw a gentype with a different number of vector sizes. PrintFatalError(BuiltinRec->getLoc(), "number of vector sizes should be equal or 1 for all gentypes " "in a declaration"); } GenTypeVecSizes = NVecSizes; } // Check number of data types. unsigned NTypes = T->getValueAsDef("TypeList")->getValueAsListOfDefs("List").size(); if (NTypes != GenTypeTypes && NTypes != 1) { if (GenTypeTypes > 1) { // We already saw a gentype with a different number of types. PrintFatalError(BuiltinRec->getLoc(), "number of types should be equal or 1 for all gentypes " "in a declaration"); } GenTypeTypes = NTypes; } } } } void BuiltinNameEmitter::GetOverloads() { // Populate the TypeMap. std::vector Types = Records.getAllDerivedDefinitions("Type"); unsigned I = 0; for (const auto &T : Types) { TypeMap.insert(std::make_pair(T, I++)); } // Populate the SignaturesList and the FctOverloadMap. unsigned CumulativeSignIndex = 0; std::vector Builtins = Records.getAllDerivedDefinitions("Builtin"); for (const auto *B : Builtins) { StringRef BName = B->getValueAsString("Name"); if (FctOverloadMap.find(BName) == FctOverloadMap.end()) { FctOverloadMap.insert(std::make_pair( BName, std::vector>{})); } auto Signature = B->getValueAsListOfDefs("Signature"); // Reuse signatures to avoid unnecessary duplicates. auto it = std::find_if(SignaturesList.begin(), SignaturesList.end(), [&](const std::pair, unsigned> &a) { return a.first == Signature; }); unsigned SignIndex; if (it == SignaturesList.end()) { VerifySignature(Signature, B); SignaturesList.push_back(std::make_pair(Signature, CumulativeSignIndex)); SignIndex = CumulativeSignIndex; CumulativeSignIndex += Signature.size(); } else { SignIndex = it->second; } FctOverloadMap[BName].push_back(std::make_pair(B, SignIndex)); } } void BuiltinNameEmitter::EmitExtensionTable() { OS << "static const char *FunctionExtensionTable[] = {\n"; unsigned Index = 0; std::vector FuncExtensions = Records.getAllDerivedDefinitions("FunctionExtension"); for (const auto &FE : FuncExtensions) { // Emit OpenCL extension table entry. OS << " // " << Index << ": " << FE->getName() << "\n" << " \"" << FE->getValueAsString("ExtName") << "\",\n"; // Record index of this extension. FunctionExtensionIndex[FE->getName()] = Index++; } OS << "};\n\n"; } void BuiltinNameEmitter::EmitTypeTable() { OS << "static const OpenCLTypeStruct TypeTable[] = {\n"; for (const auto &T : TypeMap) { const char *AccessQual = StringSwitch(T.first->getValueAsString("AccessQualifier")) .Case("RO", "OCLAQ_ReadOnly") .Case("WO", "OCLAQ_WriteOnly") .Case("RW", "OCLAQ_ReadWrite") .Default("OCLAQ_None"); OS << " // " << T.second << "\n" << " {OCLT_" << T.first->getValueAsString("Name") << ", " << T.first->getValueAsInt("VecWidth") << ", " << T.first->getValueAsBit("IsPointer") << ", " << T.first->getValueAsBit("IsConst") << ", " << T.first->getValueAsBit("IsVolatile") << ", " << AccessQual << ", " << T.first->getValueAsString("AddrSpace") << "},\n"; } OS << "};\n\n"; } void BuiltinNameEmitter::EmitSignatureTable() { // Store a type (e.g. int, float, int2, ...). The type is stored as an index // of a struct OpenCLType table. Multiple entries following each other form a // signature. OS << "static const unsigned short SignatureTable[] = {\n"; for (const auto &P : SignaturesList) { OS << " // " << P.second << "\n "; for (const Record *R : P.first) { unsigned Entry = TypeMap.find(R)->second; if (Entry > USHRT_MAX) { // Report an error when seeing an entry that is too large for the // current index type (unsigned short). When hitting this, the type // of SignatureTable will need to be changed. PrintFatalError("Entry in SignatureTable exceeds limit."); } OS << Entry << ", "; } OS << "\n"; } OS << "};\n\n"; } // Encode a range MinVersion..MaxVersion into a single bit mask that can be // checked against LangOpts using isOpenCLVersionContainedInMask(). // This must be kept in sync with OpenCLVersionID in OpenCLOptions.h. // (Including