/* Subroutines used for code generation on IA-32. Copyright (C) 1988-2020 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #define IN_TARGET_CODE 1 #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "rtl.h" #include "tree.h" #include "memmodel.h" #include "gimple.h" #include "cfghooks.h" #include "cfgloop.h" #include "df.h" #include "tm_p.h" #include "stringpool.h" #include "expmed.h" #include "optabs.h" #include "regs.h" #include "emit-rtl.h" #include "recog.h" #include "cgraph.h" #include "diagnostic.h" #include "cfgbuild.h" #include "alias.h" #include "fold-const.h" #include "attribs.h" #include "calls.h" #include "stor-layout.h" #include "varasm.h" #include "output.h" #include "insn-attr.h" #include "flags.h" #include "except.h" #include "explow.h" #include "expr.h" #include "cfgrtl.h" #include "common/common-target.h" #include "langhooks.h" #include "reload.h" #include "gimplify.h" #include "dwarf2.h" #include "tm-constrs.h" #include "cselib.h" #include "sched-int.h" #include "opts.h" #include "tree-pass.h" #include "context.h" #include "pass_manager.h" #include "target-globals.h" #include "gimple-iterator.h" #include "tree-vectorizer.h" #include "shrink-wrap.h" #include "builtins.h" #include "rtl-iter.h" #include "tree-iterator.h" #include "dbgcnt.h" #include "case-cfn-macros.h" #include "dojump.h" #include "fold-const-call.h" #include "tree-vrp.h" #include "tree-ssanames.h" #include "selftest.h" #include "selftest-rtl.h" #include "print-rtl.h" #include "intl.h" #include "ifcvt.h" #include "symbol-summary.h" #include "ipa-prop.h" #include "ipa-fnsummary.h" #include "wide-int-bitmask.h" #include "tree-vector-builder.h" #include "debug.h" #include "dwarf2out.h" #include "i386-options.h" #include "i386-builtins.h" #include "i386-expand.h" #include "i386-features.h" #include "function-abi.h" /* This file should be included last. */ #include "target-def.h" static rtx legitimize_dllimport_symbol (rtx, bool); static rtx legitimize_pe_coff_extern_decl (rtx, bool); static void ix86_print_operand_address_as (FILE *, rtx, addr_space_t, bool); static void ix86_emit_restore_reg_using_pop (rtx); #ifndef CHECK_STACK_LIMIT #define CHECK_STACK_LIMIT (-1) #endif /* Return index of given mode in mult and division cost tables. */ #define MODE_INDEX(mode) \ ((mode) == QImode ? 0 \ : (mode) == HImode ? 1 \ : (mode) == SImode ? 2 \ : (mode) == DImode ? 3 \ : 4) /* Set by -mtune. */ const struct processor_costs *ix86_tune_cost = NULL; /* Set by -mtune or -Os. */ const struct processor_costs *ix86_cost = NULL; /* In case the average insn count for single function invocation is lower than this constant, emit fast (but longer) prologue and epilogue code. */ #define FAST_PROLOGUE_INSN_COUNT 20 /* Names for 8 (low), 8 (high), and 16-bit registers, respectively. */ static const char *const qi_reg_name[] = QI_REGISTER_NAMES; static const char *const qi_high_reg_name[] = QI_HIGH_REGISTER_NAMES; static const char *const hi_reg_name[] = HI_REGISTER_NAMES; /* Array of the smallest class containing reg number REGNO, indexed by REGNO. Used by REGNO_REG_CLASS in i386.h. */ enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER] = { /* ax, dx, cx, bx */ AREG, DREG, CREG, BREG, /* si, di, bp, sp */ SIREG, DIREG, NON_Q_REGS, NON_Q_REGS, /* FP registers */ FP_TOP_REG, FP_SECOND_REG, FLOAT_REGS, FLOAT_REGS, FLOAT_REGS, FLOAT_REGS, FLOAT_REGS, FLOAT_REGS, /* arg pointer, flags, fpsr, frame */ NON_Q_REGS, NO_REGS, NO_REGS, NON_Q_REGS, /* SSE registers */ SSE_FIRST_REG, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, /* MMX registers */ MMX_REGS, MMX_REGS, MMX_REGS, MMX_REGS, MMX_REGS, MMX_REGS, MMX_REGS, MMX_REGS, /* REX registers */ GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, /* SSE REX registers */ SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, /* AVX-512 SSE registers */ ALL_SSE_REGS, ALL_SSE_REGS, ALL_SSE_REGS, ALL_SSE_REGS, ALL_SSE_REGS, ALL_SSE_REGS, ALL_SSE_REGS, ALL_SSE_REGS, ALL_SSE_REGS, ALL_SSE_REGS, ALL_SSE_REGS, ALL_SSE_REGS, ALL_SSE_REGS, ALL_SSE_REGS, ALL_SSE_REGS, ALL_SSE_REGS, /* Mask registers. */ ALL_MASK_REGS, MASK_REGS, MASK_REGS, MASK_REGS, MASK_REGS, MASK_REGS, MASK_REGS, MASK_REGS }; /* The "default" register map used in 32bit mode. */ int const dbx_register_map[FIRST_PSEUDO_REGISTER] = { /* general regs */ 0, 2, 1, 3, 6, 7, 4, 5, /* fp regs */ 12, 13, 14, 15, 16, 17, 18, 19, /* arg, flags, fpsr, frame */ IGNORED_DWARF_REGNUM, IGNORED_DWARF_REGNUM, IGNORED_DWARF_REGNUM, IGNORED_DWARF_REGNUM, /* SSE */ 21, 22, 23, 24, 25, 26, 27, 28, /* MMX */ 29, 30, 31, 32, 33, 34, 35, 36, /* extended integer registers */ INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, /* extended sse registers */ INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, /* AVX-512 registers 16-23 */ INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, /* AVX-512 registers 24-31 */ INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, /* Mask registers */ 93, 94, 95, 96, 97, 98, 99, 100 }; /* The "default" register map used in 64bit mode. */ int const dbx64_register_map[FIRST_PSEUDO_REGISTER] = { /* general regs */ 0, 1, 2, 3, 4, 5, 6, 7, /* fp regs */ 33, 34, 35, 36, 37, 38, 39, 40, /* arg, flags, fpsr, frame */ IGNORED_DWARF_REGNUM, IGNORED_DWARF_REGNUM, IGNORED_DWARF_REGNUM, IGNORED_DWARF_REGNUM, /* SSE */ 17, 18, 19, 20, 21, 22, 23, 24, /* MMX */ 41, 42, 43, 44, 45, 46, 47, 48, /* extended integer registers */ 8, 9, 10, 11, 12, 13, 14, 15, /* extended SSE registers */ 25, 26, 27, 28, 29, 30, 31, 32, /* AVX-512 registers 16-23 */ 67, 68, 69, 70, 71, 72, 73, 74, /* AVX-512 registers 24-31 */ 75, 76, 77, 78, 79, 80, 81, 82, /* Mask registers */ 118, 119, 120, 121, 122, 123, 124, 125 }; /* Define the register numbers to be used in Dwarf debugging information. The SVR4 reference port C compiler uses the following register numbers in its Dwarf output code: 0 for %eax (gcc regno = 0) 1 for %ecx (gcc regno = 2) 2 for %edx (gcc regno = 1) 3 for %ebx (gcc regno = 3) 4 for %esp (gcc regno = 7) 5 for %ebp (gcc regno = 6) 6 for %esi (gcc regno = 4) 7 for %edi (gcc regno = 5) The following three DWARF register numbers are never generated by the SVR4 C compiler or by the GNU compilers, but SDB on x86/svr4 believed these numbers have these meanings. 8 for %eip (no gcc equivalent) 9 for %eflags (gcc regno = 17) 10 for %trapno (no gcc equivalent) It is not at all clear how we should number the FP stack registers for the x86 architecture. If the version of SDB on x86/svr4 were a bit less brain dead with respect to floating-point then we would have a precedent to follow with respect to DWARF register numbers for x86 FP registers, but the SDB on x86/svr4 was so completely broken with respect to FP registers that it is hardly worth thinking of it as something to strive for compatibility with. The version of x86/svr4 SDB I had does (partially) seem to believe that DWARF register number 11 is associated with the x86 register %st(0), but that's about all. Higher DWARF register numbers don't seem to be associated with anything in particular, and even for DWARF regno 11, SDB only seemed to under- stand that it should say that a variable lives in %st(0) (when asked via an `=' command) if we said it was in DWARF regno 11, but SDB still printed garbage when asked for the value of the variable in question (via a `/' command). (Also note that the labels SDB printed for various FP stack regs when doing an `x' command were all wrong.) Note that these problems generally don't affect the native SVR4 C compiler because it doesn't allow the use of -O with -g and because when it is *not* optimizing, it allocates a memory location for each floating-point variable, and the memory location is what gets described in the DWARF AT_location attribute for the variable in question. Regardless of the severe mental illness of the x86/svr4 SDB, we do something sensible here and we use the following DWARF register numbers. Note that these are all stack-top-relative numbers. 11 for %st(0) (gcc regno = 8) 12 for %st(1) (gcc regno = 9) 13 for %st(2) (gcc regno = 10) 14 for %st(3) (gcc regno = 11) 15 for %st(4) (gcc regno = 12) 16 for %st(5) (gcc regno = 13) 17 for %st(6) (gcc regno = 14) 18 for %st(7) (gcc regno = 15) */ int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER] = { /* general regs */ 0, 2, 1, 3, 6, 7, 5, 4, /* fp regs */ 11, 12, 13, 14, 15, 16, 17, 18, /* arg, flags, fpsr, frame */ IGNORED_DWARF_REGNUM, 9, IGNORED_DWARF_REGNUM, IGNORED_DWARF_REGNUM, /* SSE registers */ 21, 22, 23, 24, 25, 26, 27, 28, /* MMX registers */ 29, 30, 31, 32, 33, 34, 35, 36, /* extended integer registers */ INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, /* extended sse registers */ INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, /* AVX-512 registers 16-23 */ INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, /* AVX-512 registers 24-31 */ INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, INVALID_REGNUM, /* Mask registers */ 93, 94, 95, 96, 97, 98, 99, 100 }; /* Define parameter passing and return registers. */ static int const x86_64_int_parameter_registers[6] = { DI_REG, SI_REG, DX_REG, CX_REG, R8_REG, R9_REG }; static int const x86_64_ms_abi_int_parameter_registers[4] = { CX_REG, DX_REG, R8_REG, R9_REG }; static int const x86_64_int_return_registers[4] = { AX_REG, DX_REG, DI_REG, SI_REG }; /* Define the structure for the machine field in struct function. */ struct GTY(()) stack_local_entry { unsigned short mode; unsigned short n; rtx rtl; struct stack_local_entry *next; }; /* Which cpu are we scheduling for. */ enum attr_cpu ix86_schedule; /* Which cpu are we optimizing for. */ enum processor_type ix86_tune; /* Which instruction set architecture to use. */ enum processor_type ix86_arch; /* True if processor has SSE prefetch instruction. */ unsigned char x86_prefetch_sse; /* Preferred alignment for stack boundary in bits. */ unsigned int ix86_preferred_stack_boundary; /* Alignment for incoming stack boundary in bits specified at command line. */ unsigned int ix86_user_incoming_stack_boundary; /* Default alignment for incoming stack boundary in bits. */ unsigned int ix86_default_incoming_stack_boundary; /* Alignment for incoming stack boundary in bits. */ unsigned int ix86_incoming_stack_boundary; /* Calling abi specific va_list type nodes. */ tree sysv_va_list_type_node; tree ms_va_list_type_node; /* Prefix built by ASM_GENERATE_INTERNAL_LABEL. */ char internal_label_prefix[16]; int internal_label_prefix_len; /* Fence to use after loop using movnt. */ tree x86_mfence; /* Register class used for passing given 64bit part of the argument. These represent classes as documented by the PS ABI, with the exception of SSESF, SSEDF classes, that are basically SSE class, just gcc will use SF or DFmode move instead of DImode to avoid reformatting penalties. Similarly we play games with INTEGERSI_CLASS to use cheaper SImode moves whenever possible (upper half does contain padding). */ enum x86_64_reg_class { X86_64_NO_CLASS, X86_64_INTEGER_CLASS, X86_64_INTEGERSI_CLASS, X86_64_SSE_CLASS, X86_64_SSESF_CLASS, X86_64_SSEDF_CLASS, X86_64_SSEUP_CLASS, X86_64_X87_CLASS, X86_64_X87UP_CLASS, X86_64_COMPLEX_X87_CLASS, X86_64_MEMORY_CLASS }; #define MAX_CLASSES 8 /* Table of constants used by fldpi, fldln2, etc.... */ static REAL_VALUE_TYPE ext_80387_constants_table [5]; static bool ext_80387_constants_init; static rtx ix86_function_value (const_tree, const_tree, bool); static bool ix86_function_value_regno_p (const unsigned int); static unsigned int ix86_function_arg_boundary (machine_mode, const_tree); static rtx ix86_static_chain (const_tree, bool); static int ix86_function_regparm (const_tree, const_tree); static void ix86_compute_frame_layout (void); static tree ix86_canonical_va_list_type (tree); static unsigned int split_stack_prologue_scratch_regno (void); static bool i386_asm_output_addr_const_extra (FILE *, rtx); static bool ix86_can_inline_p (tree, tree); static unsigned int ix86_minimum_incoming_stack_boundary (bool); /* Whether -mtune= or -march= were specified */ int ix86_tune_defaulted; int ix86_arch_specified; /* Return true if a red-zone is in use. We can't use red-zone when there are local indirect jumps, like "indirect_jump" or "tablejump", which jumps to another place in the function, since "call" in the indirect thunk pushes the return address onto stack, destroying red-zone. TODO: If we can reserve the first 2 WORDs, for PUSH and, another for CALL, in red-zone, we can allow local indirect jumps with indirect thunk. */ bool ix86_using_red_zone (void) { return (TARGET_RED_ZONE && !TARGET_64BIT_MS_ABI && (!cfun->machine->has_local_indirect_jump || cfun->machine->indirect_branch_type == indirect_branch_keep)); } /* Return true, if profiling code should be emitted before prologue. Otherwise it returns false. Note: For x86 with "hotfix" it is sorried. */ static bool ix86_profile_before_prologue (void) { return flag_fentry != 0; } /* Update register usage after having seen the compiler flags. */ static void ix86_conditional_register_usage (void) { int i, c_mask; /* If there are no caller-saved registers, preserve all registers. except fixed_regs and registers used for function return value since aggregate_value_p checks call_used_regs[regno] on return value. */ if (cfun && cfun->machine->no_caller_saved_registers) for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (!fixed_regs[i] && !ix86_function_value_regno_p (i)) call_used_regs[i] = 0; /* For 32-bit targets, disable the REX registers. */ if (! TARGET_64BIT) { for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) CLEAR_HARD_REG_BIT (accessible_reg_set, i); for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) CLEAR_HARD_REG_BIT (accessible_reg_set, i); for (i = FIRST_EXT_REX_SSE_REG; i <= LAST_EXT_REX_SSE_REG; i++) CLEAR_HARD_REG_BIT (accessible_reg_set, i); } /* See the definition of CALL_USED_REGISTERS in i386.h. */ c_mask = CALL_USED_REGISTERS_MASK (TARGET_64BIT_MS_ABI); CLEAR_HARD_REG_SET (reg_class_contents[(int)CLOBBERED_REGS]); for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { /* Set/reset conditionally defined registers from CALL_USED_REGISTERS initializer. */ if (call_used_regs[i] > 1) call_used_regs[i] = !!(call_used_regs[i] & c_mask); /* Calculate registers of CLOBBERED_REGS register set as call used registers from GENERAL_REGS register set. */ if (TEST_HARD_REG_BIT (reg_class_contents[(int)GENERAL_REGS], i) && call_used_regs[i]) SET_HARD_REG_BIT (reg_class_contents[(int)CLOBBERED_REGS], i); } /* If MMX is disabled, disable the registers. */ if (! TARGET_MMX) accessible_reg_set &= ~reg_class_contents[MMX_REGS]; /* If SSE is disabled, disable the registers. */ if (! TARGET_SSE) accessible_reg_set &= ~reg_class_contents[ALL_SSE_REGS]; /* If the FPU is disabled, disable the registers. */ if (! (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387)) accessible_reg_set &= ~reg_class_contents[FLOAT_REGS]; /* If AVX512F is disabled, disable the registers. */ if (! TARGET_AVX512F) { for (i = FIRST_EXT_REX_SSE_REG; i <= LAST_EXT_REX_SSE_REG; i++) CLEAR_HARD_REG_BIT (accessible_reg_set, i); accessible_reg_set &= ~reg_class_contents[ALL_MASK_REGS]; } } /* Canonicalize a comparison from one we don't have to one we do have. */ static void ix86_canonicalize_comparison (int *code, rtx *op0, rtx *op1, bool op0_preserve_value) { /* The order of operands in x87 ficom compare is forced by combine in simplify_comparison () function. Float operator is treated as RTX_OBJ with a precedence over other operators and is always put in the first place. Swap condition and operands to match ficom instruction. */ if (!op0_preserve_value && GET_CODE (*op0) == FLOAT && MEM_P (XEXP (*op0, 0)) && REG_P (*op1)) { enum rtx_code scode = swap_condition ((enum rtx_code) *code); /* We are called only for compares that are split to SAHF instruction. Ensure that we have setcc/jcc insn for the swapped condition. */ if (ix86_fp_compare_code_to_integer (scode) != UNKNOWN) { std::swap (*op0, *op1); *code = (int) scode; } } } /* Hook to determine if one function can safely inline another. */ static bool ix86_can_inline_p (tree caller, tree callee) { tree caller_tree = DECL_FUNCTION_SPECIFIC_TARGET (caller); tree callee_tree = DECL_FUNCTION_SPECIFIC_TARGET (callee); /* Changes of those flags can be tolerated for always inlines. Lets hope user knows what he is doing. */ const unsigned HOST_WIDE_INT always_inline_safe_mask = (MASK_USE_8BIT_IDIV | MASK_ACCUMULATE_OUTGOING_ARGS | MASK_NO_ALIGN_STRINGOPS | MASK_AVX256_SPLIT_UNALIGNED_LOAD | MASK_AVX256_SPLIT_UNALIGNED_STORE | MASK_CLD | MASK_NO_FANCY_MATH_387 | MASK_IEEE_FP | MASK_INLINE_ALL_STRINGOPS | MASK_INLINE_STRINGOPS_DYNAMICALLY | MASK_RECIP | MASK_STACK_PROBE | MASK_STV | MASK_TLS_DIRECT_SEG_REFS | MASK_VZEROUPPER | MASK_NO_PUSH_ARGS | MASK_OMIT_LEAF_FRAME_POINTER); if (!callee_tree) callee_tree = target_option_default_node; if (!caller_tree) caller_tree = target_option_default_node; if (callee_tree == caller_tree) return true; struct cl_target_option *caller_opts = TREE_TARGET_OPTION (caller_tree); struct cl_target_option *callee_opts = TREE_TARGET_OPTION (callee_tree); bool ret = false; bool always_inline = (DECL_DISREGARD_INLINE_LIMITS (callee) && lookup_attribute ("always_inline", DECL_ATTRIBUTES (callee))); cgraph_node *callee_node = cgraph_node::get (callee); /* Callee's isa options should be a subset of the caller's, i.e. a SSE4 function can inline a SSE2 function but a SSE2 function can't inline a SSE4 function. */ if (((caller_opts->x_ix86_isa_flags & callee_opts->x_ix86_isa_flags) != callee_opts->x_ix86_isa_flags) || ((caller_opts->x_ix86_isa_flags2 & callee_opts->x_ix86_isa_flags2) != callee_opts->x_ix86_isa_flags2)) ret = false; /* See if we have the same non-isa options. */ else if ((!always_inline && caller_opts->x_target_flags != callee_opts->x_target_flags) || (caller_opts->x_target_flags & ~always_inline_safe_mask) != (callee_opts->x_target_flags & ~always_inline_safe_mask)) ret = false; /* See if arch, tune, etc. are the same. */ else if (caller_opts->arch != callee_opts->arch) ret = false; else if (!always_inline && caller_opts->tune != callee_opts->tune) ret = false; else if (caller_opts->x_ix86_fpmath != callee_opts->x_ix86_fpmath /* If the calle doesn't use FP expressions differences in ix86_fpmath can be ignored. We are called from FEs for multi-versioning call optimization, so beware of ipa_fn_summaries not available. */ && (! ipa_fn_summaries || ipa_fn_summaries->get (callee_node) == NULL || ipa_fn_summaries->get (callee_node)->fp_expressions)) ret = false; else if (!always_inline && caller_opts->branch_cost != callee_opts->branch_cost) ret = false; else ret = true; return ret; } /* Return true if this goes in large data/bss. */ static bool ix86_in_large_data_p (tree exp) { if (ix86_cmodel != CM_MEDIUM && ix86_cmodel != CM_MEDIUM_PIC) return false; if (exp == NULL_TREE) return false; /* Functions are never large data. */ if (TREE_CODE (exp) == FUNCTION_DECL) return false; /* Automatic variables are never large data. */ if (VAR_P (exp) && !is_global_var (exp)) return false; if (VAR_P (exp) && DECL_SECTION_NAME (exp)) { const char *section = DECL_SECTION_NAME (exp); if (strcmp (section, ".ldata") == 0 || strcmp (section, ".lbss") == 0) return true; return false; } else { HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp)); /* If this is an incomplete type with size 0, then we can't put it in data because it might be too big when completed. Also, int_size_in_bytes returns -1 if size can vary or is larger than an integer in which case also it is safer to assume that it goes in large data. */ if (size <= 0 || size > ix86_section_threshold) return true; } return false; } /* i386-specific section flag to mark large sections. */ #define SECTION_LARGE SECTION_MACH_DEP /* Switch to the appropriate section for output of DECL. DECL is either a `VAR_DECL' node or a constant of some sort. RELOC indicates whether forming the initial value of DECL requires link-time relocations. */ ATTRIBUTE_UNUSED static section * x86_64_elf_select_section (tree decl, int reloc, unsigned HOST_WIDE_INT align) { if (ix86_in_large_data_p (decl)) { const char *sname = NULL; unsigned int flags = SECTION_WRITE | SECTION_LARGE; switch (categorize_decl_for_section (decl, reloc)) { case SECCAT_DATA: sname = ".ldata"; break; case SECCAT_DATA_REL: sname = ".ldata.rel"; break; case SECCAT_DATA_REL_LOCAL: sname = ".ldata.rel.local"; break; case SECCAT_DATA_REL_RO: sname = ".ldata.rel.ro"; break; case SECCAT_DATA_REL_RO_LOCAL: sname = ".ldata.rel.ro.local"; break; case SECCAT_BSS: sname = ".lbss"; flags |= SECTION_BSS; break; case SECCAT_RODATA: case SECCAT_RODATA_MERGE_STR: case SECCAT_RODATA_MERGE_STR_INIT: case SECCAT_RODATA_MERGE_CONST: sname = ".lrodata"; flags &= ~SECTION_WRITE; break; case SECCAT_SRODATA: case SECCAT_SDATA: case SECCAT_SBSS: gcc_unreachable (); case SECCAT_TEXT: case SECCAT_TDATA: case SECCAT_TBSS: /* We don't split these for medium model. Place them into default sections and hope for best. */ break; } if (sname) { /* We might get called with string constants, but get_named_section doesn't like them as they are not DECLs. Also, we need to set flags in that case. */ if (!DECL_P (decl)) return get_section (sname, flags, NULL); return get_named_section (decl, sname, reloc); } } return default_elf_select_section (decl, reloc, align); } /* Select a set of attributes for section NAME based on the properties of DECL and whether or not RELOC indicates that DECL's initializer might contain runtime relocations. */ static unsigned int ATTRIBUTE_UNUSED x86_64_elf_section_type_flags (tree decl, const char *name, int reloc) { unsigned int flags = default_section_type_flags (decl, name, reloc); if (ix86_in_large_data_p (decl)) flags |= SECTION_LARGE; if (decl == NULL_TREE && (strcmp (name, ".ldata.rel.ro") == 0 || strcmp (name, ".ldata.rel.ro.local") == 0)) flags |= SECTION_RELRO; if (strcmp (name, ".lbss") == 0 || strncmp (name, ".lbss.", sizeof (".lbss.") - 1) == 0 || strncmp (name, ".gnu.linkonce.lb.", sizeof (".gnu.linkonce.lb.") - 1) == 0) flags |= SECTION_BSS; return flags; } /* Build up a unique section name, expressed as a STRING_CST node, and assign it to DECL_SECTION_NAME (decl). RELOC indicates whether the initial value of EXP requires link-time relocations. */ static void ATTRIBUTE_UNUSED x86_64_elf_unique_section (tree decl, int reloc) { if (ix86_in_large_data_p (decl)) { const char *prefix = NULL; /* We only need to use .gnu.linkonce if we don't have COMDAT groups. */ bool one_only = DECL_COMDAT_GROUP (decl) && !HAVE_COMDAT_GROUP; switch (categorize_decl_for_section (decl, reloc)) { case SECCAT_DATA: case SECCAT_DATA_REL: case SECCAT_DATA_REL_LOCAL: case SECCAT_DATA_REL_RO: case SECCAT_DATA_REL_RO_LOCAL: prefix = one_only ? ".ld" : ".ldata"; break; case SECCAT_BSS: prefix = one_only ? ".lb" : ".lbss"; break; case SECCAT_RODATA: case SECCAT_RODATA_MERGE_STR: case SECCAT_RODATA_MERGE_STR_INIT: case SECCAT_RODATA_MERGE_CONST: prefix = one_only ? ".lr" : ".lrodata"; break; case SECCAT_SRODATA: case SECCAT_SDATA: case SECCAT_SBSS: gcc_unreachable (); case SECCAT_TEXT: case SECCAT_TDATA: case SECCAT_TBSS: /* We don't split these for medium model. Place them into default sections and hope for best. */ break; } if (prefix) { const char *name, *linkonce; char *string; name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); name = targetm.strip_name_encoding (name); /* If we're using one_only, then there needs to be a .gnu.linkonce prefix to the section name. */ linkonce = one_only ? ".gnu.linkonce" : ""; string = ACONCAT ((linkonce, prefix, ".", name, NULL)); set_decl_section_name (decl, string); return; } } default_unique_section (decl, reloc); } #ifdef COMMON_ASM_OP #ifndef LARGECOMM_SECTION_ASM_OP #define LARGECOMM_SECTION_ASM_OP "\t.largecomm\t" #endif /* This says how to output assembler code to declare an uninitialized external linkage data object. For medium model x86-64 we need to use LARGECOMM_SECTION_ASM_OP opcode for large objects. */ void x86_elf_aligned_decl_common (FILE *file, tree decl, const char *name, unsigned HOST_WIDE_INT size, int align) { if ((ix86_cmodel == CM_MEDIUM || ix86_cmodel == CM_MEDIUM_PIC) && size > (unsigned int)ix86_section_threshold) { switch_to_section (get_named_section (decl, ".lbss", 0)); fputs (LARGECOMM_SECTION_ASM_OP, file); } else fputs (COMMON_ASM_OP, file); assemble_name (file, name); fprintf (file, "," HOST_WIDE_INT_PRINT_UNSIGNED ",%u\n", size, align / BITS_PER_UNIT); } #endif /* Utility function for targets to use in implementing ASM_OUTPUT_ALIGNED_BSS. */ void x86_output_aligned_bss (FILE *file, tree decl, const char *name, unsigned HOST_WIDE_INT size, int align) { if ((ix86_cmodel == CM_MEDIUM || ix86_cmodel == CM_MEDIUM_PIC) && size > (unsigned int)ix86_section_threshold) switch_to_section (get_named_section (decl, ".lbss", 0)); else switch_to_section (bss_section); ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT)); #ifdef ASM_DECLARE_OBJECT_NAME last_assemble_variable_decl = decl; ASM_DECLARE_OBJECT_NAME (file, name, decl); #else /* Standard thing is just output label for the object. */ ASM_OUTPUT_LABEL (file, name); #endif /* ASM_DECLARE_OBJECT_NAME */ ASM_OUTPUT_SKIP (file, size ? size : 1); } /* Decide whether we must probe the stack before any space allocation on this target. It's essentially TARGET_STACK_PROBE except when -fstack-check causes the stack to be already probed differently. */ bool ix86_target_stack_probe (void) { /* Do not probe the stack twice if static stack checking is enabled. */ if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK) return false; return TARGET_STACK_PROBE; } /* Decide whether we can make a sibling call to a function. DECL is the declaration of the function being targeted by the call and EXP is the CALL_EXPR representing the call. */ static bool ix86_function_ok_for_sibcall (tree decl, tree exp) { tree type, decl_or_type; rtx a, b; bool bind_global = decl && !targetm.binds_local_p (decl); if (ix86_function_naked (current_function_decl)) return false; /* Sibling call isn't OK if there are no caller-saved registers since all registers must be preserved before return. */ if (cfun->machine->no_caller_saved_registers) return false; /* If we are generating position-independent code, we cannot sibcall optimize direct calls to global functions, as the PLT requires %ebx be live. (Darwin does not have a PLT.) */ if (!TARGET_MACHO && !TARGET_64BIT && flag_pic && flag_plt && bind_global) return false; /* If we need to align the outgoing stack, then sibcalling would unalign the stack, which may break the called function. */ if (ix86_minimum_incoming_stack_boundary (true) < PREFERRED_STACK_BOUNDARY) return false; if (decl) { decl_or_type = decl; type = TREE_TYPE (decl); } else { /* We're looking at the CALL_EXPR, we need the type of the function. */ type = CALL_EXPR_FN (exp); /* pointer expression */ type = TREE_TYPE (type); /* pointer type */ type = TREE_TYPE (type); /* function type */ decl_or_type = type; } /* Check that the return value locations are the same. Like if we are returning floats on the 80387 register stack, we cannot make a sibcall from a function that doesn't return a float to a function that does or, conversely, from a function that does return a float to a function that doesn't; the necessary stack adjustment would not be executed. This is also the place we notice differences in the return value ABI. Note that it is ok for one of the functions to have void return type as long as the return value of the other is passed in a register. */ a = ix86_function_value (TREE_TYPE (exp), decl_or_type, false); b = ix86_function_value (TREE_TYPE (DECL_RESULT (cfun->decl)), cfun->decl, false); if (STACK_REG_P (a) || STACK_REG_P (b)) { if (!rtx_equal_p (a, b)) return false; } else if (VOID_TYPE_P (TREE_TYPE (DECL_RESULT (cfun->decl)))) ; else if (!rtx_equal_p (a, b)) return false; if (TARGET_64BIT) { /* The SYSV ABI has more call-clobbered registers; disallow sibcalls from MS to SYSV. */ if (cfun->machine->call_abi == MS_ABI && ix86_function_type_abi (type) == SYSV_ABI) return false; } else { /* If this call is indirect, we'll need to be able to use a call-clobbered register for the address of the target function. Make sure that all such registers are not used for passing parameters. Note that DLLIMPORT functions and call to global function via GOT slot are indirect. */ if (!decl || (bind_global && flag_pic && !flag_plt) || (TARGET_DLLIMPORT_DECL_ATTRIBUTES && DECL_DLLIMPORT_P (decl)) || flag_force_indirect_call) { /* Check if regparm >= 3 since arg_reg_available is set to false if regparm == 0. If regparm is 1 or 2, there is always a call-clobbered register available. ??? The symbol indirect call doesn't need a call-clobbered register. But we don't know if this is a symbol indirect call or not here. */ if (ix86_function_regparm (type, decl) >= 3 && !cfun->machine->arg_reg_available) return false; } } /* Otherwise okay. That also includes certain types of indirect calls. */ return true; } /* This function determines from TYPE the calling-convention. */ unsigned int ix86_get_callcvt (const_tree type) { unsigned int ret = 0; bool is_stdarg; tree attrs; if (TARGET_64BIT) return IX86_CALLCVT_CDECL; attrs = TYPE_ATTRIBUTES (type); if (attrs != NULL_TREE) { if (lookup_attribute ("cdecl", attrs)) ret |= IX86_CALLCVT_CDECL; else if (lookup_attribute ("stdcall", attrs)) ret |= IX86_CALLCVT_STDCALL; else if (lookup_attribute ("fastcall", attrs)) ret |= IX86_CALLCVT_FASTCALL; else if (lookup_attribute ("thiscall", attrs)) ret |= IX86_CALLCVT_THISCALL; /* Regparam isn't allowed for thiscall and fastcall. */ if ((ret & (IX86_CALLCVT_THISCALL | IX86_CALLCVT_FASTCALL)) == 0) { if (lookup_attribute ("regparm", attrs)) ret |= IX86_CALLCVT_REGPARM; if (lookup_attribute ("sseregparm", attrs)) ret |= IX86_CALLCVT_SSEREGPARM; } if (IX86_BASE_CALLCVT(ret) != 0) return ret; } is_stdarg = stdarg_p (type); if (TARGET_RTD && !is_stdarg) return IX86_CALLCVT_STDCALL | ret; if (ret != 0 || is_stdarg || TREE_CODE (type) != METHOD_TYPE || ix86_function_type_abi (type) != MS_ABI) return IX86_CALLCVT_CDECL | ret; return IX86_CALLCVT_THISCALL; } /* Return 0 if the attributes for two types are incompatible, 1 if they are compatible, and 2 if they are nearly compatible (which causes a warning to be generated). */ static int ix86_comp_type_attributes (const_tree type1, const_tree type2) { unsigned int ccvt1, ccvt2; if (TREE_CODE (type1) != FUNCTION_TYPE && TREE_CODE (type1) != METHOD_TYPE) return 1; ccvt1 = ix86_get_callcvt (type1); ccvt2 = ix86_get_callcvt (type2); if (ccvt1 != ccvt2) return 0; if (ix86_function_regparm (type1, NULL) != ix86_function_regparm (type2, NULL)) return 0; return 1; } /* Return the regparm value for a function with the indicated TYPE and DECL. DECL may be NULL when calling function indirectly or considering a libcall. */ static int ix86_function_regparm (const_tree type, const_tree decl) { tree attr; int regparm; unsigned int ccvt; if (TARGET_64BIT) return (ix86_function_type_abi (type) == SYSV_ABI ? X86_64_REGPARM_MAX : X86_64_MS_REGPARM_MAX); ccvt = ix86_get_callcvt (type); regparm = ix86_regparm; if ((ccvt & IX86_CALLCVT_REGPARM) != 0) { attr = lookup_attribute ("regparm", TYPE_ATTRIBUTES (type)); if (attr) { regparm = TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (attr))); return regparm; } } else if ((ccvt & IX86_CALLCVT_FASTCALL) != 0) return 2; else if ((ccvt & IX86_CALLCVT_THISCALL) != 0) return 1; /* Use register calling convention for local functions when possible. */ if (decl && TREE_CODE (decl) == FUNCTION_DECL) { cgraph_node *target = cgraph_node::get (decl); if (target) target = target->function_symbol (); /* Caller and callee must agree on the calling convention, so checking here just optimize means that with __attribute__((optimize (...))) caller could use regparm convention and callee not, or vice versa. Instead look at whether the callee is optimized or not. */ if (target && opt_for_fn (target->decl, optimize) && !(profile_flag && !flag_fentry)) { if (target->local && target->can_change_signature) { int local_regparm, globals = 0, regno; /* Make sure no regparm register is taken by a fixed register variable. */ for (local_regparm = 0; local_regparm < REGPARM_MAX; local_regparm++) if (fixed_regs[local_regparm]) break; /* We don't want to use regparm(3) for nested functions as these use a static chain pointer in the third argument. */ if (local_regparm == 3 && DECL_STATIC_CHAIN (target->decl)) local_regparm = 2; /* Save a register for the split stack. */ if (flag_split_stack) { if (local_regparm == 3) local_regparm = 2; else if (local_regparm == 2 && DECL_STATIC_CHAIN (target->decl)) local_regparm = 1; } /* Each fixed register usage increases register pressure, so less registers should be used for argument passing. This functionality can be overriden by an explicit regparm value. */ for (regno = AX_REG; regno <= DI_REG; regno++) if (fixed_regs[regno]) globals++; local_regparm = globals < local_regparm ? local_regparm - globals : 0; if (local_regparm > regparm) regparm = local_regparm; } } } return regparm; } /* Return 1 or 2, if we can pass up to SSE_REGPARM_MAX SFmode (1) and DFmode (2) arguments in SSE registers for a function with the indicated TYPE and DECL. DECL may be NULL when calling function indirectly or considering a libcall. Return -1 if any FP parameter should be rejected by error. This is used in siutation we imply SSE calling convetion but the function is called from another function with SSE disabled. Otherwise return 0. */ static int ix86_function_sseregparm (const_tree type, const_tree decl, bool warn) { gcc_assert (!TARGET_64BIT); /* Use SSE registers to pass SFmode and DFmode arguments if requested by the sseregparm attribute. */ if (TARGET_SSEREGPARM || (type && lookup_attribute ("sseregparm", TYPE_ATTRIBUTES (type)))) { if (!TARGET_SSE) { if (warn) { if (decl) error ("calling %qD with attribute sseregparm without " "SSE/SSE2 enabled", decl); else error ("calling %qT with attribute sseregparm without " "SSE/SSE2 enabled", type); } return 0; } return 2; } if (!decl) return 0; cgraph_node *target = cgraph_node::get (decl); if (target) target = target->function_symbol (); /* For local functions, pass up to SSE_REGPARM_MAX SFmode (and DFmode for SSE2) arguments in SSE registers. */ if (target /* TARGET_SSE_MATH */ && (target_opts_for_fn (target->decl)->x_ix86_fpmath & FPMATH_SSE) && opt_for_fn (target->decl, optimize) && !(profile_flag && !flag_fentry)) { if (target->local && target->can_change_signature) { /* Refuse to produce wrong code when local function with SSE enabled is called from SSE disabled function. FIXME: We need a way to detect these cases cross-ltrans partition and avoid using SSE calling conventions on local functions called from function with SSE disabled. For now at least delay the warning until we know we are going to produce wrong code. See PR66047 */ if (!TARGET_SSE && warn) return -1; return TARGET_SSE2_P (target_opts_for_fn (target->decl) ->x_ix86_isa_flags) ? 2 : 1; } } return 0; } /* Return true if EAX is live at the start of the function. Used by ix86_expand_prologue to determine if we need special help before calling allocate_stack_worker. */ static bool ix86_eax_live_at_start_p (void) { /* Cheat. Don't bother working forward from ix86_function_regparm to the function type to whether an actual argument is located in eax. Instead just look at cfg info, which is still close enough to correct at this point. This gives false positives for broken functions that might use uninitialized data that happens to be allocated in eax, but who cares? */ return REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)), 0); } static bool ix86_keep_aggregate_return_pointer (tree fntype) { tree attr; if (!TARGET_64BIT) { attr = lookup_attribute ("callee_pop_aggregate_return", TYPE_ATTRIBUTES (fntype)); if (attr) return (TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (attr))) == 0); /* For 32-bit MS-ABI the default is to keep aggregate return pointer. */ if (ix86_function_type_abi (fntype) == MS_ABI) return true; } return KEEP_AGGREGATE_RETURN_POINTER != 0; } /* Value is the number of bytes of arguments automatically popped when returning from a subroutine call. FUNDECL is the declaration node of the function (as a tree), FUNTYPE is the data type of the function (as a tree), or for a library call it is an identifier node for the subroutine name. SIZE is the number of bytes of arguments passed on the stack. On the 80386, the RTD insn may be used to pop them if the number of args is fixed, but if the number is variable then the caller must pop them all. RTD can't be used for library calls now because the library is compiled with the Unix compiler. Use of RTD is a selectable option, since it is incompatible with standard Unix calling sequences. If the option is not selected, the caller must always pop the args. The attribute stdcall is equivalent to RTD on a per module basis. */ static poly_int64 ix86_return_pops_args (tree fundecl, tree funtype, poly_int64 size) { unsigned int ccvt; /* None of the 64-bit ABIs pop arguments. */ if (TARGET_64BIT) return 0; ccvt = ix86_get_callcvt (funtype); if ((ccvt & (IX86_CALLCVT_STDCALL | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL)) != 0 && ! stdarg_p (funtype)) return size; /* Lose any fake structure return argument if it is passed on the stack. */ if (aggregate_value_p (TREE_TYPE (funtype), fundecl) && !ix86_keep_aggregate_return_pointer (funtype)) { int nregs = ix86_function_regparm (funtype, fundecl); if (nregs == 0) return GET_MODE_SIZE (Pmode); } return 0; } /* Implement the TARGET_LEGITIMATE_COMBINED_INSN hook. */ static bool ix86_legitimate_combined_insn (rtx_insn *insn) { int i; /* Check operand constraints in case hard registers were propagated into insn pattern. This check prevents combine pass from generating insn patterns with invalid hard register operands. These invalid insns can eventually confuse reload to error out with a spill failure. See also PRs 46829 and 46843. */ gcc_assert (INSN_CODE (insn) >= 0); extract_insn (insn); preprocess_constraints (insn); int n_operands = recog_data.n_operands; int n_alternatives = recog_data.n_alternatives; for (i = 0; i < n_operands; i++) { rtx op = recog_data.operand[i]; machine_mode mode = GET_MODE (op); const operand_alternative *op_alt; int offset = 0; bool win; int j; /* A unary operator may be accepted by the predicate, but it is irrelevant for matching constraints. */ if (UNARY_P (op)) op = XEXP (op, 0); if (SUBREG_P (op)) { if (REG_P (SUBREG_REG (op)) && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER) offset = subreg_regno_offset (REGNO (SUBREG_REG (op)), GET_MODE (SUBREG_REG (op)), SUBREG_BYTE (op), GET_MODE (op)); op = SUBREG_REG (op); } if (!(REG_P (op) && HARD_REGISTER_P (op))) continue; op_alt = recog_op_alt; /* Operand has no constraints, anything is OK. */ win = !n_alternatives; alternative_mask preferred = get_preferred_alternatives (insn); for (j = 0; j < n_alternatives; j++, op_alt += n_operands) { if (!TEST_BIT (preferred, j)) continue; if (op_alt[i].anything_ok || (op_alt[i].matches != -1 && operands_match_p (recog_data.operand[i], recog_data.operand[op_alt[i].matches])) || reg_fits_class_p (op, op_alt[i].cl, offset, mode)) { win = true; break; } } if (!win) return false; } return true; } /* Implement the TARGET_ASAN_SHADOW_OFFSET hook. */ static unsigned HOST_WIDE_INT ix86_asan_shadow_offset (void) { return TARGET_LP64 ? (TARGET_MACHO ? (HOST_WIDE_INT_1 << 44) : HOST_WIDE_INT_C (0x7fff8000)) : (HOST_WIDE_INT_1 << X86_32_ASAN_BIT_OFFSET); } /* Argument support functions. */ /* Return true when register may be used to pass function parameters. */ bool ix86_function_arg_regno_p (int regno) { int i; enum calling_abi call_abi; const int *parm_regs; if (!TARGET_64BIT) { if (TARGET_MACHO) return (regno < REGPARM_MAX || (TARGET_SSE && SSE_REGNO_P (regno) && !fixed_regs[regno])); else return (regno < REGPARM_MAX || (TARGET_MMX && MMX_REGNO_P (regno) && (regno < FIRST_MMX_REG + MMX_REGPARM_MAX)) || (TARGET_SSE && SSE_REGNO_P (regno) && (regno < FIRST_SSE_REG + SSE_REGPARM_MAX))); } if (TARGET_SSE && SSE_REGNO_P (regno) && (regno < FIRST_SSE_REG + SSE_REGPARM_MAX)) return true; /* TODO: The function should depend on current function ABI but builtins.c would need updating then. Therefore we use the default ABI. */ call_abi = ix86_cfun_abi (); /* RAX is used as hidden argument to va_arg functions. */ if (call_abi == SYSV_ABI && regno == AX_REG) return true; if (call_abi == MS_ABI) parm_regs = x86_64_ms_abi_int_parameter_registers; else parm_regs = x86_64_int_parameter_registers; for (i = 0; i < (call_abi == MS_ABI ? X86_64_MS_REGPARM_MAX : X86_64_REGPARM_MAX); i++) if (regno == parm_regs[i]) return true; return false; } /* Return if we do not know how to pass ARG solely in registers. */ static bool ix86_must_pass_in_stack (const function_arg_info &arg) { if (must_pass_in_stack_var_size_or_pad (arg)) return true; /* For 32-bit, we want TImode aggregates to go on the stack. But watch out! The layout_type routine is crafty and tries to trick us into passing currently unsupported vector types on the stack by using TImode. */ return (!TARGET_64BIT && arg.mode == TImode && arg.type && TREE_CODE (arg.type) != VECTOR_TYPE); } /* It returns the size, in bytes, of the area reserved for arguments passed in registers for the function represented by fndecl dependent to the used abi format. */ int ix86_reg_parm_stack_space (const_tree fndecl) { enum calling_abi call_abi = SYSV_ABI; if (fndecl != NULL_TREE && TREE_CODE (fndecl) == FUNCTION_DECL) call_abi = ix86_function_abi (fndecl); else call_abi = ix86_function_type_abi (fndecl); if (TARGET_64BIT && call_abi == MS_ABI) return 32; return 0; } /* We add this as a workaround in order to use libc_has_function hook in i386.md. */ bool ix86_libc_has_function (enum function_class fn_class) { return targetm.libc_has_function (fn_class); } /* Returns value SYSV_ABI, MS_ABI dependent on fntype, specifying the call abi used. */ enum calling_abi ix86_function_type_abi (const_tree fntype) { enum calling_abi abi = ix86_abi; if (fntype == NULL_TREE || TYPE_ATTRIBUTES (fntype) == NULL_TREE) return abi; if (abi == SYSV_ABI && lookup_attribute ("ms_abi", TYPE_ATTRIBUTES (fntype))) { static int warned; if (TARGET_X32 && !warned) { error ("X32 does not support % attribute"); warned = 1; } abi = MS_ABI; } else if (abi == MS_ABI && lookup_attribute ("sysv_abi", TYPE_ATTRIBUTES (fntype))) abi = SYSV_ABI; return abi; } enum calling_abi ix86_function_abi (const_tree fndecl) { return fndecl ? ix86_function_type_abi (TREE_TYPE (fndecl)) : ix86_abi; } /* Returns value SYSV_ABI, MS_ABI dependent on cfun, specifying the call abi used. */ enum calling_abi ix86_cfun_abi (void) { return cfun ? cfun->machine->call_abi : ix86_abi; } bool ix86_function_ms_hook_prologue (const_tree fn) { if (fn && lookup_attribute ("ms_hook_prologue", DECL_ATTRIBUTES (fn))) { if (decl_function_context (fn) != NULL_TREE) error_at (DECL_SOURCE_LOCATION (fn), "% attribute is not compatible " "with nested function"); else return true; } return false; } bool ix86_function_naked (const_tree fn) { if (fn && lookup_attribute ("naked", DECL_ATTRIBUTES (fn))) return true; return false; } /* Write the extra assembler code needed to declare a function properly. */ void ix86_asm_output_function_label (FILE *asm_out_file, const char *fname, tree decl) { bool is_ms_hook = ix86_function_ms_hook_prologue (decl); if (is_ms_hook) { int i, filler_count = (TARGET_64BIT ? 32 : 16); unsigned int filler_cc = 0xcccccccc; for (i = 0; i < filler_count; i += 4) fprintf (asm_out_file, ASM_LONG " %#x\n", filler_cc); } #ifdef SUBTARGET_ASM_UNWIND_INIT SUBTARGET_ASM_UNWIND_INIT (asm_out_file); #endif ASM_OUTPUT_LABEL (asm_out_file, fname); /* Output magic byte marker, if hot-patch attribute is set. */ if (is_ms_hook) { if (TARGET_64BIT) { /* leaq [%rsp + 0], %rsp */ fputs (ASM_BYTE "0x48, 0x8d, 0xa4, 0x24, 0x00, 0x00, 0x00, 0x00\n", asm_out_file); } else { /* movl.s %edi, %edi push %ebp movl.s %esp, %ebp */ fputs (ASM_BYTE "0x8b, 0xff, 0x55, 0x8b, 0xec\n", asm_out_file); } } } /* Implementation of call abi switching target hook. Specific to FNDECL the specific call register sets are set. See also ix86_conditional_register_usage for more details. */ void ix86_call_abi_override (const_tree fndecl) { cfun->machine->call_abi = ix86_function_abi (fndecl); } /* Return 1 if pseudo register should be created and used to hold GOT address for PIC code. */ bool ix86_use_pseudo_pic_reg (void) { if ((TARGET_64BIT && (ix86_cmodel == CM_SMALL_PIC || TARGET_PECOFF)) || !flag_pic) return false; return true; } /* Initialize large model PIC register. */ static void ix86_init_large_pic_reg (unsigned int tmp_regno) { rtx_code_label *label; rtx tmp_reg; gcc_assert (Pmode == DImode); label = gen_label_rtx (); emit_label (label); LABEL_PRESERVE_P (label) = 1; tmp_reg = gen_rtx_REG (Pmode, tmp_regno); gcc_assert (REGNO (pic_offset_table_rtx) != tmp_regno); emit_insn (gen_set_rip_rex64 (pic_offset_table_rtx, label)); emit_insn (gen_set_got_offset_rex64 (tmp_reg, label)); emit_insn (gen_add2_insn (pic_offset_table_rtx, tmp_reg)); const char *name = LABEL_NAME (label); PUT_CODE (label, NOTE); NOTE_KIND (label) = NOTE_INSN_DELETED_LABEL; NOTE_DELETED_LABEL_NAME (label) = name; } /* Create and initialize PIC register if required. */ static void ix86_init_pic_reg (void) { edge entry_edge; rtx_insn *seq; if (!ix86_use_pseudo_pic_reg ()) return; start_sequence (); if (TARGET_64BIT) { if (ix86_cmodel == CM_LARGE_PIC) ix86_init_large_pic_reg (R11_REG); else emit_insn (gen_set_got_rex64 (pic_offset_table_rtx)); } else { /* If there is future mcount call in the function it is more profitable to emit SET_GOT into ABI defined REAL_PIC_OFFSET_TABLE_REGNUM. */ rtx reg = crtl->profile ? gen_rtx_REG (Pmode, REAL_PIC_OFFSET_TABLE_REGNUM) : pic_offset_table_rtx; rtx_insn *insn = emit_insn (gen_set_got (reg)); RTX_FRAME_RELATED_P (insn) = 1; if (crtl->profile) emit_move_insn (pic_offset_table_rtx, reg); add_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL_RTX); } seq = get_insns (); end_sequence (); entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)); insert_insn_on_edge (seq, entry_edge); commit_one_edge_insertion (entry_edge); } /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a function whose data type is FNTYPE. For a library call, FNTYPE is 0. */ void init_cumulative_args (CUMULATIVE_ARGS *cum, /* Argument info to initialize */ tree fntype, /* tree ptr for function decl */ rtx libname, /* SYMBOL_REF of library name or 0 */ tree fndecl, int caller) { struct cgraph_node *local_info_node = NULL; struct cgraph_node *target = NULL; memset (cum, 0, sizeof (*cum)); if (fndecl) { target = cgraph_node::get (fndecl); if (target) { target = target->function_symbol (); local_info_node = cgraph_node::local_info_node (target->decl); cum->call_abi = ix86_function_abi (target->decl); } else cum->call_abi = ix86_function_abi (fndecl); } else cum->call_abi = ix86_function_type_abi (fntype); cum->caller = caller; /* Set up the number of registers to use for passing arguments. */ cum->nregs = ix86_regparm; if (TARGET_64BIT) { cum->nregs = (cum->call_abi == SYSV_ABI ? X86_64_REGPARM_MAX : X86_64_MS_REGPARM_MAX); } if (TARGET_SSE) { cum->sse_nregs = SSE_REGPARM_MAX; if (TARGET_64BIT) { cum->sse_nregs = (cum->call_abi == SYSV_ABI ? X86_64_SSE_REGPARM_MAX : X86_64_MS_SSE_REGPARM_MAX); } } if (TARGET_MMX) cum->mmx_nregs = MMX_REGPARM_MAX; cum->warn_avx512f = true; cum->warn_avx = true; cum->warn_sse = true; cum->warn_mmx = true; /* Because type might mismatch in between caller and callee, we need to use actual type of function for local calls. FIXME: cgraph_analyze can be told to actually record if function uses va_start so for local functions maybe_vaarg can be made aggressive helping K&R code. FIXME: once typesytem is fixed, we won't need this code anymore. */ if (local_info_node && local_info_node->local && local_info_node->can_change_signature) fntype = TREE_TYPE (target->decl); cum->stdarg = stdarg_p (fntype); cum->maybe_vaarg = (fntype ? (!prototype_p (fntype) || stdarg_p (fntype)) : !libname); cum->decl = fndecl; cum->warn_empty = !warn_abi || cum->stdarg; if (!cum->warn_empty && fntype) { function_args_iterator iter; tree argtype; bool seen_empty_type = false; FOREACH_FUNCTION_ARGS (fntype, argtype, iter) { if (argtype == error_mark_node || VOID_TYPE_P (argtype)) break; if (TYPE_EMPTY_P (argtype)) seen_empty_type = true; else if (seen_empty_type) { cum->warn_empty = true; break; } } } if (!TARGET_64BIT) { /* If there are variable arguments, then we won't pass anything in registers in 32-bit mode. */ if (stdarg_p (fntype)) { cum->nregs = 0; /* Since in 32-bit, variable arguments are always passed on stack, there is scratch register available for indirect sibcall. */ cfun->machine->arg_reg_available = true; cum->sse_nregs = 0; cum->mmx_nregs = 0; cum->warn_avx512f = false; cum->warn_avx = false; cum->warn_sse = false; cum->warn_mmx = false; return; } /* Use ecx and edx registers if function has fastcall attribute, else look for regparm information. */ if (fntype) { unsigned int ccvt = ix86_get_callcvt (fntype); if ((ccvt & IX86_CALLCVT_THISCALL) != 0) { cum->nregs = 1; cum->fastcall = 1; /* Same first register as in fastcall. */ } else if ((ccvt & IX86_CALLCVT_FASTCALL) != 0) { cum->nregs = 2; cum->fastcall = 1; } else cum->nregs = ix86_function_regparm (fntype, fndecl); } /* Set up the number of SSE registers used for passing SFmode and DFmode arguments. Warn for mismatching ABI. */ cum->float_in_sse = ix86_function_sseregparm (fntype, fndecl, true); } cfun->machine->arg_reg_available = (cum->nregs > 0); } /* Return the "natural" mode for TYPE. In most cases, this is just TYPE_MODE. But in the case of vector types, it is some vector mode. When we have only some of our vector isa extensions enabled, then there are some modes for which vector_mode_supported_p is false. For these modes, the generic vector support in gcc will choose some non-vector mode in order to implement the type. By computing the natural mode, we'll select the proper ABI location for the operand and not depend on whatever the middle-end decides to do with these vector types. The midde-end can't deal with the vector types > 16 bytes. In this case, we return the original mode and warn ABI change if CUM isn't NULL. If INT_RETURN is true, warn ABI change if the vector mode isn't available for function return value. */ static machine_mode type_natural_mode (const_tree type, const CUMULATIVE_ARGS *cum, bool in_return) { machine_mode mode = TYPE_MODE (type); if (TREE_CODE (type) == VECTOR_TYPE && !VECTOR_MODE_P (mode)) { HOST_WIDE_INT size = int_size_in_bytes (type); if ((size == 8 || size == 16 || size == 32 || size == 64) /* ??? Generic code allows us to create width 1 vectors. Ignore. */ && TYPE_VECTOR_SUBPARTS (type) > 1) { machine_mode innermode = TYPE_MODE (TREE_TYPE (type)); /* There are no XFmode vector modes. */ if (innermode == XFmode) return mode; if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE) mode = MIN_MODE_VECTOR_FLOAT; else mode = MIN_MODE_VECTOR_INT; /* Get the mode which has this inner mode and number of units. */ FOR_EACH_MODE_FROM (mode, mode) if (GET_MODE_NUNITS (mode) == TYPE_VECTOR_SUBPARTS (type) && GET_MODE_INNER (mode) == innermode) { if (size == 64 && !TARGET_AVX512F && !TARGET_IAMCU) { static bool warnedavx512f; static bool warnedavx512f_ret; if (cum && cum->warn_avx512f && !warnedavx512f) { if (warning (OPT_Wpsabi, "AVX512F vector argument " "without AVX512F enabled changes the ABI")) warnedavx512f = true; } else if (in_return && !warnedavx512f_ret) { if (warning (OPT_Wpsabi, "AVX512F vector return " "without AVX512F enabled changes the ABI")) warnedavx512f_ret = true; } return TYPE_MODE (type); } else if (size == 32 && !TARGET_AVX && !TARGET_IAMCU) { static bool warnedavx; static bool warnedavx_ret; if (cum && cum->warn_avx && !warnedavx) { if (warning (OPT_Wpsabi, "AVX vector argument " "without AVX enabled changes the ABI")) warnedavx = true; } else if (in_return && !warnedavx_ret) { if (warning (OPT_Wpsabi, "AVX vector return " "without AVX enabled changes the ABI")) warnedavx_ret = true; } return TYPE_MODE (type); } else if (((size == 8 && TARGET_64BIT) || size == 16) && !TARGET_SSE && !TARGET_IAMCU) { static bool warnedsse; static bool warnedsse_ret; if (cum && cum->warn_sse && !warnedsse) { if (warning (OPT_Wpsabi, "SSE vector argument " "without SSE enabled changes the ABI")) warnedsse = true; } else if (!TARGET_64BIT && in_return && !warnedsse_ret) { if (warning (OPT_Wpsabi, "SSE vector return " "without SSE enabled changes the ABI")) warnedsse_ret = true; } } else if ((size == 8 && !TARGET_64BIT) && (!cfun || cfun->machine->func_type == TYPE_NORMAL) && !TARGET_MMX && !TARGET_IAMCU) { static bool warnedmmx; static bool warnedmmx_ret; if (cum && cum->warn_mmx && !warnedmmx) { if (warning (OPT_Wpsabi, "MMX vector argument " "without MMX enabled changes the ABI")) warnedmmx = true; } else if (in_return && !warnedmmx_ret) { if (warning (OPT_Wpsabi, "MMX vector return " "without MMX enabled changes the ABI")) warnedmmx_ret = true; } } return mode; } gcc_unreachable (); } } return mode; } /* We want to pass a value in REGNO whose "natural" mode is MODE. However, this may not agree with the mode that the type system has chosen for the register, which is ORIG_MODE. If ORIG_MODE is not BLKmode, then we can go ahead and use it. Otherwise we have to build a PARALLEL instead. */ static rtx gen_reg_or_parallel (machine_mode mode, machine_mode orig_mode, unsigned int regno) { rtx tmp; if (orig_mode != BLKmode) tmp = gen_rtx_REG (orig_mode, regno); else { tmp = gen_rtx_REG (mode, regno); tmp = gen_rtx_EXPR_LIST (VOIDmode, tmp, const0_rtx); tmp = gen_rtx_PARALLEL (orig_mode, gen_rtvec (1, tmp)); } return tmp; } /* x86-64 register passing implementation. See x86-64 ABI for details. Goal of this code is to classify each 8bytes of incoming argument by the register class and assign registers accordingly. */ /* Return the union class of CLASS1 and CLASS2. See the x86-64 PS ABI for details. */ static enum x86_64_reg_class merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2) { /* Rule #1: If both classes are equal, this is the resulting class. */ if (class1 == class2) return class1; /* Rule #2: If one of the classes is NO_CLASS, the resulting class is the other class. */ if (class1 == X86_64_NO_CLASS) return class2; if (class2 == X86_64_NO_CLASS) return class1; /* Rule #3: If one of the classes is MEMORY, the result is MEMORY. */ if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS) return X86_64_MEMORY_CLASS; /* Rule #4: If one of the classes is INTEGER, the result is INTEGER. */ if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS) || (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS)) return X86_64_INTEGERSI_CLASS; if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS || class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS) return X86_64_INTEGER_CLASS; /* Rule #5: If one of the classes is X87, X87UP, or COMPLEX_X87 class, MEMORY is used. */ if (class1 == X86_64_X87_CLASS || class1 == X86_64_X87UP_CLASS || class1 == X86_64_COMPLEX_X87_CLASS || class2 == X86_64_X87_CLASS || class2 == X86_64_X87UP_CLASS || class2 == X86_64_COMPLEX_X87_CLASS) return X86_64_MEMORY_CLASS; /* Rule #6: Otherwise class SSE is used. */ return X86_64_SSE_CLASS; } /* Classify the argument of type TYPE and mode MODE. CLASSES will be filled by the register class used to pass each word of the operand. The number of words is returned. In case the parameter should be passed in memory, 0 is returned. As a special case for zero sized containers, classes[0] will be NO_CLASS and 1 is returned. BIT_OFFSET is used internally for handling records and specifies offset of the offset in bits modulo 512 to avoid overflow cases. See the x86-64 PS ABI for details. */ static int classify_argument (machine_mode mode, const_tree type, enum x86_64_reg_class classes[MAX_CLASSES], int bit_offset) { HOST_WIDE_INT bytes = mode == BLKmode ? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode); int words = CEIL (bytes + (bit_offset % 64) / 8, UNITS_PER_WORD); /* Variable sized entities are always passed/returned in memory. */ if (bytes < 0) return 0; if (mode != VOIDmode) { /* The value of "named" doesn't matter. */ function_arg_info arg (const_cast (type), mode, /*named=*/true); if (targetm.calls.must_pass_in_stack (arg)) return 0; } if (type && AGGREGATE_TYPE_P (type)) { int i; tree field; enum x86_64_reg_class subclasses[MAX_CLASSES]; /* On x86-64 we pass structures larger than 64 bytes on the stack. */ if (bytes > 64) return 0; for (i = 0; i < words; i++) classes[i] = X86_64_NO_CLASS; /* Zero sized arrays or structures are NO_CLASS. We return 0 to signalize memory class, so handle it as special case. */ if (!words) { classes[0] = X86_64_NO_CLASS; return 1; } /* Classify each field of record and merge classes. */ switch (TREE_CODE (type)) { case RECORD_TYPE: /* And now merge the fields of structure. */ for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL) { int num; if (TREE_TYPE (field) == error_mark_node) continue; /* Bitfields are always classified as integer. Handle them early, since later code would consider them to be misaligned integers. */ if (DECL_BIT_FIELD (field)) { for (i = (int_bit_position (field) + (bit_offset % 64)) / 8 / 8; i < ((int_bit_position (field) + (bit_offset % 64)) + tree_to_shwi (DECL_SIZE (field)) + 63) / 8 / 8; i++) classes[i] = merge_classes (X86_64_INTEGER_CLASS, classes[i]); } else { int pos; type = TREE_TYPE (field); /* Flexible array member is ignored. */ if (TYPE_MODE (type) == BLKmode && TREE_CODE (type) == ARRAY_TYPE && TYPE_SIZE (type) == NULL_TREE && TYPE_DOMAIN (type) != NULL_TREE && (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL_TREE)) { static bool warned; if (!warned && warn_psabi) { warned = true; inform (input_location, "the ABI of passing struct with" " a flexible array member has" " changed in GCC 4.4"); } continue; } num = classify_argument (TYPE_MODE (type), type, subclasses, (int_bit_position (field) + bit_offset) % 512); if (!num) return 0; pos = (int_bit_position (field) + (bit_offset % 64)) / 8 / 8; for (i = 0; i < num && (i + pos) < words; i++) classes[i + pos] = merge_classes (subclasses[i], classes[i + pos]); } } } break; case ARRAY_TYPE: /* Arrays are handled as small records. */ { int num; num = classify_argument (TYPE_MODE (TREE_TYPE (type)), TREE_TYPE (type), subclasses, bit_offset); if (!num) return 0; /* The partial classes are now full classes. */ if (subclasses[0] == X86_64_SSESF_CLASS && bytes != 4) subclasses[0] = X86_64_SSE_CLASS; if (subclasses[0] == X86_64_INTEGERSI_CLASS && !((bit_offset % 64) == 0 && bytes == 4)) subclasses[0] = X86_64_INTEGER_CLASS; for (i = 0; i < words; i++) classes[i] = subclasses[i % num]; break; } case UNION_TYPE: case QUAL_UNION_TYPE: /* Unions are similar to RECORD_TYPE but offset is always 0. */ for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL) { int num; if (TREE_TYPE (field) == error_mark_node) continue; num = classify_argument (TYPE_MODE (TREE_TYPE (field)), TREE_TYPE (field), subclasses, bit_offset); if (!num) return 0; for (i = 0; i < num && i < words; i++) classes[i] = merge_classes (subclasses[i], classes[i]); } } break; default: gcc_unreachable (); } if (words > 2) { /* When size > 16 bytes, if the first one isn't X86_64_SSE_CLASS or any other ones aren't X86_64_SSEUP_CLASS, everything should be passed in memory. */ if (classes[0] != X86_64_SSE_CLASS) return 0; for (i = 1; i < words; i++) if (classes[i] != X86_64_SSEUP_CLASS) return 0; } /* Final merger cleanup. */ for (i = 0; i < words; i++) { /* If one class is MEMORY, everything should be passed in memory. */ if (classes[i] == X86_64_MEMORY_CLASS) return 0; /* The X86_64_SSEUP_CLASS should be always preceded by X86_64_SSE_CLASS or X86_64_SSEUP_CLASS. */ if (classes[i] == X86_64_SSEUP_CLASS && classes[i - 1] != X86_64_SSE_CLASS && classes[i - 1] != X86_64_SSEUP_CLASS) { /* The first one should never be X86_64_SSEUP_CLASS. */ gcc_assert (i != 0); classes[i] = X86_64_SSE_CLASS; } /* If X86_64_X87UP_CLASS isn't preceded by X86_64_X87_CLASS, everything should be passed in memory. */ if (classes[i] == X86_64_X87UP_CLASS && (classes[i - 1] != X86_64_X87_CLASS)) { static bool warned; /* The first one should never be X86_64_X87UP_CLASS. */ gcc_assert (i != 0); if (!warned && warn_psabi) { warned = true; inform (input_location, "the ABI of passing union with %" " has changed in GCC 4.4"); } return 0; } } return words; } /* Compute alignment needed. We align all types to natural boundaries with exception of XFmode that is aligned to 64bits. */ if (mode != VOIDmode && mode != BLKmode) { int mode_alignment = GET_MODE_BITSIZE (mode); if (mode == XFmode) mode_alignment = 128; else if (mode == XCmode) mode_alignment = 256; if (COMPLEX_MODE_P (mode)) mode_alignment /= 2; /* Misaligned fields are always returned in memory. */ if (bit_offset % mode_alignment) return 0; } /* for V1xx modes, just use the base mode */ if (VECTOR_MODE_P (mode) && mode != V1DImode && mode != V1TImode && GET_MODE_UNIT_SIZE (mode) == bytes) mode = GET_MODE_INNER (mode); /* Classification of atomic types. */ switch (mode) { case E_SDmode: case E_DDmode: classes[0] = X86_64_SSE_CLASS; return 1; case E_TDmode: classes[0] = X86_64_SSE_CLASS; classes[1] = X86_64_SSEUP_CLASS; return 2; case E_DImode: case E_SImode: case E_HImode: case E_QImode: case E_CSImode: case E_CHImode: case E_CQImode: { int size = bit_offset + (int) GET_MODE_BITSIZE (mode); /* Analyze last 128 bits only. */ size = (size - 1) & 0x7f; if (size < 32) { classes[0] = X86_64_INTEGERSI_CLASS; return 1; } else if (size < 64) { classes[0] = X86_64_INTEGER_CLASS; return 1; } else if (size < 64+32) { classes[0] = X86_64_INTEGER_CLASS; classes[1] = X86_64_INTEGERSI_CLASS; return 2; } else if (size < 64+64) { classes[0] = classes[1] = X86_64_INTEGER_CLASS; return 2; } else gcc_unreachable (); } case E_CDImode: case E_TImode: classes[0] = classes[1] = X86_64_INTEGER_CLASS; return 2; case E_COImode: case E_OImode: /* OImode shouldn't be used directly. */ gcc_unreachable (); case E_CTImode: return 0; case E_SFmode: if (!(bit_offset % 64)) classes[0] = X86_64_SSESF_CLASS; else classes[0] = X86_64_SSE_CLASS; return 1; case E_DFmode: classes[0] = X86_64_SSEDF_CLASS; return 1; case E_XFmode: classes[0] = X86_64_X87_CLASS; classes[1] = X86_64_X87UP_CLASS; return 2; case E_TFmode: classes[0] = X86_64_SSE_CLASS; classes[1] = X86_64_SSEUP_CLASS; return 2; case E_SCmode: classes[0] = X86_64_SSE_CLASS; if (!(bit_offset % 64)) return 1; else { static bool warned; if (!warned && warn_psabi) { warned = true; inform (input_location, "the ABI of passing structure with %" " member has changed in GCC 4.4"); } classes[1] = X86_64_SSESF_CLASS; return 2; } case E_DCmode: classes[0] = X86_64_SSEDF_CLASS; classes[1] = X86_64_SSEDF_CLASS; return 2; case E_XCmode: classes[0] = X86_64_COMPLEX_X87_CLASS; return 1; case E_TCmode: /* This modes is larger than 16 bytes. */ return 0; case E_V8SFmode: case E_V8SImode: case E_V32QImode: case E_V16HImode: case E_V4DFmode: case E_V4DImode: classes[0] = X86_64_SSE_CLASS; classes[1] = X86_64_SSEUP_CLASS; classes[2] = X86_64_SSEUP_CLASS; classes[3] = X86_64_SSEUP_CLASS; return 4; case E_V8DFmode: case E_V16SFmode: case E_V8DImode: case E_V16SImode: case E_V32HImode: case E_V64QImode: classes[0] = X86_64_SSE_CLASS; classes[1] = X86_64_SSEUP_CLASS; classes[2] = X86_64_SSEUP_CLASS; classes[3] = X86_64_SSEUP_CLASS; classes[4] = X86_64_SSEUP_CLASS; classes[5] = X86_64_SSEUP_CLASS; classes[6] = X86_64_SSEUP_CLASS; classes[7] = X86_64_SSEUP_CLASS; return 8; case E_V4SFmode: case E_V4SImode: case E_V16QImode: case E_V8HImode: case E_V2DFmode: case E_V2DImode: classes[0] = X86_64_SSE_CLASS; classes[1] = X86_64_SSEUP_CLASS; return 2; case E_V1TImode: case E_V1DImode: case E_V2SFmode: case E_V2SImode: case E_V4HImode: case E_V8QImode: classes[0] = X86_64_SSE_CLASS; return 1; case E_BLKmode: case E_VOIDmode: return 0; default: gcc_assert (VECTOR_MODE_P (mode)); if (bytes > 16) return 0; gcc_assert (GET_MODE_CLASS (GET_MODE_INNER (mode)) == MODE_INT); if (bit_offset + GET_MODE_BITSIZE (mode) <= 32) classes[0] = X86_64_INTEGERSI_CLASS; else classes[0] = X86_64_INTEGER_CLASS; classes[1] = X86_64_INTEGER_CLASS; return 1 + (bytes > 8); } } /* Examine the argument and return set number of register required in each class. Return true iff parameter should be passed in memory. */ static bool examine_argument (machine_mode mode, const_tree type, int in_return, int *int_nregs, int *sse_nregs) { enum x86_64_reg_class regclass[MAX_CLASSES]; int n = classify_argument (mode, type, regclass, 0); *int_nregs = 0; *sse_nregs = 0; if (!n) return true; for (n--; n >= 0; n--) switch (regclass[n]) { case X86_64_INTEGER_CLASS: case X86_64_INTEGERSI_CLASS: (*int_nregs)++; break; case X86_64_SSE_CLASS: case X86_64_SSESF_CLASS: case X86_64_SSEDF_CLASS: (*sse_nregs)++; break; case X86_64_NO_CLASS: case X86_64_SSEUP_CLASS: break; case X86_64_X87_CLASS: case X86_64_X87UP_CLASS: case X86_64_COMPLEX_X87_CLASS: if (!in_return) return true; break; case X86_64_MEMORY_CLASS: gcc_unreachable (); } return false; } /* Construct container for the argument used by GCC interface. See FUNCTION_ARG for the detailed description. */ static rtx construct_container (machine_mode mode, machine_mode orig_mode, const_tree type, int in_return, int nintregs, int nsseregs, const int *intreg, int sse_regno) { /* The following variables hold the static issued_error state. */ static bool issued_sse_arg_error; static bool issued_sse_ret_error; static bool issued_x87_ret_error; machine_mode tmpmode; int bytes = mode == BLKmode ? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode); enum x86_64_reg_class regclass[MAX_CLASSES]; int n; int i; int nexps = 0; int needed_sseregs, needed_intregs; rtx exp[MAX_CLASSES]; rtx ret; n = classify_argument (mode, type, regclass, 0); if (!n) return NULL; if (examine_argument (mode, type, in_return, &needed_intregs, &needed_sseregs)) return NULL; if (needed_intregs > nintregs || needed_sseregs > nsseregs) return NULL; /* We allowed the user to turn off SSE for kernel mode. Don't crash if some less clueful developer tries to use floating-point anyway. */ if (needed_sseregs && !TARGET_SSE) { if (in_return) { if (!issued_sse_ret_error) { error ("SSE register return with SSE disabled"); issued_sse_ret_error = true; } } else if (!issued_sse_arg_error) { error ("SSE register argument with SSE disabled"); issued_sse_arg_error = true; } return NULL; } /* Likewise, error if the ABI requires us to return values in the x87 registers and the user specified -mno-80387. */ if (!TARGET_FLOAT_RETURNS_IN_80387 && in_return) for (i = 0; i < n; i++) if (regclass[i] == X86_64_X87_CLASS || regclass[i] == X86_64_X87UP_CLASS || regclass[i] == X86_64_COMPLEX_X87_CLASS) { if (!issued_x87_ret_error) { error ("x87 register return with x87 disabled"); issued_x87_ret_error = true; } return NULL; } /* First construct simple cases. Avoid SCmode, since we want to use single register to pass this type. */ if (n == 1 && mode != SCmode) switch (regclass[0]) { case X86_64_INTEGER_CLASS: case X86_64_INTEGERSI_CLASS: return gen_rtx_REG (mode, intreg[0]); case X86_64_SSE_CLASS: case X86_64_SSESF_CLASS: case X86_64_SSEDF_CLASS: if (mode != BLKmode) return gen_reg_or_parallel (mode, orig_mode, GET_SSE_REGNO (sse_regno)); break; case X86_64_X87_CLASS: case X86_64_COMPLEX_X87_CLASS: return gen_rtx_REG (mode, FIRST_STACK_REG); case X86_64_NO_CLASS: /* Zero sized array, struct or class. */ return NULL; default: gcc_unreachable (); } if (n == 2 && regclass[0] == X86_64_SSE_CLASS && regclass[1] == X86_64_SSEUP_CLASS && mode != BLKmode) return gen_reg_or_parallel (mode, orig_mode, GET_SSE_REGNO (sse_regno)); if (n == 4 && regclass[0] == X86_64_SSE_CLASS && regclass[1] == X86_64_SSEUP_CLASS && regclass[2] == X86_64_SSEUP_CLASS && regclass[3] == X86_64_SSEUP_CLASS && mode != BLKmode) return gen_reg_or_parallel (mode, orig_mode, GET_SSE_REGNO (sse_regno)); if (n == 8 && regclass[0] == X86_64_SSE_CLASS && regclass[1] == X86_64_SSEUP_CLASS && regclass[2] == X86_64_SSEUP_CLASS && regclass[3] == X86_64_SSEUP_CLASS && regclass[4] == X86_64_SSEUP_CLASS && regclass[5] == X86_64_SSEUP_CLASS && regclass[6] == X86_64_SSEUP_CLASS && regclass[7] == X86_64_SSEUP_CLASS && mode != BLKmode) return gen_reg_or_parallel (mode, orig_mode, GET_SSE_REGNO (sse_regno)); if (n == 2 && regclass[0] == X86_64_X87_CLASS && regclass[1] == X86_64_X87UP_CLASS) return gen_rtx_REG (XFmode, FIRST_STACK_REG); if (n == 2 && regclass[0] == X86_64_INTEGER_CLASS && regclass[1] == X86_64_INTEGER_CLASS && (mode == CDImode || mode == TImode || mode == BLKmode) && intreg[0] + 1 == intreg[1]) { if (mode == BLKmode) { /* Use TImode for BLKmode values in 2 integer registers. */ exp[0] = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (TImode, intreg[0]), GEN_INT (0)); ret = gen_rtx_PARALLEL (mode, rtvec_alloc (1)); XVECEXP (ret, 0, 0) = exp[0]; return ret; } else return gen_rtx_REG (mode, intreg[0]); } /* Otherwise figure out the entries of the PARALLEL. */ for (i = 0; i < n; i++) { int pos; switch (regclass[i]) { case X86_64_NO_CLASS: break; case X86_64_INTEGER_CLASS: case X86_64_INTEGERSI_CLASS: /* Merge TImodes on aligned occasions here too. */ if (i * 8 + 8 > bytes) { unsigned int tmpbits = (bytes - i * 8) * BITS_PER_UNIT; if (!int_mode_for_size (tmpbits, 0).exists (&tmpmode)) /* We've requested 24 bytes we don't have mode for. Use DImode. */ tmpmode = DImode; } else if (regclass[i] == X86_64_INTEGERSI_CLASS) tmpmode = SImode; else tmpmode = DImode; exp [nexps++] = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (tmpmode, *intreg), GEN_INT (i*8)); intreg++; break; case X86_64_SSESF_CLASS: exp [nexps++] = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (SFmode, GET_SSE_REGNO (sse_regno)), GEN_INT (i*8)); sse_regno++; break; case X86_64_SSEDF_CLASS: exp [nexps++] = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (DFmode, GET_SSE_REGNO (sse_regno)), GEN_INT (i*8)); sse_regno++; break; case X86_64_SSE_CLASS: pos = i; switch (n) { case 1: tmpmode = DImode; break; case 2: if (i == 0 && regclass[1] == X86_64_SSEUP_CLASS) { tmpmode = TImode; i++; } else tmpmode = DImode; break; case 4: gcc_assert (i == 0 && regclass[1] == X86_64_SSEUP_CLASS && regclass[2] == X86_64_SSEUP_CLASS && regclass[3] == X86_64_SSEUP_CLASS); tmpmode = OImode; i += 3; break; case 8: gcc_assert (i == 0 && regclass[1] == X86_64_SSEUP_CLASS && regclass[2] == X86_64_SSEUP_CLASS && regclass[3] == X86_64_SSEUP_CLASS && regclass[4] == X86_64_SSEUP_CLASS && regclass[5] == X86_64_SSEUP_CLASS && regclass[6] == X86_64_SSEUP_CLASS && regclass[7] == X86_64_SSEUP_CLASS); tmpmode = XImode; i += 7; break; default: gcc_unreachable (); } exp [nexps++] = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (tmpmode, GET_SSE_REGNO (sse_regno)), GEN_INT (pos*8)); sse_regno++; break; default: gcc_unreachable (); } } /* Empty aligned struct, union or class. */ if (nexps == 0) return NULL; ret = gen_rtx_PARALLEL (mode, rtvec_alloc (nexps)); for (i = 0; i < nexps; i++) XVECEXP (ret, 0, i) = exp [i]; return ret; } /* Update