OpenCLOptions.h here would be a layering violation.) static unsigned short EncodeVersions(unsigned int MinVersion, unsigned int MaxVersion) { unsigned short Encoded = 0; // A maximum version of 0 means available in all later versions. if (MaxVersion == 0) { MaxVersion = UINT_MAX; } unsigned VersionIDs[] = {100, 110, 120, 200, 300}; for (unsigned I = 0; I < sizeof(VersionIDs) / sizeof(VersionIDs[0]); I++) { if (VersionIDs[I] >= MinVersion && VersionIDs[I] < MaxVersion) { Encoded |= 1 << I; } } return Encoded; } void BuiltinNameEmitter::EmitBuiltinTable() { unsigned Index = 0; OS << "static const OpenCLBuiltinStruct BuiltinTable[] = {\n"; for (const auto &SLM : SignatureListMap) { OS << " // " << (Index + 1) << ": "; for (const auto &Name : SLM.second.Names) { OS << Name << ", "; } OS << "\n"; for (const auto &Overload : SLM.second.Signatures) { StringRef ExtName = Overload.first->getValueAsDef("Extension")->getName(); unsigned int MinVersion = Overload.first->getValueAsDef("MinVersion")->getValueAsInt("ID"); unsigned int MaxVersion = Overload.first->getValueAsDef("MaxVersion")->getValueAsInt("ID"); OS << " { " << Overload.second << ", " << Overload.first->getValueAsListOfDefs("Signature").size() << ", " << (Overload.first->getValueAsBit("IsPure")) << ", " << (Overload.first->getValueAsBit("IsConst")) << ", " << (Overload.first->getValueAsBit("IsConv")) << ", " << FunctionExtensionIndex[ExtName] << ", " << EncodeVersions(MinVersion, MaxVersion) << " },\n"; Index++; } } OS << "};\n\n"; } bool BuiltinNameEmitter::CanReuseSignature( BuiltinIndexListTy *Candidate, std::vector> &SignatureList) { assert(Candidate->size() == SignatureList.size() && "signature lists should have the same size"); auto &CandidateSigs = SignatureListMap.find(Candidate)->second.Signatures; for (unsigned Index = 0; Index < Candidate->size(); Index++) { const Record *Rec = SignatureList[Index].first; const Record *Rec2 = CandidateSigs[Index].first; if (Rec->getValueAsBit("IsPure") == Rec2->getValueAsBit("IsPure") && Rec->getValueAsBit("IsConst") == Rec2->getValueAsBit("IsConst") && Rec->getValueAsBit("IsConv") == Rec2->getValueAsBit("IsConv") && Rec->getValueAsDef("MinVersion")->getValueAsInt("ID") == Rec2->getValueAsDef("MinVersion")->getValueAsInt("ID") && Rec->getValueAsDef("MaxVersion")->getValueAsInt("ID") == Rec2->getValueAsDef("MaxVersion")->getValueAsInt("ID") && Rec->getValueAsDef("Extension")->getName() == Rec2->getValueAsDef("Extension")->getName()) { return true; } } return false; } void BuiltinNameEmitter::GroupBySignature() { // List of signatures known to be emitted. std::vector KnownSignatures; for (auto &Fct : FctOverloadMap) { bool FoundReusableSig = false; // Gather all signatures for the current function. auto *CurSignatureList = new BuiltinIndexListTy(); for (const auto &Signature : Fct.second) { CurSignatureList->push_back(Signature.second); } // Sort the list to facilitate future comparisons. llvm::sort(*CurSignatureList); // Check if we have already seen another function with the same list of // signatures. If so, just add the name of the function. for (auto *Candidate : KnownSignatures) { if (Candidate->size() == CurSignatureList->size() && *Candidate == *CurSignatureList) { if (CanReuseSignature(Candidate, Fct.second)) { SignatureListMap.find(Candidate)->second.Names.push_back(Fct.first); FoundReusableSig = true; } } } if (FoundReusableSig) { delete CurSignatureList; } else { // Add a new entry. SignatureListMap[CurSignatureList] = { SmallVector(1, Fct.first), Fct.second}; KnownSignatures.push_back(CurSignatureList); } } for (auto *I : KnownSignatures) { delete I; } } void BuiltinNameEmitter::EmitStringMatcher() { std::vector ValidBuiltins; unsigned CumulativeIndex = 1; for (const auto &SLM : SignatureListMap) { const auto &Ovl = SLM.second.Signatures; // A single signature list may be used by different builtins. Return the // same pair for each of those builtins. for (const auto &FctName : SLM.second.Names) { std::string RetStmt; raw_string_ostream SS(RetStmt); SS << "return std::make_pair(" << CumulativeIndex << ", " << Ovl.size() << ");"; SS.flush(); ValidBuiltins.push_back( StringMatcher::StringPair(std::string(FctName), RetStmt)); } CumulativeIndex += Ovl.size(); } OS << R"( // Find out whether a string matches an existing OpenCL builtin function name. // Returns: A pair <0, 0> if no name matches. // A pair indexing the BuiltinTable if the name is // matching an OpenCL builtin function. static std::pair isOpenCLBuiltin(llvm::StringRef Name) { )"; StringMatcher("Name", ValidBuiltins, OS).Emit(0, true); OS << " return std::make_pair(0, 0);\n"; OS << "} // isOpenCLBuiltin\n"; } void BuiltinNameEmitter::EmitQualTypeFinder() { OS << R"( static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name); static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name); // Convert an OpenCLTypeStruct type to a list of QualTypes. // Generic types represent multiple types and vector sizes, thus a vector // is returned. The conversion is done in two steps: // Step 1: A switch statement fills a vector with scalar base types for the // Cartesian product of (vector sizes) x (types) for generic types, // or a single scalar type for non generic types. // Step 2: Qualifiers and other type properties such as vector size are // applied. static void OCL2Qual(Sema &S, const OpenCLTypeStruct &Ty, llvm::SmallVectorImpl &QT) { ASTContext &Context = S.Context; // Number of scalar types in the GenType. unsigned GenTypeNumTypes; // Pointer to the list of vector sizes for the GenType. llvm::ArrayRef GenVectorSizes; )"; // Generate list of vector sizes for each generic type. for (const auto *VectList : Records.getAllDerivedDefinitions("IntList")) { OS << " constexpr unsigned List" << VectList->getValueAsString("Name") << "[] = {"; for (const auto V : VectList->getValueAsListOfInts("List")) { OS << V << ", "; } OS << "};\n"; } // Step 1. // Start of switch statement over all types. OS << "\n switch (Ty.ID) {\n"; // Switch cases for image types (Image2d, Image3d, ...) std::vector ImageTypes = Records.getAllDerivedDefinitions("ImageType"); // Map an image type name to its 3 access-qualified types (RO, WO, RW). StringMap> ImageTypesMap; for (auto *IT : ImageTypes) { auto Entry = ImageTypesMap.find(IT->getValueAsString("Name")); if (Entry == ImageTypesMap.end()) { SmallVector ImageList; ImageList.push_back(IT); ImageTypesMap.insert( std::make_pair(IT->getValueAsString("Name"), ImageList)); } else { Entry->second.push_back(IT); } } // Emit the cases for the image types. For an image type name, there are 3 // corresponding QualTypes ("RO", "WO", "RW"). The "AccessQualifier" field // tells which one is needed. Emit a switch statement that puts the // corresponding QualType into "QT". for (const auto &ITE : ImageTypesMap) { OS << " case OCLT_" << ITE.getKey() << ":\n" << " switch (Ty.AccessQualifier) {\n" << " case OCLAQ_None:\n" << " llvm_unreachable(\"Image without access qualifier\");\n"; for (const auto &Image : ITE.getValue()) { OS << StringSwitch( Image->getValueAsString("AccessQualifier")) .Case("RO", " case OCLAQ_ReadOnly:\n") .Case("WO", " case OCLAQ_WriteOnly:\n") .Case("RW", " case OCLAQ_ReadWrite:\n") << " QT.push_back(" << Image->getValueAsDef("QTExpr")->getValueAsString("TypeExpr") << ");\n" << " break;\n"; } OS << " }\n" << " break;\n"; } // Switch cases for generic types. for (const auto *GenType : Records.getAllDerivedDefinitions("GenericType")) { OS << " case OCLT_" << GenType->getValueAsString("Name") << ": {\n"; // Build the Cartesian product of (vector sizes) x (types). Only insert // the plain scalar types for now; other type information such as vector // size and type qualifiers will be added after the switch statement. std::vector BaseTypes = GenType->getValueAsDef("TypeList")->getValueAsListOfDefs("List"); // Collect all QualTypes for a single vector size into TypeList. OS << " SmallVector TypeList;\n"; for (const auto *T : BaseTypes) { StringRef Ext = T->getValueAsDef("Extension")->getValueAsString("ExtName"); if (!Ext.empty()) { OS << " if (S.getPreprocessor().isMacroDefined(\"" << Ext << "\")) {\n "; } OS << " TypeList.push_back(" << T->getValueAsDef("QTExpr")->getValueAsString("TypeExpr") << ");\n"; if (!Ext.empty()) { OS << " }\n"; } } OS << " GenTypeNumTypes = TypeList.size();\n"; // Duplicate the TypeList for every vector size. std::vector VectorList = GenType->getValueAsDef("VectorList")->getValueAsListOfInts("List"); OS << " QT.reserve(" << VectorList.size() * BaseTypes.size() << ");\n" << " for (unsigned I = 0; I < " << VectorList.size() << "; I++) {\n" << " QT.append(TypeList);\n" << " }\n"; // GenVectorSizes is the list of vector sizes for this GenType. OS << " GenVectorSizes = List" << GenType->getValueAsDef("VectorList")->getValueAsString("Name") << ";\n" << " break;\n" << " }\n"; } // Switch cases for non generic, non image types (int, int4, float, ...). // Only insert the plain scalar type; vector information and type qualifiers // are added in step 2. std::vector Types = Records.getAllDerivedDefinitions("Type"); StringMap TypesSeen; for (const auto *T : Types) { // Check this is not an image type if (ImageTypesMap.find(T->getValueAsString("Name")) != ImageTypesMap.end()) continue; // Check we have not seen this Type if (TypesSeen.find(T->getValueAsString("Name")) != TypesSeen.end()) continue; TypesSeen.insert(std::make_pair(T->getValueAsString("Name"), true)); // Check the Type does not have an "abstract" QualType auto QT = T->getValueAsDef("QTExpr"); if (QT->getValueAsBit("IsAbstract") == 1) continue; // Emit the cases for non generic, non image types. OS << " case OCLT_" << T->getValueAsString("Name") << ":\n"; StringRef Ext = T->getValueAsDef("Extension")->getValueAsString("ExtName"); // If this type depends on an extension, ensure the extension macro is // defined. if (!Ext.empty()) { OS << " if (S.getPreprocessor().isMacroDefined(\"" << Ext << "\")) {\n "; } OS << " QT.push_back(" << QT->getValueAsString("TypeExpr") << ");\n"; if (!Ext.empty()) { OS << " }\n"; } OS << " break;\n"; } // End of switch statement. OS << " } // end of switch (Ty.ID)\n\n"; // Step 2. // Add ExtVector types if this was a generic type, as the switch statement // above only populated the list with scalar types. This completes the // construction of the Cartesian product of (vector sizes) x (types). OS << " // Construct the different vector types for each generic type.\n"; OS << " if (Ty.ID >= " << TypeList.size() << ") {"; OS << R"( for (unsigned I = 0; I < QT.size(); I++) { // For scalars, size is 1. if (GenVectorSizes[I / GenTypeNumTypes] != 1) { QT[I] = Context.getExtVectorType(QT[I], GenVectorSizes[I / GenTypeNumTypes]); } } } )"; // Assign the right attributes to the types (e.g. vector size). OS << R"( // Set vector size for non-generic vector types. if (Ty.VectorWidth > 1) { for (unsigned Index = 0; Index < QT.size(); Index++) { QT[Index] = Context.getExtVectorType(QT[Index], Ty.VectorWidth); } } if (Ty.IsVolatile != 0) { for (unsigned Index = 0; Index < QT.size(); Index++) { QT[Index] = Context.getVolatileType(QT[Index]); } } if (Ty.IsConst != 0) { for (unsigned Index = 0; Index < QT.size(); Index++) { QT[Index] = Context.getConstType(QT[Index]); } } // Transform the type to a pointer as the last step, if necessary. // Builtin functions only have pointers on [const|volatile], no // [const|volatile] pointers, so this is ok to do it as a last step. if (Ty.IsPointer != 0) { for (unsigned Index = 0; Index < QT.size(); Index++) { QT[Index] = Context.getAddrSpaceQualType(QT[Index], Ty.AS); QT[Index] = Context.getPointerType(QT[Index]); } } )"; // End of the "OCL2Qual" function. OS << "\n} // OCL2Qual\n"; } void clang::EmitClangOpenCLBuiltins(RecordKeeper &Records, raw_ostream &OS) { BuiltinNameEmitter NameChecker(Records, OS); NameChecker.Emit(); }