the data in CUM to advance over an argument of mode MODE and data type TYPE. (TYPE is null for libcalls where that information may not be available.) Return a number of integer regsiters advanced over. */ static int function_arg_advance_32 (CUMULATIVE_ARGS *cum, machine_mode mode, const_tree type, HOST_WIDE_INT bytes, HOST_WIDE_INT words) { int res = 0; bool error_p = false; if (TARGET_IAMCU) { /* Intel MCU psABI passes scalars and aggregates no larger than 8 bytes in registers. */ if (!VECTOR_MODE_P (mode) && bytes <= 8) goto pass_in_reg; return res; } switch (mode) { default: break; case E_BLKmode: if (bytes < 0) break; /* FALLTHRU */ case E_DImode: case E_SImode: case E_HImode: case E_QImode: pass_in_reg: cum->words += words; cum->nregs -= words; cum->regno += words; if (cum->nregs >= 0) res = words; if (cum->nregs <= 0) { cum->nregs = 0; cfun->machine->arg_reg_available = false; cum->regno = 0; } break; case E_OImode: /* OImode shouldn't be used directly. */ gcc_unreachable (); case E_DFmode: if (cum->float_in_sse == -1) error_p = true; if (cum->float_in_sse < 2) break; /* FALLTHRU */ case E_SFmode: if (cum->float_in_sse == -1) error_p = true; if (cum->float_in_sse < 1) break; /* FALLTHRU */ case E_V8SFmode: case E_V8SImode: case E_V64QImode: case E_V32HImode: case E_V16SImode: case E_V8DImode: case E_V16SFmode: case E_V8DFmode: case E_V32QImode: case E_V16HImode: case E_V4DFmode: case E_V4DImode: case E_TImode: case E_V16QImode: case E_V8HImode: case E_V4SImode: case E_V2DImode: case E_V4SFmode: case E_V2DFmode: if (!type || !AGGREGATE_TYPE_P (type)) { cum->sse_words += words; cum->sse_nregs -= 1; cum->sse_regno += 1; if (cum->sse_nregs <= 0) { cum->sse_nregs = 0; cum->sse_regno = 0; } } break; case E_V8QImode: case E_V4HImode: case E_V2SImode: case E_V2SFmode: case E_V1TImode: case E_V1DImode: if (!type || !AGGREGATE_TYPE_P (type)) { cum->mmx_words += words; cum->mmx_nregs -= 1; cum->mmx_regno += 1; if (cum->mmx_nregs <= 0) { cum->mmx_nregs = 0; cum->mmx_regno = 0; } } break; } if (error_p) { cum->float_in_sse = 0; error ("calling %qD with SSE calling convention without " "SSE/SSE2 enabled", cum->decl); sorry ("this is a GCC bug that can be worked around by adding " "attribute used to function called"); } return res; } static int function_arg_advance_64 (CUMULATIVE_ARGS *cum, machine_mode mode, const_tree type, HOST_WIDE_INT words, bool named) { int int_nregs, sse_nregs; /* Unnamed 512 and 256bit vector mode parameters are passed on stack. */ if (!named && (VALID_AVX512F_REG_MODE (mode) || VALID_AVX256_REG_MODE (mode))) return 0; if (!examine_argument (mode, type, 0, &int_nregs, &sse_nregs) && sse_nregs <= cum->sse_nregs && int_nregs <= cum->nregs) { cum->nregs -= int_nregs; cum->sse_nregs -= sse_nregs; cum->regno += int_nregs; cum->sse_regno += sse_nregs; return int_nregs; } else { int align = ix86_function_arg_boundary (mode, type) / BITS_PER_WORD; cum->words = ROUND_UP (cum->words, align); cum->words += words; return 0; } } static int function_arg_advance_ms_64 (CUMULATIVE_ARGS *cum, HOST_WIDE_INT bytes, HOST_WIDE_INT words) { /* Otherwise, this should be passed indirect. */ gcc_assert (bytes == 1 || bytes == 2 || bytes == 4 || bytes == 8); cum->words += words; if (cum->nregs > 0) { cum->nregs -= 1; cum->regno += 1; return 1; } return 0; } /* Update the data in CUM to advance over argument ARG. */ static void ix86_function_arg_advance (cumulative_args_t cum_v, const function_arg_info &arg) { CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); machine_mode mode = arg.mode; HOST_WIDE_INT bytes, words; int nregs; /* The argument of interrupt handler is a special case and is handled in ix86_function_arg. */ if (!cum->caller && cfun->machine->func_type != TYPE_NORMAL) return; bytes = arg.promoted_size_in_bytes (); words = CEIL (bytes, UNITS_PER_WORD); if (arg.type) mode = type_natural_mode (arg.type, NULL, false); if (TARGET_64BIT) { enum calling_abi call_abi = cum ? cum->call_abi : ix86_abi; if (call_abi == MS_ABI) nregs = function_arg_advance_ms_64 (cum, bytes, words); else nregs = function_arg_advance_64 (cum, mode, arg.type, words, arg.named); } else nregs = function_arg_advance_32 (cum, mode, arg.type, bytes, words); if (!nregs) { /* Track if there are outgoing arguments on stack. */ if (cum->caller) cfun->machine->outgoing_args_on_stack = true; } } /* Define where to put the arguments to a function. Value is zero to push the argument on the stack, or a hard register in which to store the argument. MODE is the argument's machine mode. TYPE is the data type of the argument (as a tree). This is null for libcalls where that information may not be available. CUM is a variable of type CUMULATIVE_ARGS which gives info about the preceding args and about the function being called. NAMED is nonzero if this argument is a named parameter (otherwise it is an extra parameter matching an ellipsis). */ static rtx function_arg_32 (CUMULATIVE_ARGS *cum, machine_mode mode, machine_mode orig_mode, const_tree type, HOST_WIDE_INT bytes, HOST_WIDE_INT words) { bool error_p = false; /* Avoid the AL settings for the Unix64 ABI. */ if (mode == VOIDmode) return constm1_rtx; if (TARGET_IAMCU) { /* Intel MCU psABI passes scalars and aggregates no larger than 8 bytes in registers. */ if (!VECTOR_MODE_P (mode) && bytes <= 8) goto pass_in_reg; return NULL_RTX; } switch (mode) { default: break; case E_BLKmode: if (bytes < 0) break; /* FALLTHRU */ case E_DImode: case E_SImode: case E_HImode: case E_QImode: pass_in_reg: if (words <= cum->nregs) { int regno = cum->regno; /* Fastcall allocates the first two DWORD (SImode) or smaller arguments to ECX and EDX if it isn't an aggregate type . */ if (cum->fastcall) { if (mode == BLKmode || mode == DImode || (type && AGGREGATE_TYPE_P (type))) break; /* ECX not EAX is the first allocated register. */ if (regno == AX_REG) regno = CX_REG; } return gen_rtx_REG (mode, regno); } break; case E_DFmode: if (cum->float_in_sse == -1) error_p = true; if (cum->float_in_sse < 2) break; /* FALLTHRU */ case E_SFmode: if (cum->float_in_sse == -1) error_p = true; if (cum->float_in_sse < 1) break; /* FALLTHRU */ case E_TImode: /* In 32bit, we pass TImode in xmm registers. */ case E_V16QImode: case E_V8HImode: case E_V4SImode: case E_V2DImode: case E_V4SFmode: case E_V2DFmode: if (!type || !AGGREGATE_TYPE_P (type)) { if (cum->sse_nregs) return gen_reg_or_parallel (mode, orig_mode, cum->sse_regno + FIRST_SSE_REG); } break; case E_OImode: case E_XImode: /* OImode and XImode shouldn't be used directly. */ gcc_unreachable (); case E_V64QImode: case E_V32HImode: case E_V16SImode: case E_V8DImode: case E_V16SFmode: case E_V8DFmode: case E_V8SFmode: case E_V8SImode: case E_V32QImode: case E_V16HImode: case E_V4DFmode: case E_V4DImode: if (!type || !AGGREGATE_TYPE_P (type)) { if (cum->sse_nregs) return gen_reg_or_parallel (mode, orig_mode, cum->sse_regno + FIRST_SSE_REG); } break; case E_V8QImode: case E_V4HImode: case E_V2SImode: case E_V2SFmode: case E_V1TImode: case E_V1DImode: if (!type || !AGGREGATE_TYPE_P (type)) { if (cum->mmx_nregs) return gen_reg_or_parallel (mode, orig_mode, cum->mmx_regno + FIRST_MMX_REG); } break; } if (error_p) { cum->float_in_sse = 0; error ("calling %qD with SSE calling convention without " "SSE/SSE2 enabled", cum->decl); sorry ("this is a GCC bug that can be worked around by adding " "attribute used to function called"); } return NULL_RTX; } static rtx function_arg_64 (const CUMULATIVE_ARGS *cum, machine_mode mode, machine_mode orig_mode, const_tree type, bool named) { /* Handle a hidden AL argument containing number of registers for varargs x86-64 functions. */ if (mode == VOIDmode) return GEN_INT (cum->maybe_vaarg ? (cum->sse_nregs < 0 ? X86_64_SSE_REGPARM_MAX : cum->sse_regno) : -1); switch (mode) { default: break; case E_V8SFmode: case E_V8SImode: case E_V32QImode: case E_V16HImode: case E_V4DFmode: case E_V4DImode: case E_V16SFmode: case E_V16SImode: case E_V64QImode: case E_V32HImode: case E_V8DFmode: case E_V8DImode: /* Unnamed 256 and 512bit vector mode parameters are passed on stack. */ if (!named) return NULL; break; } return construct_container (mode, orig_mode, type, 0, cum->nregs, cum->sse_nregs, &x86_64_int_parameter_registers [cum->regno], cum->sse_regno); } static rtx function_arg_ms_64 (const CUMULATIVE_ARGS *cum, machine_mode mode, machine_mode orig_mode, bool named, const_tree type, HOST_WIDE_INT bytes) { unsigned int regno; /* We need to add clobber for MS_ABI->SYSV ABI calls in expand_call. We use value of -2 to specify that current function call is MSABI. */ if (mode == VOIDmode) return GEN_INT (-2); /* If we've run out of registers, it goes on the stack. */ if (cum->nregs == 0) return NULL_RTX; regno = x86_64_ms_abi_int_parameter_registers[cum->regno]; /* Only floating point modes are passed in anything but integer regs. */ if (TARGET_SSE && (mode == SFmode || mode == DFmode)) { if (named) { if (type == NULL_TREE || !AGGREGATE_TYPE_P (type)) regno = cum->regno + FIRST_SSE_REG; } else { rtx t1, t2; /* Unnamed floating parameters are passed in both the SSE and integer registers. */ t1 = gen_rtx_REG (mode, cum->regno + FIRST_SSE_REG); t2 = gen_rtx_REG (mode, regno); t1 = gen_rtx_EXPR_LIST (VOIDmode, t1, const0_rtx); t2 = gen_rtx_EXPR_LIST (VOIDmode, t2, const0_rtx); return gen_rtx_PARALLEL (mode, gen_rtvec (2, t1, t2)); } } /* Handle aggregated types passed in register. */ if (orig_mode == BLKmode) { if (bytes > 0 && bytes <= 8) mode = (bytes > 4 ? DImode : SImode); if (mode == BLKmode) mode = DImode; } return gen_reg_or_parallel (mode, orig_mode, regno); } /* Return where to put the arguments to a function. Return zero to push the argument on the stack, or a hard register in which to store the argument. ARG describes the argument while CUM gives information about the preceding args and about the function being called. */ static rtx ix86_function_arg (cumulative_args_t cum_v, const function_arg_info &arg) { CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); machine_mode mode = arg.mode; HOST_WIDE_INT bytes, words; rtx reg; if (!cum->caller && cfun->machine->func_type != TYPE_NORMAL) { gcc_assert (arg.type != NULL_TREE); if (POINTER_TYPE_P (arg.type)) { /* This is the pointer argument. */ gcc_assert (TYPE_MODE (arg.type) == ptr_mode); /* It is at -WORD(AP) in the current frame in interrupt and exception handlers. */ reg = plus_constant (Pmode, arg_pointer_rtx, -UNITS_PER_WORD); } else { gcc_assert (cfun->machine->func_type == TYPE_EXCEPTION && TREE_CODE (arg.type) == INTEGER_TYPE && TYPE_MODE (arg.type) == word_mode); /* The error code is the word-mode integer argument at -2 * WORD(AP) in the current frame of the exception handler. */ reg = gen_rtx_MEM (word_mode, plus_constant (Pmode, arg_pointer_rtx, -2 * UNITS_PER_WORD)); } return reg; } bytes = arg.promoted_size_in_bytes (); words = CEIL (bytes, UNITS_PER_WORD); /* To simplify the code below, represent vector types with a vector mode even if MMX/SSE are not active. */ if (arg.type && TREE_CODE (arg.type) == VECTOR_TYPE) mode = type_natural_mode (arg.type, cum, false); if (TARGET_64BIT) { enum calling_abi call_abi = cum ? cum->call_abi : ix86_abi; if (call_abi == MS_ABI) reg = function_arg_ms_64 (cum, mode, arg.mode, arg.named, arg.type, bytes); else reg = function_arg_64 (cum, mode, arg.mode, arg.type, arg.named); } else reg = function_arg_32 (cum, mode, arg.mode, arg.type, bytes, words); /* Track if there are outgoing arguments on stack. */ if (reg == NULL_RTX && cum->caller) cfun->machine->outgoing_args_on_stack = true; return reg; } /* A C expression that indicates when an argument must be passed by reference. If nonzero for an argument, a copy of that argument is made in memory and a pointer to the argument is passed instead of the argument itself. The pointer is passed in whatever way is appropriate for passing a pointer to that type. */ static bool ix86_pass_by_reference (cumulative_args_t cum_v, const function_arg_info &arg) { CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); if (TARGET_64BIT) { enum calling_abi call_abi = cum ? cum->call_abi : ix86_abi; /* See Windows x64 Software Convention. */ if (call_abi == MS_ABI) { HOST_WIDE_INT msize = GET_MODE_SIZE (arg.mode); if (tree type = arg.type) { /* Arrays are passed by reference. */ if (TREE_CODE (type) == ARRAY_TYPE) return true; if (RECORD_OR_UNION_TYPE_P (type)) { /* Structs/unions of sizes other than 8, 16, 32, or 64 bits are passed by reference. */ msize = int_size_in_bytes (type); } } /* __m128 is passed by reference. */ return msize != 1 && msize != 2 && msize != 4 && msize != 8; } else if (arg.type && int_size_in_bytes (arg.type) == -1) return true; } return false; } /* Return true when TYPE should be 128bit aligned for 32bit argument passing ABI. XXX: This function is obsolete and is only used for checking psABI compatibility with previous versions of GCC. */ static bool ix86_compat_aligned_value_p (const_tree type) { machine_mode mode = TYPE_MODE (type); if (((TARGET_SSE && SSE_REG_MODE_P (mode)) || mode == TDmode || mode == TFmode || mode == TCmode) && (!TYPE_USER_ALIGN (type) || TYPE_ALIGN (type) > 128)) return true; if (TYPE_ALIGN (type) < 128) return false; if (AGGREGATE_TYPE_P (type)) { /* Walk the aggregates recursively. */ switch (TREE_CODE (type)) { case RECORD_TYPE: case UNION_TYPE: case QUAL_UNION_TYPE: { tree field; /* Walk all the structure fields. */ for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL && ix86_compat_aligned_value_p (TREE_TYPE (field))) return true; } break; } case ARRAY_TYPE: /* Just for use if some languages passes arrays by value. */ if (ix86_compat_aligned_value_p (TREE_TYPE (type))) return true; break; default: gcc_unreachable (); } } return false; } /* Return the alignment boundary for MODE and TYPE with alignment ALIGN. XXX: This function is obsolete and is only used for checking psABI compatibility with previous versions of GCC. */ static unsigned int ix86_compat_function_arg_boundary (machine_mode mode, const_tree type, unsigned int align) { /* In 32bit, only _Decimal128 and __float128 are aligned to their natural boundaries. */ if (!TARGET_64BIT && mode != TDmode && mode != TFmode) { /* i386 ABI defines all arguments to be 4 byte aligned. We have to make an exception for SSE modes since these require 128bit alignment. The handling here differs from field_alignment. ICC aligns MMX arguments to 4 byte boundaries, while structure fields are aligned to 8 byte boundaries. */ if (!type) { if (!(TARGET_SSE && SSE_REG_MODE_P (mode))) align = PARM_BOUNDARY; } else { if (!ix86_compat_aligned_value_p (type)) align = PARM_BOUNDARY; } } if (align > BIGGEST_ALIGNMENT) align = BIGGEST_ALIGNMENT; return align; } /* Return true when TYPE should be 128bit aligned for 32bit argument passing ABI. */ static bool ix86_contains_aligned_value_p (const_tree type) { machine_mode mode = TYPE_MODE (type); if (mode == XFmode || mode == XCmode) return false; if (TYPE_ALIGN (type) < 128) return false; if (AGGREGATE_TYPE_P (type)) { /* Walk the aggregates recursively. */ switch (TREE_CODE (type)) { case RECORD_TYPE: case UNION_TYPE: case QUAL_UNION_TYPE: { tree field; /* Walk all the structure fields. */ for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL && ix86_contains_aligned_value_p (TREE_TYPE (field))) return true; } break; } case ARRAY_TYPE: /* Just for use if some languages passes arrays by value. */ if (ix86_contains_aligned_value_p (TREE_TYPE (type))) return true; break; default: gcc_unreachable (); } } else return TYPE_ALIGN (type) >= 128; return false; } /* Gives the alignment boundary, in bits, of an argument with the specified mode and type. */ static unsigned int ix86_function_arg_boundary (machine_mode mode, const_tree type) { unsigned int align; if (type) { /* Since the main variant type is used for call, we convert it to the main variant type. */ type = TYPE_MAIN_VARIANT (type); align = TYPE_ALIGN (type); if (TYPE_EMPTY_P (type)) return PARM_BOUNDARY; } else align = GET_MODE_ALIGNMENT (mode); if (align < PARM_BOUNDARY) align = PARM_BOUNDARY; else { static bool warned; unsigned int saved_align = align; if (!TARGET_64BIT) { /* i386 ABI defines XFmode arguments to be 4 byte aligned. */ if (!type) { if (mode == XFmode || mode == XCmode) align = PARM_BOUNDARY; } else if (!ix86_contains_aligned_value_p (type)) align = PARM_BOUNDARY; if (align < 128) align = PARM_BOUNDARY; } if (warn_psabi && !warned && align != ix86_compat_function_arg_boundary (mode, type, saved_align)) { warned = true; inform (input_location, "the ABI for passing parameters with %d-byte" " alignment has changed in GCC 4.6", align / BITS_PER_UNIT); } } return align; } /* Return true if N is a possible register number of function value. */ static bool ix86_function_value_regno_p (const unsigned int regno) { switch (regno) { case AX_REG: return true; case DX_REG: return (!TARGET_64BIT || ix86_cfun_abi () != MS_ABI); case DI_REG: case SI_REG: return TARGET_64BIT && ix86_cfun_abi () != MS_ABI; /* Complex values are returned in %st(0)/%st(1) pair. */ case ST0_REG: case ST1_REG: /* TODO: The function should depend on current function ABI but builtins.c would need updating then. Therefore we use the default ABI. */ if (TARGET_64BIT && ix86_cfun_abi () == MS_ABI) return false; return TARGET_FLOAT_RETURNS_IN_80387; /* Complex values are returned in %xmm0/%xmm1 pair. */ case XMM0_REG: case XMM1_REG: return TARGET_SSE; case MM0_REG: if (TARGET_MACHO || TARGET_64BIT) return false; return TARGET_MMX; } return false; } /* Define how to find the value returned by a function. VALTYPE is the data type of the value (as a tree). If the precise function being called is known, FUNC is its FUNCTION_DECL; otherwise, FUNC is 0. */ static rtx function_value_32 (machine_mode orig_mode, machine_mode mode, const_tree fntype, const_tree fn) { unsigned int regno; /* 8-byte vector modes in %mm0. See ix86_return_in_memory for where we normally prevent this case when mmx is not available. However some ABIs may require the result to be returned like DImode. */ if (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 8) regno = FIRST_MMX_REG; /* 16-byte vector modes in %xmm0. See ix86_return_in_memory for where we prevent this case when sse is not available. However some ABIs may require the result to be returned like integer TImode. */ else if (mode == TImode || (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 16)) regno = FIRST_SSE_REG; /* 32-byte vector modes in %ymm0. */ else if (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 32) regno = FIRST_SSE_REG; /* 64-byte vector modes in %zmm0. */ else if (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 64) regno = FIRST_SSE_REG; /* Floating point return values in %st(0) (unless -mno-fp-ret-in-387). */ else if (X87_FLOAT_MODE_P (mode) && TARGET_FLOAT_RETURNS_IN_80387) regno = FIRST_FLOAT_REG; else /* Most things go in %eax. */ regno = AX_REG; /* Override FP return register with %xmm0 for local functions when SSE math is enabled or for functions with sseregparm attribute. */ if ((fn || fntype) && (mode == SFmode || mode == DFmode)) { int sse_level = ix86_function_sseregparm (fntype, fn, false); if (sse_level == -1) { error ("calling %qD with SSE calling convention without " "SSE/SSE2 enabled", fn); sorry ("this is a GCC bug that can be worked around by adding " "attribute used to function called"); } else if ((sse_level >= 1 && mode == SFmode) || (sse_level == 2 && mode == DFmode)) regno = FIRST_SSE_REG; } /* OImode shouldn't be used directly. */ gcc_assert (mode != OImode); return gen_rtx_REG (orig_mode, regno); } static rtx function_value_64 (machine_mode orig_mode, machine_mode mode, const_tree valtype) { rtx ret; /* Handle libcalls, which don't provide a type node. */ if (valtype == NULL) { unsigned int regno; switch (mode) { case E_SFmode: case E_SCmode: case E_DFmode: case E_DCmode: case E_TFmode: case E_SDmode: case E_DDmode: case E_TDmode: regno = FIRST_SSE_REG; break; case E_XFmode: case E_XCmode: regno = FIRST_FLOAT_REG; break; case E_TCmode: return NULL; default: regno = AX_REG; } return gen_rtx_REG (mode, regno); } else if (POINTER_TYPE_P (valtype)) { /* Pointers are always returned in word_mode. */ mode = word_mode; } ret = construct_container (mode, orig_mode, valtype, 1, X86_64_REGPARM_MAX, X86_64_SSE_REGPARM_MAX, x86_64_int_return_registers, 0); /* For zero sized structures, construct_container returns NULL, but we need to keep rest of compiler happy by returning meaningful value. */ if (!ret) ret = gen_rtx_REG (orig_mode, AX_REG); return ret; } static rtx function_value_ms_32 (machine_mode orig_mode, machine_mode mode, const_tree fntype, const_tree fn, const_tree valtype) { unsigned int regno; /* Floating point return values in %st(0) (unless -mno-fp-ret-in-387 or aggregate type of up to 8 bytes). */ if (X87_FLOAT_MODE_P (mode) && TARGET_FLOAT_RETURNS_IN_80387 && (GET_MODE_SIZE (mode) > 8 || valtype == NULL_TREE || !AGGREGATE_TYPE_P (valtype))) { regno = FIRST_FLOAT_REG; return gen_rtx_REG (orig_mode, regno); } else return function_value_32(orig_mode, mode, fntype,fn); } static rtx function_value_ms_64 (machine_mode orig_mode, machine_mode mode, const_tree valtype) { unsigned int regno = AX_REG; if (TARGET_SSE) { switch (GET_MODE_SIZE (mode)) { case 16: if (valtype != NULL_TREE && !VECTOR_INTEGER_TYPE_P (valtype) && !VECTOR_INTEGER_TYPE_P (valtype) && !INTEGRAL_TYPE_P (valtype) && !VECTOR_FLOAT_TYPE_P (valtype)) break; if ((SCALAR_INT_MODE_P (mode) || VECTOR_MODE_P (mode)) && !COMPLEX_MODE_P (mode)) regno = FIRST_SSE_REG; break; case 8: case 4: if (valtype != NULL_TREE && AGGREGATE_TYPE_P (valtype)) break; if (mode == SFmode || mode == DFmode) regno = FIRST_SSE_REG; break; default: break; } } return gen_rtx_REG (orig_mode, regno); } static rtx ix86_function_value_1 (const_tree valtype, const_tree fntype_or_decl, machine_mode orig_mode, machine_mode mode) { const_tree fn, fntype; fn = NULL_TREE; if (fntype_or_decl && DECL_P (fntype_or_decl)) fn = fntype_or_decl; fntype = fn ? TREE_TYPE (fn) : fntype_or_decl; if (ix86_function_type_abi (fntype) == MS_ABI) { if (TARGET_64BIT) return function_value_ms_64 (orig_mode, mode, valtype); else return function_value_ms_32 (orig_mode, mode, fntype, fn, valtype); } else if (TARGET_64BIT) return function_value_64 (orig_mode, mode, valtype); else return function_value_32 (orig_mode, mode, fntype, fn); } static rtx ix86_function_value (const_tree valtype, const_tree fntype_or_decl, bool) { machine_mode mode, orig_mode; orig_mode = TYPE_MODE (valtype); mode = type_natural_mode (valtype, NULL, true); return ix86_function_value_1 (valtype, fntype_or_decl, orig_mode, mode); } /* Pointer function arguments and return values are promoted to word_mode for normal functions. */ static machine_mode ix86_promote_function_mode (const_tree type, machine_mode mode, int *punsignedp, const_tree fntype, int for_return) { if (cfun->machine->func_type == TYPE_NORMAL && type != NULL_TREE && POINTER_TYPE_P (type)) { *punsignedp = POINTERS_EXTEND_UNSIGNED; return word_mode; } return default_promote_function_mode (type, mode, punsignedp, fntype, for_return); } /* Return true if a structure, union or array with MODE containing FIELD should be accessed using BLKmode. */ static bool ix86_member_type_forces_blk (const_tree field, machine_mode mode) { /* Union with XFmode must be in BLKmode. */ return (mode == XFmode && (TREE_CODE (DECL_FIELD_CONTEXT (field)) == UNION_TYPE || TREE_CODE (DECL_FIELD_CONTEXT (field)) == QUAL_UNION_TYPE)); } rtx ix86_libcall_value (machine_mode mode) { return ix86_function_value_1 (NULL, NULL, mode, mode); } /* Return true iff type is returned in memory. */ static bool ix86_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED) { #ifdef SUBTARGET_RETURN_IN_MEMORY return SUBTARGET_RETURN_IN_MEMORY (type, fntype); #else const machine_mode mode = type_natural_mode (type, NULL, true); HOST_WIDE_INT size; if (TARGET_64BIT) { if (ix86_function_type_abi (fntype) == MS_ABI) { size = int_size_in_bytes (type); /* __m128 is returned in xmm0. */ if ((!type || VECTOR_INTEGER_TYPE_P (type) || INTEGRAL_TYPE_P (type) || VECTOR_FLOAT_TYPE_P (type)) && (SCALAR_INT_MODE_P (mode) || VECTOR_MODE_P (mode)) && !COMPLEX_MODE_P (mode) && (GET_MODE_SIZE (mode) == 16 || size == 16)) return false; /* Otherwise, the size must be exactly in [1248]. */ return size != 1 && size != 2 && size != 4 && size != 8; } else { int needed_intregs, needed_sseregs; return examine_argument (mode, type, 1, &needed_intregs, &needed_sseregs); } } else { size = int_size_in_bytes (type); /* Intel MCU psABI returns scalars and aggregates no larger than 8 bytes in registers. */ if (TARGET_IAMCU) return VECTOR_MODE_P (mode) || size < 0 || size > 8; if (mode == BLKmode) return true; if (MS_AGGREGATE_RETURN && AGGREGATE_TYPE_P (type) && size <= 8) return false; if (VECTOR_MODE_P (mode) || mode == TImode) { /* User-created vectors small enough to fit in EAX. */ if (size < 8) return false; /* Unless ABI prescibes otherwise, MMX/3dNow values are returned in MM0 if available. */ if (size == 8) return TARGET_VECT8_RETURNS || !TARGET_MMX; /* SSE values are returned in XMM0 if available. */ if (size == 16) return !TARGET_SSE; /* AVX values are returned in YMM0 if available. */ if (size == 32) return !TARGET_AVX; /* AVX512F values are returned in ZMM0 if available. */ if (size == 64) return !TARGET_AVX512F; } if (mode == XFmode) return false; if (size > 12) return true; /* OImode shouldn't be used directly. */ gcc_assert (mode != OImode); return false; } #endif } /* Create the va_list data type. */ static tree ix86_build_builtin_va_list_64 (void) { tree f_gpr, f_fpr, f_ovf, f_sav, record, type_decl; record = lang_hooks.types.make_type (RECORD_TYPE); type_decl = build_decl (BUILTINS_LOCATION, TYPE_DECL, get_identifier ("__va_list_tag"), record); f_gpr = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("gp_offset"), unsigned_type_node); f_fpr = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("fp_offset"), unsigned_type_node); f_ovf = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("overflow_arg_area"), ptr_type_node); f_sav = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("reg_save_area"), ptr_type_node); va_list_gpr_counter_field = f_gpr; va_list_fpr_counter_field = f_fpr; DECL_FIELD_CONTEXT (f_gpr) = record; DECL_FIELD_CONTEXT (f_fpr) = record; DECL_FIELD_CONTEXT (f_ovf) = record; DECL_FIELD_CONTEXT (f_sav) = record; TYPE_STUB_DECL (record) = type_decl; TYPE_NAME (record) = type_decl; TYPE_FIELDS (record) = f_gpr; DECL_CHAIN (f_gpr) = f_fpr; DECL_CHAIN (f_fpr) = f_ovf; DECL_CHAIN (f_ovf) = f_sav; layout_type (record); TYPE_ATTRIBUTES (record) = tree_cons (get_identifier ("sysv_abi va_list"), NULL_TREE, TYPE_ATTRIBUTES (record)); /* The correct type is an array type of one element. */ return build_array_type (record, build_index_type (size_zero_node)); } /* Setup the builtin va_list data type and for 64-bit the additional calling convention specific va_list data types. */ static tree ix86_build_builtin_va_list (void) { if (TARGET_64BIT) { /* Initialize ABI specific va_list builtin types. In lto1, we can encounter two va_list types: - one as a result of the type-merge across TUs, and - the one constructed here. These two types will not have the same TYPE_MAIN_VARIANT, and therefore a type identity check in canonical_va_list_type based on TYPE_MAIN_VARIANT (which we used to have) will not work. Instead, we tag each va_list_type_node with its unique attribute, and look for the attribute in the type identity check in canonical_va_list_type. Tagging sysv_va_list_type_node directly with the attribute is problematic since it's a array of one record, which will degrade into a pointer to record when used as parameter (see build_va_arg comments for an example), dropping the attribute in the process. So we tag the record instead. */ /* For SYSV_ABI we use an array of one record. */ sysv_va_list_type_node = ix86_build_builtin_va_list_64 (); /* For MS_ABI we use plain pointer to argument area. */ tree char_ptr_type = build_pointer_type (char_type_node); tree attr = tree_cons (get_identifier ("ms_abi va_list"), NULL_TREE, TYPE_ATTRIBUTES (char_ptr_type)); ms_va_list_type_node = build_type_attribute_variant (char_ptr_type, attr); return ((ix86_abi == MS_ABI) ? ms_va_list_type_node : sysv_va_list_type_node); } else { /* For i386 we use plain pointer to argument area. */ return build_pointer_type (char_type_node); } } /* Worker function for TARGET_SETUP_INCOMING_VARARGS. */ static void setup_incoming_varargs_64 (CUMULATIVE_ARGS *cum) { rtx save_area, mem; alias_set_type set; int i, max; /* GPR size of varargs save area. */ if (cfun->va_list_gpr_size) ix86_varargs_gpr_size = X86_64_REGPARM_MAX * UNITS_PER_WORD; else ix86_varargs_gpr_size = 0; /* FPR size of varargs save area. We don't need it if we don't pass anything in SSE registers. */ if (TARGET_SSE && cfun->va_list_fpr_size) ix86_varargs_fpr_size = X86_64_SSE_REGPARM_MAX * 16; else ix86_varargs_fpr_size = 0; if (! ix86_varargs_gpr_size && ! ix86_varargs_fpr_size) return; save_area = frame_pointer_rtx; set = get_varargs_alias_set (); max = cum->regno + cfun->va_list_gpr_size / UNITS_PER_WORD; if (max > X86_64_REGPARM_MAX) max = X86_64_REGPARM_MAX; for (i = cum->regno; i < max; i++) { mem = gen_rtx_MEM (word_mode, plus_constant (Pmode, save_area, i * UNITS_PER_WORD)); MEM_NOTRAP_P (mem) = 1; set_mem_alias_set (mem, set); emit_move_insn (mem, gen_rtx_REG (word_mode, x86_64_int_parameter_registers[i])); } if (ix86_varargs_fpr_size) { machine_mode smode; rtx_code_label *label; rtx test; /* Now emit code to save SSE registers. The AX parameter contains number of SSE parameter registers used to call this function, though all we actually check here is the zero/non-zero status. */ label = gen_label_rtx (); test = gen_rtx_EQ (VOIDmode, gen_rtx_REG (QImode, AX_REG), const0_rtx); emit_jump_insn (gen_cbranchqi4 (test, XEXP (test, 0), XEXP (test, 1), label)); /* ??? If !TARGET_SSE_TYPELESS_STORES, would we perform better if we used movdqa (i.e. TImode) instead? Perhaps even better would be if we could determine the real mode of the data, via a hook into pass_stdarg. Ignore all that for now. */ smode = V4SFmode; if (crtl->stack_alignment_needed < GET_MODE_ALIGNMENT (smode)) crtl->stack_alignment_needed = GET_MODE_ALIGNMENT (smode); max = cum->sse_regno + cfun->va_list_fpr_size / 16; if (max > X86_64_SSE_REGPARM_MAX) max = X86_64_SSE_REGPARM_MAX; for (i = cum->sse_regno; i < max; ++i) { mem = plus_constant (Pmode, save_area, i * 16 + ix86_varargs_gpr_size); mem = gen_rtx_MEM (smode, mem); MEM_NOTRAP_P (mem) = 1; set_mem_alias_set (mem, set); set_mem_align (mem, GET_MODE_ALIGNMENT (smode)); emit_move_insn (mem, gen_rtx_REG (smode, GET_SSE_REGNO (i))); } emit_label (label); } } static void setup_incoming_varargs_ms_64 (CUMULATIVE_ARGS *cum) { alias_set_type set = get_varargs_alias_set (); int i; /* Reset to zero, as there might be a sysv vaarg used before. */ ix86_varargs_gpr_size = 0; ix86_varargs_fpr_size = 0; for (i = cum->regno; i < X86_64_MS_REGPARM_MAX; i++) { rtx reg, mem; mem = gen_rtx_MEM (Pmode, plus_constant (Pmode, virtual_incoming_args_rtx, i * UNITS_PER_WORD)); MEM_NOTRAP_P (mem) = 1; set_mem_alias_set (mem, set); reg = gen_rtx_REG (Pmode, x86_64_ms_abi_int_parameter_registers[i]); emit_move_insn (mem, reg); } } static void ix86_setup_incoming_varargs (cumulative_args_t cum_v, const function_arg_info &arg, int *, int no_rtl) { CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); CUMULATIVE_ARGS next_cum; tree fntype; /* This argument doesn't appear to be used anymore. Which is good, because the old code here didn't suppress rtl generation. */ gcc_assert (!no_rtl); if (!TARGET_64BIT) return; fntype = TREE_TYPE (current_function_decl); /* For varargs, we do not want to skip the dummy va_dcl argument. For stdargs, we do want to skip the last named argument. */ next_cum = *cum; if (stdarg_p (fntype)) ix86_function_arg_advance (pack_cumulative_args (&next_cum), arg); if (cum->call_abi == MS_ABI) setup_incoming_varargs_ms_64 (&next_cum); else setup_incoming_varargs_64 (&next_cum); } /* Checks if TYPE is of kind va_list char *. */ static bool is_va_list_char_pointer (tree type) { tree canonic; /* For 32-bit it is always true. */ if (!TARGET_64BIT) return true; canonic = ix86_canonical_va_list_type (type); return (canonic == ms_va_list_type_node || (ix86_abi == MS_ABI && canonic == va_list_type_node)); } /* Implement va_start. */ static void ix86_va_start (tree valist, rtx nextarg) { HOST_WIDE_INT words, n_gpr, n_fpr; tree f_gpr, f_fpr, f_ovf, f_sav; tree gpr, fpr, ovf, sav, t; tree type; rtx ovf_rtx; if (flag_split_stack && cfun->machine->split_stack_varargs_pointer == NULL_RTX) { unsigned int scratch_regno; /* When we are splitting the stack, we can't refer to the stack arguments using internal_arg_pointer, because they may be on the old stack. The split stack prologue will arrange to leave a pointer to the old stack arguments in a scratch register, which we here copy to a pseudo-register. The split stack prologue can't set the pseudo-register directly because it (the prologue) runs before any registers have been saved. */ scratch_regno = split_stack_prologue_scratch_regno (); if (scratch_regno != INVALID_REGNUM) { rtx reg; rtx_insn *seq; reg = gen_reg_rtx (Pmode); cfun->machine->split_stack_varargs_pointer = reg; start_sequence (); emit_move_insn (reg, gen_rtx_REG (Pmode, scratch_regno)); seq = get_insns (); end_sequence (); push_topmost_sequence (); emit_insn_after (seq, entry_of_function ()); pop_topmost_sequence (); } } /* Only 64bit target needs something special. */ if (is_va_list_char_pointer (TREE_TYPE (valist))) { if (cfun->machine->split_stack_varargs_pointer == NULL_RTX) std_expand_builtin_va_start (valist, nextarg); else { rtx va_r, next; va_r = expand_expr (valist, NULL_RTX, VOIDmode, EXPAND_WRITE); next = expand_binop (ptr_mode, add_optab, cfun->machine->split_stack_varargs_pointer, crtl->args.arg_offset_rtx, NULL_RTX, 0, OPTAB_LIB_WIDEN); convert_move (va_r, next, 0); } return; } f_gpr = TYPE_FIELDS (TREE_TYPE (sysv_va_list_type_node)); f_fpr = DECL_CHAIN (f_gpr); f_ovf = DECL_CHAIN (f_fpr); f_sav = DECL_CHAIN (f_ovf); valist = build_simple_mem_ref (valist); TREE_TYPE (valist) = TREE_TYPE (sysv_va_list_type_node); /* The following should be folded into the MEM_REF offset. */ gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), unshare_expr (valist), f_gpr, NULL_TREE); fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), unshare_expr (valist), f_fpr, NULL_TREE); ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), unshare_expr (valist), f_ovf, NULL_TREE); sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), unshare_expr (valist), f_sav, NULL_TREE); /* Count number of gp and fp argument registers used. */ words = crtl->args.info.words; n_gpr = crtl->args.info.regno; n_fpr = crtl->args.info.sse_regno; if (cfun->va_list_gpr_size) { type = TREE_TYPE (gpr); t = build2 (MODIFY_EXPR, type, gpr, build_int_cst (type, n_gpr * 8)); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } if (TARGET_SSE && cfun->va_list_fpr_size) { type = TREE_TYPE (fpr); t = build2 (MODIFY_EXPR, type, fpr, build_int_cst (type, n_fpr * 16 + 8*X86_64_REGPARM_MAX)); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } /* Find the overflow area. */ type = TREE_TYPE (ovf); if (cfun->machine->split_stack_varargs_pointer == NULL_RTX) ovf_rtx = crtl->args.internal_arg_pointer; else ovf_rtx = cfun->machine->split_stack_varargs_pointer; t = make_tree (type, ovf_rtx); if (words != 0) t = fold_build_pointer_plus_hwi (t, words * UNITS_PER_WORD); t = build2 (MODIFY_EXPR, type, ovf, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); if (ix86_varargs_gpr_size || ix86_varargs_fpr_size) { /* Find the register save area. Prologue of the function save it right above stack frame. */ type = TREE_TYPE (sav); t = make_tree (type, frame_pointer_rtx); if (!ix86_varargs_gpr_size) t = fold_build_pointer_plus_hwi (t, -8 * X86_64_REGPARM_MAX); t = build2 (MODIFY_EXPR, type, sav, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } } /* Implement va_arg. */ static tree ix86_gimplify_va_arg (tree valist, tree type, gimple_seq *pre_p, gimple_seq *post_p) { static const int intreg[6] = { 0, 1, 2, 3, 4, 5 }; tree f_gpr, f_fpr, f_ovf, f_sav; tree gpr, fpr, ovf, sav, t; int size, rsize; tree lab_false, lab_over = NULL_TREE; tree addr, t2; rtx container; int indirect_p = 0; tree ptrtype; machine_mode nat_mode; unsigned int arg_boundary; unsigned int type_align; /* Only 64bit target needs something special. */ if (is_va_list_char_pointer (TREE_TYPE (valist))) return std_gimplify_va_arg_expr (valist, type, pre_p, post_p); f_gpr = TYPE_FIELDS (TREE_TYPE (sysv_va_list_type_node)); f_fpr = DECL_CHAIN (f_gpr); f_ovf = DECL_CHAIN (f_fpr); f_sav = DECL_CHAIN (f_ovf); gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr, NULL_TREE); fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), valist, f_fpr, NULL_TREE); ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), valist, f_ovf, NULL_TREE); sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), valist, f_sav, NULL_TREE); indirect_p = pass_va_arg_by_reference (type); if (indirect_p) type = build_pointer_type (type); size = arg_int_size_in_bytes (type); rsize = CEIL (size, UNITS_PER_WORD); nat_mode = type_natural_mode (type, NULL, false); switch (nat_mode) { case E_V8SFmode: case E_V8SImode: case E_V32QImode: case E_V16HImode: case E_V4DFmode: case E_V4DImode: case E_V16SFmode: case E_V16SImode: case E_V64QImode: case E_V32HImode: case E_V8DFmode: case E_V8DImode: /* Unnamed 256 and 512bit vector mode parameters are passed on stack. */ if (!TARGET_64BIT_MS_ABI) { container = NULL; break; } /* FALLTHRU */ default: container = construct_container (nat_mode, TYPE_MODE (type), type, 0, X86_64_REGPARM_MAX, X86_64_SSE_REGPARM_MAX, intreg, 0); break; } /* Pull the value out of the saved registers. */ addr = create_tmp_var (ptr_type_node, "addr"); type_align = TYPE_ALIGN (type); if (container) { int needed_intregs, needed_sseregs; bool need_temp; tree int_addr, sse_addr; lab_false = create_artificial_label (UNKNOWN_LOCATION); lab_over = create_artificial_label (UNKNOWN_LOCATION); examine_argument (nat_mode, type, 0, &needed_intregs, &needed_sseregs); need_temp = (!REG_P (container) && ((needed_intregs && TYPE_ALIGN (type) > 64) || TYPE_ALIGN (type) > 128)); /* In case we are passing structure, verify that it is consecutive block on the register save area. If not we need to do moves. */ if (!need_temp && !REG_P (container)) { /* Verify that all registers are strictly consecutive */ if (SSE_REGNO_P (REGNO (XEXP (XVECEXP (container, 0, 0), 0)))) { int i; for (i = 0; i < XVECLEN (container, 0) && !need_temp; i++) { rtx slot = XVECEXP (container, 0, i); if (REGNO (XEXP (slot, 0)) != FIRST_SSE_REG + (unsigned int) i || INTVAL (XEXP (slot, 1)) != i * 16) need_temp = true; } } else { int i; for (i = 0; i < XVECLEN (container, 0) && !need_temp; i++) { rtx slot = XVECEXP (container, 0, i); if (REGNO (XEXP (slot, 0)) != (unsigned int) i || INTVAL (XEXP (slot, 1)) != i * 8) need_temp = true; } } } if (!need_temp) { int_addr = addr; sse_addr = addr; } else { int_addr = create_tmp_var (ptr_type_node, "int_addr"); sse_addr = create_tmp_var (ptr_type_node, "sse_addr"); } /* First ensure that we fit completely in registers. */ if (needed_intregs) { t = build_int_cst (TREE_TYPE (gpr), (X86_64_REGPARM_MAX - needed_intregs + 1) * 8); t = build2 (GE_EXPR, boolean_type_node, gpr, t); t2 = build1 (GOTO_EXPR, void_type_node, lab_false); t = build3 (COND_EXPR, void_type_node, t, t2, NULL_TREE); gimplify_and_add (t, pre_p); } if (needed_sseregs) { t = build_int_cst (TREE_TYPE (fpr), (X86_64_SSE_REGPARM_MAX - needed_sseregs + 1) * 16 + X86_64_REGPARM_MAX * 8); t = build2 (GE_EXPR, boolean_type_node, fpr, t); t2 = build1 (GOTO_EXPR, void_type_node, lab_false); t = build3 (COND_EXPR, void_type_node, t, t2, NULL_TREE); gimplify_and_add (t, pre_p); } /* Compute index to start of area used for integer regs. */ if (needed_intregs) { /* int_addr = gpr + sav; */ t = fold_build_pointer_plus (sav, gpr); gimplify_assign (int_addr, t, pre_p); } if (needed_sseregs) { /* sse_addr = fpr + sav; */ t = fold_build_pointer_plus (sav, fpr); gimplify_assign (sse_addr, t, pre_p); } if (need_temp) { int i, prev_size = 0; tree temp = create_tmp_var (type, "va_arg_tmp"); /* addr = &temp; */ t = build1 (ADDR_EXPR, build_pointer_type (type), temp); gimplify_assign (addr, t, pre_p); for (i = 0; i < XVECLEN (container, 0); i++) { rtx slot = XVECEXP (container, 0, i); rtx reg = XEXP (slot, 0); machine_mode mode = GET_MODE (reg); tree piece_type; tree addr_type; tree daddr_type; tree src_addr, src; int src_offset; tree dest_addr, dest; int cur_size = GET_MODE_SIZE (mode); gcc_assert (prev_size <= INTVAL (XEXP (slot, 1))); prev_size = INTVAL (XEXP (slot, 1)); if (prev_size + cur_size > size) { cur_size = size - prev_size; unsigned int nbits = cur_size * BITS_PER_UNIT; if (!int_mode_for_size (nbits, 1).exists (&mode)) mode = QImode; } piece_type = lang_hooks.types.type_for_mode (mode, 1); if (mode == GET_MODE (reg)) addr_type = build_pointer_type (piece_type); else addr_type = build_pointer_type_for_mode (piece_type, ptr_mode, true); daddr_type = build_pointer_type_for_mode (piece_type, ptr_mode, true); if (SSE_REGNO_P (REGNO (reg))) { src_addr = sse_addr; src_offset = (REGNO (reg) - FIRST_SSE_REG) * 16; } else { src_addr = int_addr; src_offset = REGNO (reg) * 8; } src_addr = fold_convert (addr_type, src_addr); src_addr = fold_build_pointer_plus_hwi (src_addr, src_offset); dest_addr = fold_convert (daddr_type, addr); dest_addr = fold_build_pointer_plus_hwi (dest_addr, prev_size); if (cur_size == GET_MODE_SIZE (mode)) { src = build_va_arg_indirect_ref (src_addr); dest = build_va_arg_indirect_ref (dest_addr); gimplify_assign (dest, src, pre_p); } else { tree copy = build_call_expr (builtin_decl_implicit (BUILT_IN_MEMCPY), 3, dest_addr, src_addr, size_int (cur_size)); gimplify_and_add (copy, pre_p); } prev_size += cur_size; } } if (needed_intregs) { t = build2 (PLUS_EXPR, TREE_TYPE (gpr), gpr, build_int_cst (TREE_TYPE (gpr), needed_intregs * 8)); gimplify_assign (gpr, t, pre_p); /* The GPR save area guarantees only 8-byte alignment. */ if (!need_temp) type_align = MIN (type_align, 64); } if (needed_sseregs) { t = build2 (PLUS_EXPR, TREE_TYPE (fpr), fpr, build_int_cst (TREE_TYPE (fpr), needed_sseregs * 16)); gimplify_assign (unshare_expr (fpr), t, pre_p); } gimple_seq_add_stmt (pre_p, gimple_build_goto (lab_over)); gimple_seq_add_stmt (pre_p, gimple_build_label (lab_false)); } /* ... otherwise out of the overflow area. */ /* When we align parameter on stack for caller, if the parameter alignment is beyond MAX_SUPPORTED_STACK_ALIGNMENT, it will be aligned at MAX_SUPPORTED_STACK_ALIGNMENT. We will match callee here with caller. */ arg_boundary = ix86_function_arg_boundary (VOIDmode, type); if ((unsigned int) arg_boundary > MAX_SUPPORTED_STACK_ALIGNMENT) arg_boundary = MAX_SUPPORTED_STACK_ALIGNMENT; /* Care for on-stack alignment if needed. */ if (arg_boundary <= 64 || size == 0) t = ovf; else { HOST_WIDE_INT align = arg_boundary / 8; t = fold_build_pointer_plus_hwi (ovf, align - 1); t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t, build_int_cst (TREE_TYPE (t), -align)); } gimplify_expr (&t, pre_p, NULL, is_gimple_val, fb_rvalue); gimplify_assign (addr, t, pre_p); t = fold_build_pointer_plus_hwi (t, rsize * UNITS_PER_WORD); gimplify_assign (unshare_expr (ovf), t, pre_p); if (container) gimple_seq_add_stmt (pre_p, gimple_build_label (lab_over)); type = build_aligned_type (type, type_align); ptrtype = build_pointer_type_for_mode (type, ptr_mode, true); addr = fold_convert (ptrtype, addr); if (indirect_p) addr = build_va_arg_indirect_ref (addr); return build_va_arg_indirect_ref (addr); } /* Return true if OPNUM's MEM should be matched in movabs* patterns. */ bool ix86_check_movabs (rtx insn, int opnum) { rtx set, mem; set = PATTERN (insn); if (GET_CODE (set) == PARALLEL) set = XVECEXP (set, 0, 0); gcc_assert (GET_CODE (set) == SET); mem = XEXP (set, opnum); while (SUBREG_P (mem)) mem = SUBREG_REG (mem); gcc_assert (MEM_P (mem)); return volatile_ok || !MEM_VOLATILE_P (mem); } /* Return false if INSN contains a MEM with a non-default address space. */ bool ix86_check_no_addr_space (rtx insn) { subrtx_var_iterator::array_type array; FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), ALL) { rtx x = *iter; if (MEM_P (x) && !ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))) return false; } return true; } /* Initialize the table of extra 80387 mathematical constants. */ static void init_ext_80387_constants (void) { static const char * cst[5] = { "0.3010299956639811952256464283594894482", /* 0: fldlg2 */ "0.6931471805599453094286904741849753009", /* 1: fldln2 */ "1.4426950408889634073876517827983434472", /* 2: fldl2e */ "3.3219280948873623478083405569094566090", /* 3: fldl2t */ "3.1415926535897932385128089594061862044", /* 4: fldpi */ }; int i; for (i = 0; i < 5; i++) { real_from_string (&ext_80387_constants_table[i], cst[i]); /* Ensure each constant is rounded to XFmode precision. */ real_convert (&ext_80387_constants_table[i], XFmode, &ext_80387_constants_table[i]); } ext_80387_constants_init = 1; } /* Return non-zero if the constant is something that can be loaded with a special instruction. */ int standard_80387_constant_p (rtx x) { machine_mode mode = GET_MODE (x); const REAL_VALUE_TYPE *r; if (!(CONST_DOUBLE_P (x) && X87_FLOAT_MODE_P (mode))) return -1; if (x == CONST0_RTX (mode)) return 1; if (x == CONST1_RTX (mode)) return 2; r = CONST_DOUBLE_REAL_VALUE (x); /* For XFmode constants, try to find a special 80387 instruction when optimizing for size or on those CPUs that benefit from them. */ if (mode == XFmode && (optimize_function_for_size_p (cfun) || TARGET_EXT_80387_CONSTANTS) && !flag_rounding_math) { int i; if (! ext_80387_constants_init) init_ext_80387_constants (); for (i = 0; i < 5; i++) if (real_identical (r, &ext_80387_constants_table[i])) return i + 3; } /* Load of the constant -0.0 or -1.0 will be split as fldz;fchs or fld1;fchs sequence. */ if (real_isnegzero (r)) return 8; if (real_identical (r, &dconstm1)) return 9; return 0; } /* Return the opcode of the special instruction to be used to load the constant X. */ const char * standard_80387_constant_opcode (rtx x) { switch (standard_80387_constant_p (x)) { case 1: return "fldz"; case 2: return "fld1"; case 3: return "fldlg2"; case 4: return "fldln2"; case 5: return "fldl2e"; case 6: return "fldl2t"; case 7: return "fldpi"; case 8: case 9: return "#"; default: gcc_unreachable (); } } /* Return the CONST_DOUBLE representing the 80387 constant that is loaded by the specified special instruction. The argument IDX matches the return value from standard_80387_constant_p. */ rtx standard_80387_constant_rtx (int idx) { int i; if (! ext_80387_constants_init) init_ext_80387_constants (); switch (idx) { case 3: case 4: case 5: case 6: case 7: i = idx - 3; break; default: gcc_unreachable (); } return const_double_from_real_value (ext_80387_constants_table[i], XFmode); } /* Return 1 if X is all bits 0 and 2 if X is all bits 1 in supported SSE/AVX vector mode. */ int standard_sse_constant_p (rtx x, machine_mode pred_mode) { machine_mode mode; if (!TARGET_SSE) return 0; mode = GET_MODE (x); if (x == const0_rtx || const0_operand (x, mode)) return 1; if (x == constm1_rtx || vector_all_ones_operand (x, mode)) { /* VOIDmode integer constant, get mode from the predicate. */ if (mode == VOIDmode) mode = pred_mode; switch (GET_MODE_SIZE (mode)) { case 64: if (TARGET_AVX512F) return 2; break; case 32: if (TARGET_AVX2) return 2; break; case 16: if (TARGET_SSE2) return 2; break; case 0: /* VOIDmode */ gcc_unreachable (); default: break; } } return 0; } /* Return the opcode of the special instruction to be used to load the constant operands[1] into operands[0]. */ const char * standard_sse_constant_opcode (rtx_insn *insn, rtx *operands) { machine_mode mode; rtx x = operands[1]; gcc_assert (TARGET_SSE); mode = GET_MODE (x); if (x == const0_rtx || const0_operand (x, mode)) { switch (get_attr_mode (insn)) { case MODE_TI: if (!EXT_REX_SSE_REG_P (operands[0])) return "%vpxor\t%0, %d0"; /* FALLTHRU */ case MODE_XI: case MODE_OI: if (EXT_REX_SSE_REG_P (operands[0])) return (TARGET_AVX512VL ? "vpxord\t%x0, %x0, %x0" : "vpxord\t%g0, %g0, %g0"); return "vpxor\t%x0, %x0, %x0"; case MODE_V2DF: if (!EXT_REX_SSE_REG_P (operands[0])) return "%vxorpd\t%0, %d0"; /* FALLTHRU */ case MODE_V8DF: case MODE_V4DF: if (!EXT_REX_SSE_REG_P (operands[0])) return "vxorpd\t%x0, %x0, %x0"; else if (TARGET_AVX512DQ) return (TARGET_AVX512VL ? "vxorpd\t%x0, %x0, %x0" : "vxorpd\t%g0, %g0, %g0"); else return (TARGET_AVX512VL ? "vpxorq\t%x0, %x0, %x0" : "vpxorq\t%g0, %g0, %g0"); case MODE_V4SF: if (!EXT_REX_SSE_REG_P (operands[0])) return "%vxorps\t%0, %d0"; /* FALLTHRU */ case MODE_V16SF: case MODE_V8SF: if (!EXT_REX_SSE_REG_P (operands[0])) return "vxorps\t%x0, %x0, %x0"; else if (TARGET_AVX512DQ) return (TARGET_AVX512VL ? "vxorps\t%x0, %x0, %x0" : "vxorps\t%g0, %g0, %g0"); else return (TARGET_AVX512VL ? "vpxord\t%x0, %x0, %x0" : "vpxord\t%g0, %g0, %g0"); default: gcc_unreachable (); } } else if (x == constm1_rtx || vector_all_ones_operand (x, mode)) { enum attr_mode insn_mode = get_attr_mode (insn); switch (insn_mode) { case MODE_XI: case MODE_V8DF: case MODE_V16SF: gcc_assert (TARGET_AVX512F); return "vpternlogd\t{$0xFF, %g0, %g0, %g0|%g0, %g0, %g0, 0xFF}"; case MODE_OI: case MODE_V4DF: case MODE_V8SF: gcc_assert (TARGET_AVX2); /* FALLTHRU */ case MODE_TI: case MODE_V2DF: case MODE_V4SF: gcc_assert (TARGET_SSE2); if (!EXT_REX_SSE_REG_P (operands[0])) return (TARGET_AVX ? "vpcmpeqd\t%0, %0, %0" : "pcmpeqd\t%0, %0"); else if (TARGET_AVX512VL) return "vpternlogd\t{$0xFF, %0, %0, %0|%0, %0, %0, 0xFF}"; else return "vpternlogd\t{$0xFF, %g0, %g0, %g0|%g0, %g0, %g0, 0xFF}"; default: gcc_unreachable (); } } gcc_unreachable (); } /* Returns true if INSN can be transformed from a memory load to a supported FP constant load. */ bool ix86_standard_x87sse_constant_load_p (const rtx_insn *insn, rtx dst) { rtx src = find_constant_src (insn); gcc_assert (REG_P (dst)); if (src == NULL || (SSE_REGNO_P (REGNO (dst)) && standard_sse_constant_p (src, GET_MODE (dst)) != 1) || (STACK_REGNO_P (REGNO (dst)) && standard_80387_constant_p (src) < 1)) return false; return true; } /* Predicate for pre-reload splitters with associated instructions, which can match any time before the split1 pass (usually combine), then are unconditionally split in that pass and should not be matched again afterwards. */ bool ix86_pre_reload_split (void) { return (can_create_pseudo_p () && !(cfun->curr_properties & PROP_rtl_split_insns)); } /* Return the opcode of the TYPE_SSEMOV instruction. To move from or to xmm16-xmm31/ymm16-ymm31 registers, we either require TARGET_AVX512VL or it is a register to register move which can be done with zmm register move. */ static const char * ix86_get_ssemov (rtx *operands, unsigned size, enum attr_mode insn_mode, machine_mode mode) { char buf[128]; bool misaligned_p = (misaligned_operand (operands[0], mode) || misaligned_operand (operands[1], mode)); bool evex_reg_p = (size == 64 || EXT_REX_SSE_REG_P (operands[0]) || EXT_REX_SSE_REG_P (operands[1])); machine_mode scalar_mode; const char *opcode = NULL; enum { opcode_int, opcode_float, opcode_double } type = opcode_int; switch (insn_mode) { case MODE_V16SF: case MODE_V8SF: case MODE_V4SF: scalar_mode = E_SFmode; type = opcode_float; break; case MODE_V8DF: case MODE_V4DF: case MODE_V2DF: scalar_mode = E_DFmode; type = opcode_double; break; case MODE_XI: case MODE_OI: case MODE_TI: scalar_mode = GET_MODE_INNER (mode); break; default: gcc_unreachable (); } /* NB: To move xmm16-xmm31/ymm16-ymm31 registers without AVX512VL, we can only use zmm register move without memory operand. */ if (evex_reg_p && !TARGET_AVX512VL && GET_MODE_SIZE (mode) < 64) { /* NB: Even though ix86_hard_regno_mode_ok doesn't allow xmm16-xmm31 nor ymm16-ymm31 in 128/256 bit modes when AVX512VL is disabled, LRA can still generate reg to reg moves with xmm16-xmm31 and ymm16-ymm31 in 128/256 bit modes. */ if (memory_operand (operands[0], mode) || memory_operand (operands[1], mode)) gcc_unreachable (); size = 64; switch (type) { case opcode_int: opcode = misaligned_p ? "vmovdqu32" : "vmovdqa32"; break; case opcode_float: opcode = misaligned_p ? "vmovups" : "vmovaps"; break; case opcode_double: opcode = misaligned_p ? "vmovupd" : "vmovapd"; break; } } else if (SCALAR_FLOAT_MODE_P (scalar_mode)) { switch (scalar_mode) { case E_SFmode: opcode = misaligned_p ? "%vmovups" : "%vmovaps"; break; case E_DFmode: opcode = misaligned_p ? "%vmovupd" : "%vmovapd"; break; case E_TFmode: if (evex_reg_p) opcode = misaligned_p ? "vmovdqu64" : "vmovdqa64"; else opcode = misaligned_p ? "%vmovdqu" : "%vmovdqa"; break; default: gcc_unreachable (); } } else if (SCALAR_INT_MODE_P (scalar_mode)) { switch (scalar_mode) { case E_QImode: if (evex_reg_p) opcode = (misaligned_p ? (TARGET_AVX512BW ? "vmovdqu8" : "vmovdqu64") : "vmovdqa64"); else opcode = (misaligned_p ? (TARGET_AVX512BW ? "vmovdqu8" : "%vmovdqu") : "%vmovdqa"); break; case E_HImode: if (evex_reg_p) opcode = (misaligned_p ? (TARGET_AVX512BW ? "vmovdqu16" : "vmovdqu64") : "vmovdqa64"); else opcode = (misaligned_p ? (TARGET_AVX512BW ? "vmovdqu16" : "%vmovdqu") : "%vmovdqa"); break; case E_SImode: if (evex_reg_p) opcode = misaligned_p ? "vmovdqu32" : "vmovdqa32"; else opcode = misaligned_p ? "%vmovdqu" : "%vmovdqa"; break; case E_DImode: case E_TImode: case E_OImode: if (evex_reg_p) opcode = misaligned_p ? "vmovdqu64" : "vmovdqa64"; else opcode = misaligned_p ? "%vmovdqu" : "%vmovdqa"; break; case E_XImode: opcode = misaligned_p ? "vmovdqu64" : "vmovdqa64"; break; default: gcc_unreachable (); } } else gcc_unreachable (); switch (size) { case 64: snprintf (buf, sizeof (buf), "%s\t{%%g1, %%g0|%%g0, %%g1}", opcode); break; case 32: snprintf (buf, sizeof (buf), "%s\t{%%t1, %%t0|%%t0, %%t1}", opcode); break; case 16: snprintf (buf, sizeof (buf), "%s\t{%%x1, %%x0|%%x0, %%x1}", opcode); break; default: gcc_unreachable (); } output_asm_insn (buf, operands); return ""; } /* Return the template of the TYPE_SSEMOV instruction to move operands[1] into operands[0]. */ const char * ix86_output_ssemov (rtx_insn *insn, rtx *operands) { machine_mode mode = GET_MODE (operands[0]); if (get_attr_type (insn) != TYPE_SSEMOV || mode != GET_MODE (operands[1])) gcc_unreachable (); enum attr_mode insn_mode = get_attr_mode (insn); switch (insn_mode) { case MODE_XI: case MODE_V8DF: case MODE_V16SF: return ix86_get_ssemov (operands, 64, insn_mode, mode); case MODE_OI: case MODE_V4DF: case MODE_V8SF: return ix86_get_ssemov (operands, 32, insn_mode, mode); case MODE_TI: case MODE_V2DF: case MODE_V4SF: return ix86_get_ssemov (operands, 16, insn_mode, mode); case MODE_DI: /* Handle broken assemblers that require movd instead of movq. */ if (!HAVE_AS_IX86_INTERUNIT_MOVQ && (GENERAL_REG_P (operands[0]) || GENERAL_REG_P (operands[1]))) return "%vmovd\t{%1, %0|%0, %1}"; else return "%vmovq\t{%1, %0|%0, %1}"; case MODE_SI: return "%vmovd\t{%1, %0|%0, %1}"; case MODE_DF: if (TARGET_AVX && REG_P (operands[0]) && REG_P (operands[1])) return "vmovsd\t{%d1, %0|%0, %d1}"; else return "%vmovsd\t{%1, %0|%0, %1}"; case MODE_SF: if (TARGET_AVX && REG_P (operands[0]) && REG_P (operands[1])) return "vmovss\t{%d1, %0|%0, %d1}"; else return "%vmovss\t{%1, %0|%0, %1}"; case MODE_V1DF: gcc_assert (!TARGET_AVX); return "movlpd\t{%1, %0|%0, %1}"; case MODE_V2SF: if (TARGET_AVX && REG_P (operands[0])) return "vmovlps\t{%1, %d0|%d0, %1}"; else return "%vmovlps\t{%1, %0|%0, %1}"; default: gcc_unreachable (); } } /* Returns true if OP contains a symbol reference */ bool symbolic_reference_mentioned_p (rtx op) { const char *fmt; int i; if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF) return true; fmt = GET_RTX_FORMAT (GET_CODE (op)); for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--) { if (fmt[i] == 'E') { int j; for (j = XVECLEN (op, i) - 1; j >= 0; j--) if (symbolic_reference_mentioned_p (XVECEXP (op, i, j))) return true; } else if (fmt[i] == 'e' && symbolic_reference_mentioned_p (XEXP (op, i))) return true; } return false; } /* Return true if it is appropriate to emit `ret' instructions in the body of a function. Do this only if the epilogue is simple, needing a couple of insns. Prior to reloading, we can't tell how many registers must be saved, so return false then. Return false if there is no frame marker to de-allocate. */ bool ix86_can_use_return_insn_p (void) { if (ix86_function_naked (current_function_decl)) return false; /* Don't use `ret' instruction in interrupt handler. */ if (! reload_completed || frame_pointer_needed || cfun->machine->func_type != TYPE_NORMAL) return 0; /* Don't allow more than 32k pop, since that's all we can do with one instruction. */ if (crtl->args.pops_args && crtl->args.size >= 32768) return 0; struct ix86_frame &frame = cfun->machine->frame; return (frame.stack_pointer_offset == UNITS_PER_WORD && (frame.nregs + frame.nsseregs) == 0); } /* Return stack frame size. get_frame_size () returns used stack slots during compilation, which may be optimized out later. If stack frame is needed, stack_frame_required should be true. */ static HOST_WIDE_INT ix86_get_frame_size (void) { if (cfun->machine->stack_frame_required) return get_frame_size (); else return 0; } /* Value should be nonzero if functions must have frame pointers. Zero means the frame pointer need not be set up (and parms may be accessed via the stack pointer) in functions that seem suitable. */ static bool ix86_frame_pointer_required (void) { /* If we accessed previous frames, then the generated code expects to be able to access the saved ebp value in our frame. */ if (cfun->machine->accesses_prev_frame) return true; /* Several x86 os'es need a frame pointer for other reasons, usually pertaining to setjmp. */ if (SUBTARGET_FRAME_POINTER_REQUIRED) return true; /* For older 32-bit runtimes setjmp requires valid frame-pointer. */ if (TARGET_32BIT_MS_ABI && cfun->calls_setjmp) return true; /* Win64 SEH, very large frames need a frame-pointer as maximum stack allocation is 4GB. */ if (TARGET_64BIT_MS_ABI && ix86_get_frame_size () > SEH_MAX_FRAME_SIZE) return true; /* SSE saves require frame-pointer when stack is misaligned. */ if (TARGET_64BIT_MS_ABI && ix86_incoming_stack_boundary < 128) return true; /* In ix86_option_override_internal, TARGET_OMIT_LEAF_FRAME_POINTER turns off the frame pointer by default. Turn it back on now if we've not got a leaf function. */ if (TARGET_OMIT_LEAF_FRAME_POINTER && (!crtl->is_leaf || ix86_current_function_calls_tls_descriptor)) return true; if (crtl->profile && !flag_fentry) return true; return false; } /* Record that the current function accesses previous call frames. */ void ix86_setup_frame_addresses (void) { cfun->machine->accesses_prev_frame = 1; } #ifndef USE_HIDDEN_LINKONCE # if defined(HAVE_GAS_HIDDEN) && (SUPPORTS_ONE_ONLY - 0) # define USE_HIDDEN_LINKONCE 1 # else # define USE_HIDDEN_LINKONCE 0 # endif #endif /* Label count for call and return thunks. It is used to make unique labels in call and return thunks. */ static int indirectlabelno; /* True if call thunk function is needed. */ static bool indirect_thunk_needed = false; /* Bit masks of integer registers, which contain branch target, used by call thunk functions. */ static int indirect_thunks_used; /* True if return thunk function is needed. */ static bool indirect_return_needed = false; /* True if return thunk function via CX is needed. */ static bool indirect_return_via_cx; #ifndef INDIRECT_LABEL # define INDIRECT_LABEL "LIND" #endif /* Indicate what prefix is needed for an indirect branch. */ enum indirect_thunk_prefix { indirect_thunk_prefix_none, indirect_thunk_prefix_nt }; /* Return the prefix needed for an indirect branch INSN. */ enum indirect_thunk_prefix indirect_thunk_need_prefix (rtx_insn *insn) { enum indirect_thunk_prefix need_prefix; if ((cfun->machine->indirect_branch_type == indirect_branch_thunk_extern) && ix86_notrack_prefixed_insn_p (insn)) { /* NOTRACK prefix is only used with external thunk so that it can be properly updated to support CET at run-time. */ need_prefix = indirect_thunk_prefix_nt; } else need_prefix = indirect_thunk_prefix_none; return need_prefix; } /* Fills in the label name that should be used for the indirect thunk. */ static void indirect_thunk_name (char name[32], unsigned int regno, enum indirect_thunk_prefix need_prefix, bool ret_p) { if (regno != INVALID_REGNUM && regno != CX_REG && ret_p) gcc_unreachable (); if (USE_HIDDEN_LINKONCE) { const char *prefix; if (need_prefix == indirect_thunk_prefix_nt && regno != INVALID_REGNUM) { /* NOTRACK prefix is only used with external thunk via register so that NOTRACK prefix can be added to indirect branch via register to support CET at run-time. */ prefix = "_nt"; } else prefix = ""; const char *ret = ret_p ? "return" : "indirect"; if (regno != INVALID_REGNUM) { const char *reg_prefix; if (LEGACY_INT_REGNO_P (regno)) reg_prefix = TARGET_64BIT ? "r" : "e"; else reg_prefix = ""; sprintf (name, "__x86_%s_thunk%s_%s%s", ret, prefix, reg_prefix, reg_names[regno]); } else sprintf (name, "__x86_%s_thunk%s", ret, prefix); } else { if (regno != INVALID_REGNUM) ASM_GENERATE_INTERNAL_LABEL (name, "LITR", regno); else { if (ret_p) ASM_GENERATE_INTERNAL_LABEL (name, "LRT", 0); else ASM_GENERATE_INTERNAL_LABEL (name, "LIT", 0); } } } /* Output a call and return thunk for indirect branch. If REGNO != -1, the function address is in REGNO and the call and return thunk looks like: call L2 L1: pause lfence jmp L1 L2: mov %REG, (%sp) ret Otherwise, the function address is on the top of stack and the call and return thunk looks like: call L2 L1: pause lfence jmp L1 L2: lea WORD_SIZE(%sp), %sp ret */ static void output_indirect_thunk (unsigned int regno) { char indirectlabel1[32]; char indirectlabel2[32]; ASM_GENERATE_INTERNAL_LABEL (indirectlabel1, INDIRECT_LABEL, indirectlabelno++); ASM_GENERATE_INTERNAL_LABEL (indirectlabel2, INDIRECT_LABEL, indirectlabelno++); /* Call */ fputs ("\tcall\t", asm_out_file); assemble_name_raw (asm_out_file, indirectlabel2); fputc ('\n', asm_out_file); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, indirectlabel1); /* AMD and Intel CPUs prefer each a different instruction as loop filler. Usage of both pause + lfence is compromise solution. */ fprintf (asm_out_file, "\tpause\n\tlfence\n"); /* Jump. */ fputs ("\tjmp\t", asm_out_file); assemble_name_raw (asm_out_file, indirectlabel1); fputc ('\n', asm_out_file); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, indirectlabel2); /* The above call insn pushed a word to stack. Adjust CFI info. */ if (flag_asynchronous_unwind_tables && dwarf2out_do_frame ()) { if (! dwarf2out_do_cfi_asm ()) { dw_cfi_ref xcfi = ggc_cleared_alloc (); xcfi->dw_cfi_opc = DW_CFA_advance_loc4; xcfi->dw_cfi_oprnd1.dw_cfi_addr = ggc_strdup (indirectlabel2); vec_safe_push (cfun->fde->dw_fde_cfi, xcfi); } dw_cfi_ref xcfi = ggc_cleared_alloc (); xcfi->dw_cfi_opc = DW_CFA_def_cfa_offset; xcfi->dw_cfi_oprnd1.dw_cfi_offset = 2 * UNITS_PER_WORD; vec_safe_push (cfun->fde->dw_fde_cfi, xcfi); dwarf2out_emit_cfi (xcfi); } if (regno != INVALID_REGNUM) { /* MOV. */ rtx xops[2]; xops[0] = gen_rtx_MEM (word_mode, stack_pointer_rtx); xops[1] = gen_rtx_REG (word_mode, regno); output_asm_insn ("mov\t{%1, %0|%0, %1}", xops); } else { /* LEA. */ rtx xops[2]; xops[0] = stack_pointer_rtx; xops[1] = plus_constant (Pmode, stack_pointer_rtx, UNITS_PER_WORD); output_asm_insn ("lea\t{%E1, %0|%0, %E1}", xops); } fputs ("\tret\n", asm_out_file); } /* Output a funtion with a call and return thunk for indirect branch. If REGNO != INVALID_REGNUM, the function address is in REGNO. Otherwise, the function address is on the top of stack. Thunk is used for function return if RET_P is true. */ static void output_indirect_thunk_function (enum indirect_thunk_prefix need_prefix, unsigned int regno, bool ret_p) { char name[32]; tree decl; /* Create __x86_indirect_thunk. */ indirect_thunk_name (name, regno, need_prefix, ret_p); decl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL, get_identifier (name), build_function_type_list (void_type_node, NULL_TREE)); DECL_RESULT (decl) = build_decl (BUILTINS_LOCATION, RESULT_DECL, NULL_TREE, void_type_node); TREE_PUBLIC (decl) = 1; TREE_STATIC (decl) = 1; DECL_IGNORED_P (decl) = 1; #if TARGET_MACHO if (TARGET_MACHO) { switch_to_section (darwin_sections[picbase_thunk_section]); fputs ("\t.weak_definition\t", asm_out_file); assemble_name (asm_out_file, name); fputs ("\n\t.private_extern\t", asm_out_file); assemble_name (asm_out_file, name); putc ('\n', asm_out_file); ASM_OUTPUT_LABEL (asm_out_file, name); DECL_WEAK (decl) = 1; } else #endif if (USE_HIDDEN_LINKONCE) { cgraph_node::create (decl)->set_comdat_group (DECL_ASSEMBLER_NAME (decl)); targetm.asm_out.unique_section (decl, 0); switch_to_section (get_named_section (decl, NULL, 0)); targetm.asm_out.globalize_label (asm_out_file, name); fputs ("\t.hidden\t", asm_out_file); assemble_name (asm_out_file, name); putc ('\n', asm_out_file); ASM_DECLARE_FUNCTION_NAME (asm_out_file, name, decl); } else { switch_to_section (text_section); ASM_OUTPUT_LABEL (asm_out_file, name); } DECL_INITIAL (decl) = make_node (BLOCK); current_function_decl = decl; allocate_struct_function (decl, false); init_function_start (decl); /* We're about to hide the function body from callees of final_* by emitting it directly; tell them we're a thunk, if they care. */ cfun->is_thunk = true; first_function_block_is_cold = false; /* Make sure unwind info is emitted for the thunk if needed. */ final_start_function (emit_barrier (), asm_out_file, 1); output_indirect_thunk (regno); final_end_function (); init_insn_lengths (); free_after_compilation (cfun); set_cfun (NULL); current_function_decl = NULL; } static int pic_labels_used; /* Fills in the label name that should be used for a pc thunk for the given register. */ static void get_pc_thunk_name (char name[32], unsigned int regno) { gcc_assert (!TARGET_64BIT); if (USE_HIDDEN_LINKONCE) sprintf (name, "__x86.get_pc_thunk.%s", reg_names[regno]); else ASM_GENERATE_INTERNAL_LABEL (name, "LPR", regno); } /* This function generates code for -fpic that loads %ebx with the return address of the caller and then returns. */ static void ix86_code_end (void) { rtx xops[2]; unsigned int regno; if (indirect_return_needed) output_indirect_thunk_function (indirect_thunk_prefix_none, INVALID_REGNUM, true); if (indirect_return_via_cx) output_indirect_thunk_function (indirect_thunk_prefix_none, CX_REG, true); if (indirect_thunk_needed) output_indirect_thunk_function (indirect_thunk_prefix_none, INVALID_REGNUM, false); for (regno = FIRST_REX_INT_REG; regno <= LAST_REX_INT_REG; regno++) { unsigned int i = regno - FIRST_REX_INT_REG + LAST_INT_REG + 1; if ((indirect_thunks_used & (1 << i))) output_indirect_thunk_function (indirect_thunk_prefix_none, regno, false); } for (regno = FIRST_INT_REG; regno <= LAST_INT_REG; regno++) { char name[32]; tree decl; if ((indirect_thunks_used & (1 << regno))) output_indirect_thunk_function (indirect_thunk_prefix_none, regno, false); if (!(pic_labels_used & (1 << regno))) continue; get_pc_thunk_name (name, regno); decl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL, get_identifier (name), build_function_type_list (void_type_node, NULL_TREE)); DECL_RESULT (decl) = build_decl (BUILTINS_LOCATION, RESULT_DECL, NULL_TREE, void_type_node); TREE_PUBLIC (decl) = 1; TREE_STATIC (decl) = 1; DECL_IGNORED_P (decl) = 1; #if TARGET_MACHO if (TARGET_MACHO) { switch_to_section (darwin_sections[picbase_thunk_section]); fputs ("\t.weak_definition\t", asm_out_file); assemble_name (asm_out_file, name); fputs ("\n\t.private_extern\t", asm_out_file); assemble_name (asm_out_file, name); putc ('\n', asm_out_file); ASM_OUTPUT_LABEL (asm_out_file, name); DECL_WEAK (decl) = 1; } else #endif if (USE_HIDDEN_LINKONCE) { cgraph_node::create (decl)->set_comdat_group (DECL_ASSEMBLER_NAME (decl)); targetm.asm_out.unique_section (decl, 0); switch_to_section (get_named_section (decl, NULL, 0)); targetm.asm_out.globalize_label (asm_out_file, name); fputs ("\t.hidden\t", asm_out_file); assemble_name (asm_out_file, name); putc ('\n', asm_out_file); ASM_DECLARE_FUNCTION_NAME (asm_out_file, name, decl); } else { switch_to_section (text_section); ASM_OUTPUT_LABEL (asm_out_file, name); } DECL_INITIAL (decl) = make_node (BLOCK); current_function_decl = decl; allocate_struct_function (decl, false); init_function_start (decl); /* We're about to hide the function body from callees of final_* by emitting it directly; tell them we're a thunk, if they care. */ cfun->is_thunk = true; first_function_block_is_cold = false; /* Make sure unwind info is emitted for the thunk if needed. */ final_start_function (emit_barrier (), asm_out_file, 1); /* Pad stack IP move with 4 instructions (two NOPs count as one instruction). */ if (TARGET_PAD_SHORT_FUNCTION) { int i = 8; while (i--) fputs ("\tnop\n", asm_out_file); } xops[0] = gen_rtx_REG (Pmode, regno); xops[1] = gen_rtx_MEM (Pmode, stack_pointer_rtx); output_asm_insn ("mov%z0\t{%1, %0|%0, %1}", xops); output_asm_insn ("%!ret", NULL); final_end_function (); init_insn_lengths (); free_after_compilation (cfun); set_cfun (NULL); current_function_decl = NULL; } if (flag_split_stack) file_end_indicate_split_stack (); } /* Emit code for the SET_GOT patterns. */ const char * output_set_got (rtx dest, rtx label) { rtx xops[3]; xops[0] = dest; if (TARGET_VXWORKS_RTP && flag_pic) { /* Load (*VXWORKS_GOTT_BASE) into the PIC register. */ xops[2] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, VXWORKS_GOTT_BASE)); output_asm_insn ("mov{l}\t{%2, %0|%0, %2}", xops); /* Load (*VXWORKS_GOTT_BASE)[VXWORKS_GOTT_INDEX] into the PIC register. Use %P and a local symbol in order to print VXWORKS_GOTT_INDEX as an unadorned address. */ xops[2] = gen_rtx_SYMBOL_REF (Pmode, VXWORKS_GOTT_INDEX); SYMBOL_REF_FLAGS (xops[2]) |= SYMBOL_FLAG_LOCAL; output_asm_insn ("mov{l}\t{%P2(%0), %0|%0, DWORD PTR %P2[%0]}", xops); return ""; } xops[1] = gen_rtx_SYMBOL_REF (Pmode, GOT_SYMBOL_NAME); if (flag_pic) { char name[32]; get_pc_thunk_name (name, REGNO (dest)); pic_labels_used |= 1 << REGNO (dest); xops[2] = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name)); xops[2] = gen_rtx_MEM (QImode, xops[2]); output_asm_insn ("%!call\t%X2", xops); #if TARGET_MACHO /* Output the Mach-O "canonical" pic base label name ("Lxx$pb") here. This is what will be referenced by the Mach-O PIC subsystem. */ if (machopic_should_output_picbase_label () || !label) ASM_OUTPUT_LABEL (asm_out_file, MACHOPIC_FUNCTION_BASE_NAME); /* When we are restoring the pic base at the site of a nonlocal label, and we decided to emit the pic base above, we will still output a local label used for calculating the correction offset (even though the offset will be 0 in that case). */ if (label) targetm.asm_out.internal_label (asm_out_file, "L", CODE_LABEL_NUMBER (label)); #endif } else { if (TARGET_MACHO) /* We don't need a pic base, we're not producing pic. */ gcc_unreachable (); xops[2] = gen_rtx_LABEL_REF (Pmode, label ? label : gen_label_rtx ()); output_asm_insn ("mov%z0\t{%2, %0|%0, %2}", xops); targetm.asm_out.internal_label (asm_out_file, "L", CODE_LABEL_NUMBER (XEXP (xops[2], 0))); } if (!TARGET_MACHO) output_asm_insn ("add%z0\t{%1, %0|%0, %1}", xops); return ""; } /* Generate an "push" pattern for input ARG. */ rtx gen_push (rtx arg) { struct machine_function *m = cfun->machine; if (m->fs.cfa_reg == stack_pointer_rtx) m->fs.cfa_offset += UNITS_PER_WORD; m->fs.sp_offset += UNITS_PER_WORD; if (REG_P (arg) && GET_MODE (arg) != word_mode) arg = gen_rtx_REG (word_mode, REGNO (arg)); return gen_rtx_SET (gen_rtx_MEM (word_mode, gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx)), arg); } /* Generate an "pop" pattern for input ARG. */ rtx gen_pop (rtx arg) { if (REG_P (arg) && GET_MODE (arg) != word_mode) arg = gen_rtx_REG (word_mode, REGNO (arg)); return gen_rtx_SET (arg, gen_rtx_MEM (word_mode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx))); } /* Return >= 0 if there is an unused call-clobbered register available for the entire function. */ static unsigned int ix86_select_alt_pic_regnum (void) { if (ix86_use_pseudo_pic_reg ()) return INVALID_REGNUM; if (crtl->is_leaf && !crtl->profile && !ix86_current_function_calls_tls_descriptor) { int i, drap; /* Can't use the same register for both PIC and DRAP. */ if (crtl->drap_reg) drap = REGNO (crtl->drap_reg); else drap = -1; for (i = 2; i >= 0; --i) if (i != drap && !df_regs_ever_live_p (i)) return i; } return INVALID_REGNUM; } /* Return true if REGNO is used by the epilogue. */ bool ix86_epilogue_uses (int regno) { /* If there are no caller-saved registers, we preserve all registers, except for MMX and x87 registers which aren't supported when saving and restoring registers. Don't explicitly save SP register since it is always preserved. */ return (epilogue_completed && cfun->machine->no_caller_saved_registers && !fixed_regs[regno] && !STACK_REGNO_P (regno) && !MMX_REGNO_P (regno)); } /* Return nonzero if register REGNO can be used as a scratch register in peephole2. */ static bool ix86_hard_regno_scratch_ok (unsigned int regno) { /* If there are no caller-saved registers, we can't use any register as a scratch register after epilogue and use REGNO as scratch register only if it has been used before to avoid saving and restoring it. */ return (!cfun->machine->no_caller_saved_registers || (!epilogue_completed && df_regs_ever_live_p (regno))); } /* Return TRUE if we need to save REGNO. */ bool ix86_save_reg (unsigned int regno, bool maybe_eh_return, bool ignore_outlined) { /* If there are no caller-saved registers, we preserve all registers, except for MMX and x87 registers which aren't supported when saving and restoring registers. Don't explicitly save SP register since it is always preserved. */ if (cfun->machine->no_caller_saved_registers) { /* Don't preserve registers used for function return value. */ rtx reg = crtl->return_rtx; if (reg) { unsigned int i = REGNO (reg); unsigned int nregs = REG_NREGS (reg); while (nregs-- > 0) if ((i + nregs) == regno) return false; } return (df_regs_ever_live_p (regno) && !fixed_regs[regno] && !STACK_REGNO_P (regno) && !MMX_REGNO_P (regno) && (regno != HARD_FRAME_POINTER_REGNUM || !frame_pointer_needed)); } if (regno == REAL_PIC_OFFSET_TABLE_REGNUM && pic_offset_table_rtx) { if (ix86_use_pseudo_pic_reg ()) { /* REAL_PIC_OFFSET_TABLE_REGNUM used by call to _mcount in prologue. */ if (!TARGET_64BIT && flag_pic && crtl->profile) return true; } else if (df_regs_ever_live_p (REAL_PIC_OFFSET_TABLE_REGNUM) || crtl->profile || crtl->calls_eh_return || crtl->uses_const_pool || cfun->has_nonlocal_label) return ix86_select_alt_pic_regnum () == INVALID_REGNUM; } if (crtl->calls_eh_return && maybe_eh_return) { unsigned i; for (i = 0; ; i++) { unsigned test = EH_RETURN_DATA_REGNO (i); if (test == INVALID_REGNUM) break; if (test == regno) return true; } } if (ignore_outlined && cfun->machine->call_ms2sysv) { unsigned count = cfun->machine->call_ms2sysv_extra_regs + xlogue_layout::MIN_REGS; if (xlogue_layout::is_stub_managed_reg (regno, count)) return false; } if (crtl->drap_reg && regno == REGNO (crtl->drap_reg) && !cfun->machine->no_drap_save_restore) return true; return (df_regs_ever_live_p (regno) && !call_used_or_fixed_reg_p (regno) && (regno != HARD_FRAME_POINTER_REGNUM || !frame_pointer_needed)); } /* Return number of saved general prupose registers. */ static int ix86_nsaved_regs (void) { int nregs = 0; int regno; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (GENERAL_REGNO_P (regno) && ix86_save_reg (regno, true, true)) nregs ++; return nregs; } /* Return number of saved SSE registers. */ static int ix86_nsaved_sseregs (void) { int nregs = 0; int regno; if (!TARGET_64BIT_MS_ABI) return 0; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (SSE_REGNO_P (regno) && ix86_save_reg (regno, true, true)) nregs ++; return nregs; } /* Given FROM and TO register numbers, say whether this elimination is allowed. If stack alignment is needed, we can only replace argument pointer with hard frame pointer, or replace frame pointer with stack pointer. Otherwise, frame pointer elimination is automatically handled and all other eliminations are valid. */ static bool ix86_can_eliminate (const int from, const int to) { if (stack_realign_fp) return ((from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM) || (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)); else return to == STACK_POINTER_REGNUM ? !frame_pointer_needed : true; } /* Return the offset between two registers, one to be eliminated, and the other its replacement, at the start of a routine. */ HOST_WIDE_INT ix86_initial_elimination_offset (int from, int to) { struct ix86_frame &frame = cfun->machine->frame; if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM) return frame.hard_frame_pointer_offset; else if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM) return frame.hard_frame_pointer_offset - frame.frame_pointer_offset; else { gcc_assert (to == STACK_POINTER_REGNUM); if (from == ARG_POINTER_REGNUM) return frame.stack_pointer_offset; gcc_assert (from == FRAME_POINTER_REGNUM); return frame.stack_pointer_offset - frame.frame_pointer_offset; } } /* Emits a warning for unsupported msabi to sysv pro/epilogues. */ void warn_once_call_ms2sysv_xlogues (const char *feature) { static bool warned_once = false; if (!warned_once) { warning (0, "%<-mcall-ms2sysv-xlogues%> is not compatible with %s", feature); warned_once = true; } } /* Return the probing interval for -fstack-clash-protection. */ static HOST_WIDE_INT get_probe_interval (void) { if (flag_stack_clash_protection) return (HOST_WIDE_INT_1U << param_stack_clash_protection_probe_interval); else return (HOST_WIDE_INT_1U << STACK_CHECK_PROBE_INTERVAL_EXP); } /* When using -fsplit-stack, the allocation routines set a field in the TCB to the bottom of the stack plus this much space, measured in bytes. */ #define SPLIT_STACK_AVAILABLE 256 /* Fill structure ix86_frame about frame of currently computed function. */ static void ix86_compute_frame_layout (void) { struct ix86_frame *frame = &cfun->machine->frame; struct machine_function *m = cfun->machine; unsigned HOST_WIDE_INT stack_alignment_needed; HOST_WIDE_INT offset; unsigned HOST_WIDE_INT preferred_alignment; HOST_WIDE_INT size = ix86_get_frame_size (); HOST_WIDE_INT to_allocate; /* m->call_ms2sysv is initially enabled in ix86_expand_call for all 64-bit * ms_abi functions that call a sysv function. We now need to prune away * cases where it should be disabled. */ if (TARGET_64BIT && m->call_ms2sysv) { gcc_assert (TARGET_64BIT_MS_ABI); gcc_assert (TARGET_CALL_MS2SYSV_XLOGUES); gcc_assert (!TARGET_SEH); gcc_assert (TARGET_SSE); gcc_assert (!ix86_using_red_zone ()); if (crtl->calls_eh_return) { gcc_assert (!reload_completed); m->call_ms2sysv = false; warn_once_call_ms2sysv_xlogues ("__builtin_eh_return"); } else if (ix86_static_chain_on_stack) { gcc_assert (!reload_completed); m->call_ms2sysv = false; warn_once_call_ms2sysv_xlogues ("static call chains"); } /* Finally, compute which registers the stub will manage. */ else { unsigned count = xlogue_layout::count_stub_managed_regs (); m->call_ms2sysv_extra_regs = count - xlogue_layout::MIN_REGS; m->call_ms2sysv_pad_in = 0; } } frame->nregs = ix86_nsaved_regs (); frame->nsseregs = ix86_nsaved_sseregs (); /* 64-bit MS ABI seem to require stack alignment to be always 16, except for function prologues, leaf functions and when the defult incoming stack boundary is overriden at command line or via force_align_arg_pointer attribute. Darwin's ABI specifies 128b alignment for both 32 and 64 bit variants at call sites, including profile function calls. */ if (((TARGET_64BIT_MS_ABI || TARGET_MACHO) && crtl->preferred_stack_boundary < 128) && (!crtl->is_leaf || cfun->calls_alloca != 0 || ix86_current_function_calls_tls_descriptor || (TARGET_MACHO && crtl->profile) || ix86_incoming_stack_boundary < 128)) { crtl->preferred_stack_boundary = 128; crtl->stack_alignment_needed = 128; } stack_alignment_needed = crtl->stack_alignment_needed / BITS_PER_UNIT; preferred_alignment = crtl->preferred_stack_boundary / BITS_PER_UNIT; gcc_assert (!size || stack_alignment_needed); gcc_assert (preferred_alignment >= STACK_BOUNDARY / BITS_PER_UNIT); gcc_assert (preferred_alignment <= stack_alignment_needed); /* The only ABI saving SSE regs should be 64-bit ms_abi. */ gcc_assert (TARGET_64BIT || !frame->nsseregs); if (TARGET_64BIT && m->call_ms2sysv) { gcc_assert (stack_alignment_needed >= 16); gcc_assert (!frame->nsseregs); } /* For SEH we have to limit the amount of code movement into the prologue. At present we do this via a BLOCKAGE, at which point there's very little scheduling that can be done, which means that there's very little point in doing anything except PUSHs. */ if (TARGET_SEH) m->use_fast_prologue_epilogue = false; else if (!optimize_bb_for_size_p (ENTRY_BLOCK_PTR_FOR_FN (cfun))) { int count = frame->nregs; struct cgraph_node *node = cgraph_node::get (current_function_decl); /* The fast prologue uses move instead of push to save registers. This is significantly longer, but also executes faster as modern hardware can execute the moves in parallel, but can't do that for push/pop. Be careful about choosing what prologue to emit: When function takes many instructions to execute we may use slow version as well as in case function is known to be outside hot spot (this is known with feedback only). Weight the size of function by number of registers to save as it is cheap to use one or two push instructions but very slow to use many of them. Calling this hook multiple times with the same frame requirements must produce the same layout, since the RA might otherwise be unable to reach a fixed point or might fail its final sanity checks. This means that once we've assumed that a function does or doesn't have a particular size, we have to stick to that assumption regardless of how the function has changed since. */ if (count) count = (count - 1) * FAST_PROLOGUE_INSN_COUNT; if (node->frequency < NODE_FREQUENCY_NORMAL || (flag_branch_probabilities && node->frequency < NODE_FREQUENCY_HOT)) m->use_fast_prologue_epilogue = false; else { if (count != frame->expensive_count) { frame->expensive_count = count; frame->expensive_p = expensive_function_p (count); } m->use_fast_prologue_epilogue = !frame->expensive_p; } } frame->save_regs_using_mov = (TARGET_PROLOGUE_USING_MOVE && m->use_fast_prologue_epilogue /* If static stack checking is enabled and done with probes, the registers need to be saved before allocating the frame. */ && flag_stack_check != STATIC_BUILTIN_STACK_CHECK); /* Skip return address and error code in exception handler. */ offset = INCOMING_FRAME_SP_OFFSET; /* Skip pushed static chain. */ if (ix86_static_chain_on_stack) offset += UNITS_PER_WORD; /* Skip saved base pointer. */ if (frame_pointer_needed) offset += UNITS_PER_WORD; frame->hfp_save_offset = offset; /* The traditional frame pointer location is at the top of the frame. */ frame->hard_frame_pointer_offset = offset; /* Register save area */ offset += frame->nregs * UNITS_PER_WORD; frame->reg_save_offset = offset; /* Calculate the size of the va-arg area (not including padding, if any). */ frame->va_arg_size = ix86_varargs_gpr_size + ix86_varargs_fpr_size; /* Also adjust stack_realign_offset for the largest alignment of stack slot actually used. */ if (stack_realign_fp || (cfun->machine->max_used_stack_alignment != 0 && (offset % cfun->machine->max_used_stack_alignment) != 0)) { /* We may need a 16-byte aligned stack for the remainder of the register save area, but the stack frame for the local function may require a greater alignment if using AVX/2/512. In order to avoid wasting space, we first calculate the space needed for the rest of the register saves, add that to the stack pointer, and then realign the stack to the boundary of the start of the frame for the local function. */ HOST_WIDE_INT space_needed = 0; HOST_WIDE_INT sse_reg_space_needed = 0; if (TARGET_64BIT) { if (m->call_ms2sysv) { m->call_ms2sysv_pad_in = 0; space_needed = xlogue_layout::get_instance ().get_stack_space_used (); } else if (frame->nsseregs) /* The only ABI that has saved SSE registers (Win64) also has a 16-byte aligned default stack. However, many programs violate the ABI, and Wine64 forces stack realignment to compensate. */ space_needed = frame->nsseregs * 16; sse_reg_space_needed = space_needed = ROUND_UP (space_needed, 16); /* 64-bit frame->va_arg_size should always be a multiple of 16, but rounding to be pedantic. */ space_needed = ROUND_UP (space_needed + frame->va_arg_size, 16); } else space_needed = frame->va_arg_size; /* Record the allocation size required prior to the realignment AND. */ frame->stack_realign_allocate = space_needed; /* The re-aligned stack starts at frame->stack_realign_offset. Values before this point are not directly comparable with values below this point. Use sp_valid_at to determine if the stack pointer is valid for a given offset, fp_valid_at for the frame pointer, or choose_baseaddr to have a base register chosen for you. Note that the result of (frame->stack_realign_offset & (stack_alignment_needed - 1)) may not equal zero. */ offset = ROUND_UP (offset + space_needed, stack_alignment_needed); frame->stack_realign_offset = offset - space_needed; frame->sse_reg_save_offset = frame->stack_realign_offset + sse_reg_space_needed; } else { frame->stack_realign_offset = offset; if (TARGET_64BIT && m->call_ms2sysv) { m->call_ms2sysv_pad_in = !!(offset & UNITS_PER_WORD); offset += xlogue_layout::get_instance ().get_stack_space_used (); } /* Align and set SSE register save area. */ else if (frame->nsseregs) { /* If the incoming stack boundary is at least 16 bytes, or DRAP is required and the DRAP re-alignment boundary is at least 16 bytes, then we want the SSE register save area properly aligned. */ if (ix86_incoming_stack_boundary >= 128 || (stack_realign_drap && stack_alignment_needed >= 16)) offset = ROUND_UP (offset, 16); offset += frame->nsseregs * 16; } frame->sse_reg_save_offset = offset; offset += frame->va_arg_size; } /* Align start of frame for local function. When a function call is removed, it may become a leaf function. But if argument may be passed on stack, we need to align the stack when there is no tail call. */ if (m->call_ms2sysv || frame->va_arg_size != 0 || size != 0 || !crtl->is_leaf || (!crtl->tail_call_emit && cfun->machine->outgoing_args_on_stack) || cfun->calls_alloca || ix86_current_function_calls_tls_descriptor) offset = ROUND_UP (offset, stack_alignment_needed); /* Frame pointer points here. */ frame->frame_pointer_offset = offset; offset += size; /* Add outgoing arguments area. Can be skipped if we eliminated all the function calls as dead code. Skipping is however impossible when function calls alloca. Alloca expander assumes that last crtl->outgoing_args_size of stack frame are unused. */ if (ACCUMULATE_OUTGOING_ARGS && (!crtl->is_leaf || cfun->calls_alloca || ix86_current_function_calls_tls_descriptor)) { offset += crtl->outgoing_args_size; frame->outgoing_arguments_size = crtl->outgoing_args_size; } else frame->outgoing_arguments_size = 0; /* Align stack boundary. Only needed if we're calling another function or using alloca. */ if (!crtl->is_leaf || cfun->calls_alloca || ix86_current_function_calls_tls_descriptor) offset = ROUND_UP (offset, preferred_alignment); /* We've reached end of stack frame. */ frame->stack_pointer_offset = offset; /* Size prologue needs to allocate. */ to_allocate = offset - frame->sse_reg_save_offset; if ((!to_allocate && frame->nregs <= 1) || (TARGET_64BIT && to_allocate >= HOST_WIDE_INT_C (0x80000000)) /* If stack clash probing needs a loop, then it needs a scratch register. But the returned register is only guaranteed to be safe to use after register saves are complete. So if stack clash protections are enabled and the allocated frame is larger than the probe interval, then use pushes to save callee saved registers. */ || (flag_stack_clash_protection && to_allocate > get_probe_interval ())) frame->save_regs_using_mov = false; if (ix86_using_red_zone () && crtl->sp_is_unchanging && crtl->is_leaf && !ix86_pc_thunk_call_expanded && !ix86_current_function_calls_tls_descriptor) { frame->red_zone_size = to_allocate; if (frame->save_regs_using_mov) frame->red_zone_size += frame->nregs * UNITS_PER_WORD; if (frame->red_zone_size > RED_ZONE_SIZE - RED_ZONE_RESERVE) frame->red_zone_size = RED_ZONE_SIZE - RED_ZONE_RESERVE; } else frame->red_zone_size = 0; frame->stack_pointer_offset -= frame->red_zone_size; /* The SEH frame pointer location is near the bottom of the frame. This is enforced by the fact that the difference between the stack pointer and the frame pointer is limited to 240 bytes in the unwind data structure. */ if (TARGET_SEH) { /* Force the frame pointer to point at or below the lowest register save area, see the SEH code in config/i386/winnt.c for the rationale. */ frame->hard_frame_pointer_offset = frame->sse_reg_save_offset; /* If we can leave the frame pointer where it is, do so; however return the establisher frame for __builtin_frame_address (0) or else if the frame overflows the SEH maximum frame size. Note that the value returned by __builtin_frame_address (0) is quite constrained, because setjmp is piggybacked on the SEH machinery with recent versions of MinGW: # elif defined(__SEH__) # if defined(__aarch64__) || defined(_ARM64_) # define setjmp(BUF) _setjmp((BUF), __builtin_sponentry()) # elif (__MINGW_GCC_VERSION < 40702) # define setjmp(BUF) _setjmp((BUF), mingw_getsp()) # else # define setjmp(BUF) _setjmp((BUF), __builtin_frame_address (0)) # endif and the second argument passed to _setjmp, if not null, is forwarded to the TargetFrame parameter of RtlUnwindEx by longjmp (after it has built an ExceptionRecord on the fly describing the setjmp buffer). */ const HOST_WIDE_INT diff = frame->stack_pointer_offset - frame->hard_frame_pointer_offset; if (diff <= 255 && !crtl->accesses_prior_frames) { /* The resulting diff will be a multiple of 16 lower than 255, i.e. at most 240 as required by the unwind data structure. */ frame->hard_frame_pointer_offset += (diff & 15); } else if (diff <= SEH_MAX_FRAME_SIZE && !crtl->accesses_prior_frames) { /* Ideally we'd determine what portion of the local stack frame (within the constraint of the lowest 240) is most heavily used. But without that complication, simply bias the frame pointer by 128 bytes so as to maximize the amount of the local stack frame that is addressable with 8-bit offsets. */ frame->hard_frame_pointer_offset = frame->stack_pointer_offset - 128; } else frame->hard_frame_pointer_offset = frame->hfp_save_offset; } } /* This is semi-inlined memory_address_length, but simplified since we know that we're always dealing with reg+offset, and to avoid having to create and discard all that rtl. */ static inline int choose_baseaddr_len (unsigned int regno, HOST_WIDE_INT offset) { int len = 4; if (offset == 0) { /* EBP and R13 cannot be encoded without an offset. */ len = (regno == BP_REG || regno == R13_REG); } else if (IN_RANGE (offset, -128, 127)) len = 1; /* ESP and R12 must be encoded with a SIB byte. */ if (regno == SP_REG || regno == R12_REG) len++; return len; } /* Determine if the stack pointer is valid for accessing the CFA_OFFSET in the frame save area. The register is saved at CFA - CFA_OFFSET. */ static bool sp_valid_at (HOST_WIDE_INT cfa_offset) { const struct machine_frame_state &fs = cfun->machine->fs; if (fs.sp_realigned && cfa_offset <= fs.sp_realigned_offset) { /* Validate that the cfa_offset isn't in a "no-man's land". */ gcc_assert (cfa_offset <= fs.sp_realigned_fp_last); return false; } return fs.sp_valid; } /* Determine if the frame pointer is valid for accessing the CFA_OFFSET in the frame save area. The register is saved at CFA - CFA_OFFSET. */ static inline bool fp_valid_at (HOST_WIDE_INT cfa_offset) { const struct machine_frame_state &fs = cfun->machine->fs; if (fs.sp_realigned && cfa_offset > fs.sp_realigned_fp_last) { /* Validate that the cfa_offset isn't in a "no-man's land". */ gcc_assert (cfa_offset >= fs.sp_realigned_offset); return false; } return fs.fp_valid; } /* Choose a base register based upon alignment requested, speed and/or size. */ static void choose_basereg (HOST_WIDE_INT cfa_offset, rtx &base_reg, HOST_WIDE_INT &base_offset, unsigned int align_reqested, unsigned int *align) { const struct machine_function *m = cfun->machine; unsigned int hfp_align; unsigned int drap_align; unsigned int sp_align; bool hfp_ok = fp_valid_at (cfa_offset); bool drap_ok = m->fs.drap_valid; bool sp_ok = sp_valid_at (cfa_offset); hfp_align = drap_align = sp_align = INCOMING_STACK_BOUNDARY; /* Filter out any registers that don't meet the requested alignment criteria. */ if (align_reqested) { if (m->fs.realigned) hfp_align = drap_align = sp_align = crtl->stack_alignment_needed; /* SEH unwind code does do not currently support REG_CFA_EXPRESSION notes (which we would need to use a realigned stack pointer), so disable on SEH targets. */ else if (m->fs.sp_realigned) sp_align = crtl->stack_alignment_needed; hfp_ok = hfp_ok && hfp_align >= align_reqested; drap_ok = drap_ok && drap_align >= align_reqested; sp_ok = sp_ok && sp_align >= align_reqested; } if (m->use_fast_prologue_epilogue) { /* Choose the base register most likely to allow the most scheduling opportunities. Generally FP is valid throughout the function, while DRAP must be reloaded within the epilogue. But choose either over the SP due to increased encoding size. */ if (hfp_ok) { base_reg = hard_frame_pointer_rtx; base_offset = m->fs.fp_offset - cfa_offset; } else if (drap_ok) { base_reg = crtl->drap_reg; base_offset = 0 - cfa_offset; } else if (sp_ok) { base_reg = stack_pointer_rtx; base_offset = m->fs.sp_offset - cfa_offset; } } else { HOST_WIDE_INT toffset; int len = 16, tlen; /* Choose the base register with the smallest address encoding. With a tie, choose FP > DRAP > SP. */ if (sp_ok) { base_reg = stack_pointer_rtx; base_offset = m->fs.sp_offset - cfa_offset; len = choose_baseaddr_len (STACK_POINTER_REGNUM, base_offset); } if (drap_ok) { toffset = 0 - cfa_offset; tlen = choose_baseaddr_len (REGNO (crtl->drap_reg), toffset); if (tlen <= len) { base_reg = crtl->drap_reg; base_offset = toffset; len = tlen; } } if (hfp_ok) { toffset = m->fs.fp_offset - cfa_offset; tlen = choose_baseaddr_len (HARD_FRAME_POINTER_REGNUM, toffset); if (tlen <= len) { base_reg = hard_frame_pointer_rtx; base_offset = toffset; } } } /* Set the align return value. */ if (align) { if (base_reg == stack_pointer_rtx) *align = sp_align; else if (base_reg == crtl->drap_reg) *align = drap_align; else if (base_reg == hard_frame_pointer_rtx) *align = hfp_align; } } /* Return an RTX that points to CFA_OFFSET within the stack frame and the alignment of address. If ALIGN is non-null, it should point to an alignment value (in bits) that is preferred or zero and will recieve the alignment of the base register that was selected, irrespective of rather or not CFA_OFFSET is a multiple of that alignment value. If it is possible for the base register offset to be non-immediate then SCRATCH_REGNO should specify a scratch register to use. The valid base registers are taken from CFUN->MACHINE->FS. */ static rtx choose_baseaddr (HOST_WIDE_INT cfa_offset, unsigned int *align, unsigned int scratch_regno = INVALID_REGNUM) { rtx base_reg = NULL; HOST_WIDE_INT base_offset = 0; /* If a specific alignment is requested, try to get a base register with that alignment first. */ if (align && *align) choose_basereg (cfa_offset, base_reg, base_offset, *align, align); if (!base_reg) choose_basereg (cfa_offset, base_reg, base_offset, 0, align); gcc_assert (base_reg != NULL); rtx base_offset_rtx = GEN_INT (base_offset); if (!x86_64_immediate_operand (base_offset_rtx, Pmode)) { gcc_assert (scratch_regno != INVALID_REGNUM); rtx scratch_reg = gen_rtx_REG (Pmode, scratch_regno); emit_move_insn (scratch_reg, base_offset_rtx); return gen_rtx_PLUS (Pmode, base_reg, scratch_reg); } return plus_constant (Pmode, base_reg, base_offset); } /* Emit code to save registers in the prologue. */ static void ix86_emit_save_regs (void) { unsigned int regno; rtx_insn *insn; for (regno = FIRST_PSEUDO_REGISTER - 1; regno-- > 0; ) if (GENERAL_REGNO_P (regno) && ix86_save_reg (regno, true, true)) { insn = emit_insn (gen_push (gen_rtx_REG (word_mode, regno))); RTX_FRAME_RELATED_P (insn) = 1; } } /* Emit a single register save at CFA - CFA_OFFSET. */ static void ix86_emit_save_reg_using_mov (machine_mode mode, unsigned int regno, HOST_WIDE_INT cfa_offset) { struct machine_function *m = cfun->machine; rtx reg = gen_rtx_REG (mode, regno); rtx mem, addr, base, insn; unsigned int align = GET_MODE_ALIGNMENT (mode); addr = choose_baseaddr (cfa_offset, &align); mem = gen_frame_mem (mode, addr); /* The location aligment depends upon the base register. */ align = MIN (GET_MODE_ALIGNMENT (mode), align); gcc_assert (! (cfa_offset & (align / BITS_PER_UNIT - 1))); set_mem_align (mem, align); insn = emit_insn (gen_rtx_SET (mem, reg)); RTX_FRAME_RELATED_P (insn) = 1; base = addr; if (GET_CODE (base) == PLUS) base = XEXP (base, 0); gcc_checking_assert (REG_P (base)); /* When saving registers into a re-aligned local stack frame, avoid any tricky guessing by dwarf2out. */ if (m->fs.realigned) { gcc_checking_assert (stack_realign_drap); if (regno == REGNO (crtl->drap_reg)) { /* A bit of a hack. We force the DRAP register to be saved in the re-aligned stack frame, which provides us with a copy of the CFA that will last past the prologue. Install it. */ gcc_checking_assert (cfun->machine->fs.fp_valid); addr = plus_constant (Pmode, hard_frame_pointer_rtx, cfun->machine->fs.fp_offset - cfa_offset); mem = gen_rtx_MEM (mode, addr); add_reg_note (insn, REG_CFA_DEF_CFA, mem); } else { /* The frame pointer is a stable reference within the aligned frame. Use it. */ gcc_checking_assert (cfun->machine->fs.fp_valid); addr = plus_constant (Pmode, hard_frame_pointer_rtx, cfun->machine->fs.fp_offset - cfa_offset); mem = gen_rtx_MEM (mode, addr); add_reg_note (insn, REG_CFA_EXPRESSION, gen_rtx_SET (mem, reg)); } } else if (base == stack_pointer_rtx && m->fs.sp_realigned && cfa_offset >= m->fs.sp_realigned_offset) { gcc_checking_assert (stack_realign_fp); add_reg_note (insn, REG_CFA_EXPRESSION, gen_rtx_SET (mem, reg)); } /* The memory may not be relative to the current CFA register, which means that we may need to generate a new pattern for use by the unwind info. */ else if (base != m->fs.cfa_reg) { addr = plus_constant (Pmode, m->fs.cfa_reg, m->fs.cfa_offset - cfa_offset); mem = gen_rtx_MEM (mode, addr); add_reg_note (insn, REG_CFA_OFFSET, gen_rtx_SET (mem, reg)); } } /* Emit code to save registers using MOV insns. First register is stored at CFA - CFA_OFFSET. */ static void ix86_emit_save_regs_using_mov (HOST_WIDE_INT cfa_offset) { unsigned int regno; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (GENERAL_REGNO_P (regno) && ix86_save_reg (regno, true, true)) { ix86_emit_save_reg_using_mov (word_mode, regno, cfa_offset); cfa_offset -= UNITS_PER_WORD; } } /* Emit code to save SSE registers using MOV insns. First register is stored at CFA - CFA_OFFSET. */ static void ix86_emit_save_sse_regs_using_mov (HOST_WIDE_INT cfa_offset) { unsigned int regno; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (SSE_REGNO_P (regno) && ix86_save_reg (regno, true, true)) { ix86_emit_save_reg_using_mov (V4SFmode, regno, cfa_offset); cfa_offset -= GET_MODE_SIZE (V4SFmode); } } static GTY(()) rtx queued_cfa_restores; /* Add a REG_CFA_RESTORE REG note to INSN or queue them until next stack manipulation insn. The value is on the stack at CFA - CFA_OFFSET. Don't add the note if the previously saved value will be left untouched within stack red-zone till return, as unwinders can find the same value in the register and on the stack. */ static void ix86_add_cfa_restore_note (rtx_insn *insn, rtx reg, HOST_WIDE_INT cfa_offset) { if (!crtl->shrink_wrapped && cfa_offset <= cfun->machine->fs.red_zone_offset) return; if (insn) { add_reg_note (insn, REG_CFA_RESTORE, reg); RTX_FRAME_RELATED_P (insn) = 1; } else queued_cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, queued_cfa_restores); } /* Add queued REG_CFA_RESTORE notes if any to INSN. */ static void ix86_add_queued_cfa_restore_notes (rtx insn) { rtx last; if (!queued_cfa_restores) return; for (last = queued_cfa_restores; XEXP (last, 1); last = XEXP (last, 1)) ; XEXP (last, 1) = REG_NOTES (insn); REG_NOTES (insn) = queued_cfa_restores; queued_cfa_restores = NULL_RTX; RTX_FRAME_RELATED_P (insn) = 1; } /* Expand prologue or epilogue stack adjustment. The pattern exist to put a dependency on all ebp-based memory accesses. STYLE should be negative if instructions should be marked as frame related, zero if %r11 register is live and cannot be freely used and positive otherwise. */ static rtx pro_epilogue_adjust_stack (rtx dest, rtx src, rtx offset, int style, bool set_cfa) { struct machine_function *m = cfun->machine; rtx addend = offset; rtx insn; bool add_frame_related_expr = false; if (!x86_64_immediate_operand (offset, Pmode)) { /* r11 is used by indirect sibcall return as well, set before the epilogue and used after the epilogue. */ if (style) addend = gen_rtx_REG (Pmode, R11_REG); else { gcc_assert (src != hard_frame_pointer_rtx && dest != hard_frame_pointer_rtx); addend = hard_frame_pointer_rtx; } emit_insn (gen_rtx_SET (addend, offset)); if (style < 0) add_frame_related_expr = true; } insn = emit_insn (gen_pro_epilogue_adjust_stack_add (Pmode, dest, src, addend)); if (style >= 0) ix86_add_queued_cfa_restore_notes (insn); if (set_cfa) { rtx r; gcc_assert (m->fs.cfa_reg == src); m->fs.cfa_offset += INTVAL (offset); m->fs.cfa_reg = dest; r = gen_rtx_PLUS (Pmode, src, offset); r = gen_rtx_SET (dest, r); add_reg_note (insn, REG_CFA_ADJUST_CFA, r); RTX_FRAME_RELATED_P (insn) = 1; } else if (style < 0) { RTX_FRAME_RELATED_P (insn) = 1; if (add_frame_related_expr) { rtx r = gen_rtx_PLUS (Pmode, src, offset); r = gen_rtx_SET (dest, r); add_reg_note (insn, REG_FRAME_RELATED_EXPR, r); } } if (dest == stack_pointer_rtx) { HOST_WIDE_INT ooffset = m->fs.sp_offset; bool valid = m->fs.sp_valid; bool realigned = m->fs.sp_realigned; if (src == hard_frame_pointer_rtx) { valid = m->fs.fp_valid; realigned = false; ooffset = m->fs.fp_offset; } else if (src == crtl->drap_reg) { valid = m->fs.drap_valid; realigned = false; ooffset = 0; } else { /* Else there are two possibilities: SP itself, which we set up as the default above. Or EH_RETURN_STACKADJ_RTX, which is taken care of this by hand along the eh_return path. */ gcc_checking_assert (src == stack_pointer_rtx || offset == const0_rtx); } m->fs.sp_offset = ooffset - INTVAL (offset); m->fs.sp_valid = valid; m->fs.sp_realigned = realigned; } return insn; } /* Find an available register to be used as dynamic realign argument pointer regsiter. Such a register will be written in prologue and used in begin of body, so it must not be 1. parameter passing register. 2. GOT pointer. We reuse static-chain register if it is available. Otherwise, we use DI for i386 and R13 for x86-64. We chose R13 since it has shorter encoding. Return: the regno of chosen register. */ static unsigned int find_drap_reg (void) { tree decl = cfun->decl; /* Always use callee-saved register if there are no caller-saved registers. */ if (TARGET_64BIT) { /* Use R13 for nested function or function need static chain. Since function with tail call may use any caller-saved registers in epilogue, DRAP must not use caller-saved register in such case. */ if (DECL_STATIC_CHAIN (decl) || cfun->machine->no_caller_saved_registers || crtl->tail_call_emit) return R13_REG; return R10_REG; } else { /* Use DI for nested function or function need static chain. Since function with tail call may use any caller-saved registers in epilogue, DRAP must not use caller-saved register in such case. */ if (DECL_STATIC_CHAIN (decl) || cfun->machine->no_caller_saved_registers || crtl->tail_call_emit) return DI_REG; /* Reuse static chain register if it isn't used for parameter passing. */ if (ix86_function_regparm (TREE_TYPE (decl), decl) <= 2) { unsigned int ccvt = ix86_get_callcvt (TREE_TYPE (decl)); if ((ccvt & (IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL)) == 0) return CX_REG; } return DI_REG; } } /* Return minimum incoming stack alignment. */ static unsigned int ix86_minimum_incoming_stack_boundary (bool sibcall) { unsigned int incoming_stack_boundary; /* Stack of interrupt handler is aligned to 128 bits in 64bit mode. */ if (cfun->machine->func_type != TYPE_NORMAL) incoming_stack_boundary = TARGET_64BIT ? 128 : MIN_STACK_BOUNDARY; /* Prefer the one specified at command line. */ else if (ix86_user_incoming_stack_boundary) incoming_stack_boundary = ix86_user_incoming_stack_boundary; /* In 32bit, use MIN_STACK_BOUNDARY for incoming stack boundary if -mstackrealign is used, it isn't used for sibcall check and estimated stack alignment is 128bit. */ else if (!sibcall && ix86_force_align_arg_pointer && crtl->stack_alignment_estimated == 128) incoming_stack_boundary = MIN_STACK_BOUNDARY; else incoming_stack_boundary = ix86_default_incoming_stack_boundary; /* Incoming stack alignment can be changed on individual functions via force_align_arg_pointer attribute. We use the smallest incoming stack boundary. */ if (incoming_stack_boundary > MIN_STACK_BOUNDARY && lookup_attribute ("force_align_arg_pointer", TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl)))) incoming_stack_boundary = MIN_STACK_BOUNDARY; /* The incoming stack frame has to be aligned at least at parm_stack_boundary. */ if (incoming_stack_boundary < crtl->parm_stack_boundary) incoming_stack_boundary = crtl->parm_stack_boundary; /* Stack at entrance of main is aligned by runtime. We use the smallest incoming stack boundary. */ if (incoming_stack_boundary > MAIN_STACK_BOUNDARY && DECL_NAME (current_function_decl) && MAIN_NAME_P (DECL_NAME (current_function_decl)) && DECL_FILE_SCOPE_P (current_function_decl)) incoming_stack_boundary = MAIN_STACK_BOUNDARY; return incoming_stack_boundary; } /* Update incoming stack boundary and estimated stack alignment. */ static void ix86_update_stack_boundary (void) { ix86_incoming_stack_boundary = ix86_minimum_incoming_stack_boundary (false); /* x86_64 vararg needs 16byte stack alignment for register save area. */ if (TARGET_64BIT && cfun->stdarg && crtl->stack_alignment_estimated < 128) crtl->stack_alignment_estimated = 128; /* __tls_get_addr needs to be called with 16-byte aligned stack. */ if (ix86_tls_descriptor_calls_expanded_in_cfun && crtl->preferred_stack_boundary < 128) crtl->preferred_stack_boundary = 128; } /* Handle the TARGET_GET_DRAP_RTX hook. Return NULL if no DRAP is needed or an rtx for DRAP otherwise. */ static rtx ix86_get_drap_rtx (void) { /* We must use DRAP if there are outgoing arguments on stack or the stack pointer register is clobbered by asm statment and ACCUMULATE_OUTGOING_ARGS is false. */ if (ix86_force_drap || ((cfun->machine->outgoing_args_on_stack || crtl->sp_is_clobbered_by_asm) && !ACCUMULATE_OUTGOING_ARGS)) crtl->need_drap = true; if (stack_realign_drap) { /* Assign DRAP to vDRAP and returns vDRAP */ unsigned int regno = find_drap_reg (); rtx drap_vreg; rtx arg_ptr; rtx_insn *seq, *insn; arg_ptr = gen_rtx_REG (Pmode, regno); crtl->drap_reg = arg_ptr; start_sequence (); drap_vreg = copy_to_reg (arg_ptr); seq = get_insns (); end_sequence (); insn = emit_insn_before (seq, NEXT_INSN (entry_of_function ())); if (!optimize) { add_reg_note (insn, REG_CFA_SET_VDRAP, drap_vreg); RTX_FRAME_RELATED_P (insn) = 1; } return drap_vreg; } else return NULL; } /* Handle the TARGET_INTERNAL_ARG_POINTER hook. */ static rtx ix86_internal_arg_pointer (void) { return virtual_incoming_args_rtx; } struct scratch_reg { rtx reg; bool saved; }; /* Return a short-lived scratch register for use on function entry. In 32-bit mode, it is valid only after the registers are saved in the prologue. This register must be released by means of release_scratch_register_on_entry once it is dead. */ static void get_scratch_register_on_entry (struct scratch_reg *sr) { int regno; sr->saved = false; if (TARGET_64BIT) { /* We always use R11 in 64-bit mode. */ regno = R11_REG; } else { tree decl = current_function_decl, fntype = TREE_TYPE (decl); bool fastcall_p = lookup_attribute ("fastcall", TYPE_ATTRIBUTES (fntype)) != NULL_TREE; bool thiscall_p = lookup_attribute ("thiscall", TYPE_ATTRIBUTES (fntype)) != NULL_TREE; bool static_chain_p = DECL_STATIC_CHAIN (decl); int regparm = ix86_function_regparm (fntype, decl); int drap_regno = crtl->drap_reg ? REGNO (crtl->drap_reg) : INVALID_REGNUM; /* 'fastcall' sets regparm to 2, uses ecx/edx for arguments and eax for the static chain register. */ if ((regparm < 1 || (fastcall_p && !static_chain_p)) && drap_regno != AX_REG) regno = AX_REG; /* 'thiscall' sets regparm to 1, uses ecx for arguments and edx for the static chain register. */ else if (thiscall_p && !static_chain_p && drap_regno != AX_REG) regno = AX_REG; else if (regparm < 2 && !thiscall_p && drap_regno != DX_REG) regno = DX_REG; /* ecx is the static chain register. */ else if (regparm < 3 && !fastcall_p && !thiscall_p && !static_chain_p && drap_regno != CX_REG) regno = CX_REG; else if (ix86_save_reg (BX_REG, true, false)) regno = BX_REG; /* esi is the static chain register. */ else if (!(regparm == 3 && static_chain_p) && ix86_save_reg (SI_REG, true, false)) regno = SI_REG; else if (ix86_save_reg (DI_REG, true, false)) regno = DI_REG; else { regno = (drap_regno == AX_REG ? DX_REG : AX_REG); sr->saved = true; } } sr->reg = gen_rtx_REG (Pmode, regno); if (sr->saved) { rtx_insn *insn = emit_insn (gen_push (sr->reg)); RTX_FRAME_RELATED_P (insn) = 1; } } /* Release a scratch register obtained from the preceding function. If RELEASE_VIA_POP is true, we just pop the register off the stack to release it. This is what non-Linux systems use with -fstack-check. Otherwise we use OFFSET to locate the saved register and the allocated stack space becomes part of the local frame and is deallocated by the epilogue. */ static void release_scratch_register_on_entry (struct scratch_reg *sr, HOST_WIDE_INT offset, bool release_via_pop) { if (sr->saved) { if (release_via_pop) { struct machine_function *m = cfun->machine; rtx x, insn = emit_insn (gen_pop (sr->reg)); /* The RX FRAME_RELATED_P mechanism doesn't know about pop. */ RTX_FRAME_RELATED_P (insn) = 1; x = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (UNITS_PER_WORD)); x = gen_rtx_SET (stack_pointer_rtx, x); add_reg_note (insn, REG_FRAME_RELATED_EXPR, x); m->fs.sp_offset -= UNITS_PER_WORD; } else { rtx x = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset)); x = gen_rtx_SET (sr->reg, gen_rtx_MEM (word_mode, x)); emit_insn (x); } } } /* Emit code to adjust the stack pointer by SIZE bytes while probing it. This differs from the next routine in that it tries hard to prevent attacks that jump the stack guard. Thus it is never allowed to allocate more than PROBE_INTERVAL bytes of stack space without a suitable probe. INT_REGISTERS_SAVED is true if integer registers have already been pushed on the stack. */ static void ix86_adjust_stack_and_probe_stack_clash (HOST_WIDE_INT size, const bool int_registers_saved) { struct machine_function *m = cfun->machine; /* If this function does not statically allocate stack space, then no probes are needed. */ if (!size) { /* However, the allocation of space via pushes for register saves could be viewed as allocating space, but without the need to probe. */ if (m->frame.nregs || m->frame.nsseregs || frame_pointer_needed) dump_stack_clash_frame_info (NO_PROBE_SMALL_FRAME, true); else dump_stack_clash_frame_info (NO_PROBE_NO_FRAME, false); return; } /* If we are a noreturn function, then we have to consider the possibility that we're called via a jump rather than a call. Thus we don't have the implicit probe generated by saving the return address into the stack at the call. Thus, the stack pointer could be anywhere in the guard page. The safe thing to do is emit a probe now. The probe can be avoided if we have already emitted any callee register saves into the stack or have a frame pointer (which will have been saved as well). Those saves will function as implicit probes. ?!? This should be revamped to work like aarch64 and s390 where we track the offset from the most recent probe. Normally that offset would be zero. For a noreturn function we would reset it to PROBE_INTERVAL - (STACK_BOUNDARY / BITS_PER_UNIT). Then we just probe when we cross PROBE_INTERVAL. */ if (TREE_THIS_VOLATILE (cfun->decl) && !(m->frame.nregs || m->frame.nsseregs || frame_pointer_needed)) { /* We can safely use any register here since we're just going to push its value and immediately pop it back. But we do try and avoid argument passing registers so as not to introduce dependencies in the pipeline. For 32 bit we use %esi and for 64 bit we use %rax. */ rtx dummy_reg = gen_rtx_REG (word_mode, TARGET_64BIT ? AX_REG : SI_REG); rtx_insn *insn_push = emit_insn (gen_push (dummy_reg)); rtx_insn *insn_pop = emit_insn (gen_pop (dummy_reg)); m->fs.sp_offset -= UNITS_PER_WORD; if (m->fs.cfa_reg == stack_pointer_rtx) { m->fs.cfa_offset -= UNITS_PER_WORD; rtx x = plus_constant (Pmode, stack_pointer_rtx, -UNITS_PER_WORD); x = gen_rtx_SET (stack_pointer_rtx, x); add_reg_note (insn_push, REG_CFA_ADJUST_CFA, x); RTX_FRAME_RELATED_P (insn_push) = 1; x = plus_constant (Pmode, stack_pointer_rtx, UNITS_PER_WORD); x = gen_rtx_SET (stack_pointer_rtx, x); add_reg_note (insn_pop, REG_CFA_ADJUST_CFA, x); RTX_FRAME_RELATED_P (insn_pop) = 1; } emit_insn (gen_blockage ()); } /* If we allocate less than the size of the guard statically, then no probing is necessary, but we do need to allocate the stack. */ if (size < (1 << param_stack_clash_protection_guard_size)) { pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-size), -1, m->fs.cfa_reg == stack_pointer_rtx); dump_stack_clash_frame_info (NO_PROBE_SMALL_FRAME, true); return; } /* We're allocating a large enough stack frame that we need to emit probes. Either emit them inline or in a loop depending on the size. */ HOST_WIDE_INT probe_interval = get_probe_interval (); if (size <= 4 * probe_interval) { HOST_WIDE_INT i; for (i = probe_interval; i <= size; i += probe_interval) { /* Allocate PROBE_INTERVAL bytes. */ rtx insn = pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-probe_interval), -1, m->fs.cfa_reg == stack_pointer_rtx); add_reg_note (insn, REG_STACK_CHECK, const0_rtx); /* And probe at *sp. */ emit_stack_probe (stack_pointer_rtx); emit_insn (gen_blockage ()); } /* We need to allocate space for the residual, but we do not need to probe the residual. */ HOST_WIDE_INT residual = (i - probe_interval - size); if (residual) pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (residual), -1, m->fs.cfa_reg == stack_pointer_rtx); dump_stack_clash_frame_info (PROBE_INLINE, residual != 0); } else { /* We expect the GP registers to be saved when probes are used as the probing sequences might need a scratch register and the routine to allocate one assumes the integer registers have already been saved. */ gcc_assert (int_registers_saved); struct scratch_reg sr; get_scratch_register_on_entry (&sr); /* If we needed to save a register, then account for any space that was pushed (we are not going to pop the register when we do the restore). */ if (sr.saved) size -= UNITS_PER_WORD; /* Step 1: round SIZE down to a multiple of the interval. */ HOST_WIDE_INT rounded_size = size & -probe_interval; /* Step 2: compute final value of the loop counter. Use lea if possible. */ rtx addr = plus_constant (Pmode, stack_pointer_rtx, -rounded_size); rtx insn; if (address_no_seg_operand (addr, Pmode)) insn = emit_insn (gen_rtx_SET (sr.reg, addr)); else { emit_move_insn (sr.reg, GEN_INT (-rounded_size)); insn = emit_insn (gen_rtx_SET (sr.reg, gen_rtx_PLUS (Pmode, sr.reg, stack_pointer_rtx))); } if (m->fs.cfa_reg == stack_pointer_rtx) { add_reg_note (insn, REG_CFA_DEF_CFA, plus_constant (Pmode, sr.reg, m->fs.cfa_offset + rounded_size)); RTX_FRAME_RELATED_P (insn) = 1; } /* Step 3: the loop. */ rtx size_rtx = GEN_INT (rounded_size); insn = emit_insn (gen_adjust_stack_and_probe (Pmode, sr.reg, sr.reg, size_rtx)); if (m->fs.cfa_reg == stack_pointer_rtx) { m->fs.cfa_offset += rounded_size; add_reg_note (insn, REG_CFA_DEF_CFA, plus_constant (Pmode, stack_pointer_rtx, m->fs.cfa_offset)); RTX_FRAME_RELATED_P (insn) = 1; } m->fs.sp_offset += rounded_size; emit_insn (gen_blockage ()); /* Step 4: adjust SP if we cannot assert at compile-time that SIZE is equal to ROUNDED_SIZE. */ if (size != rounded_size) pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (rounded_size - size), -1, m->fs.cfa_reg == stack_pointer_rtx); dump_stack_clash_frame_info (PROBE_LOOP, size != rounded_size); /* This does not deallocate the space reserved for the scratch register. That will be deallocated in the epilogue. */ release_scratch_register_on_entry (&sr, size, false); } /* Make sure nothing is scheduled before we are done. */ emit_insn (gen_blockage ()); } /* Emit code to adjust the stack pointer by SIZE bytes while probing it. INT_REGISTERS_SAVED is true if integer registers have already been pushed on the stack. */ static void ix86_adjust_stack_and_probe (HOST_WIDE_INT size, const bool int_registers_saved) { /* We skip the probe for the first interval + a small dope of 4 words and probe that many bytes past the specified size to maintain a protection area at the botton of the stack. */ const int dope = 4 * UNITS_PER_WORD; rtx size_rtx = GEN_INT (size), last; /* See if we have a constant small number of probes to generate. If so, that's the easy case. The run-time loop is made up of 9 insns in the generic case while the compile-time loop is made up of 3+2*(n-1) insns for n # of intervals. */ if (size <= 4 * get_probe_interval ()) { HOST_WIDE_INT i, adjust; bool first_probe = true; /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for values of N from 1 until it exceeds SIZE. If only one probe is needed, this will not generate any code. Then adjust and probe to PROBE_INTERVAL + SIZE. */ for (i = get_probe_interval (); i < size; i += get_probe_interval ()) { if (first_probe) { adjust = 2 * get_probe_interval () + dope; first_probe = false; } else adjust = get_probe_interval (); emit_insn (gen_rtx_SET (stack_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, -adjust))); emit_stack_probe (stack_pointer_rtx); } if (first_probe) adjust = size + get_probe_interval () + dope; else adjust = size + get_probe_interval () - i; emit_insn (gen_rtx_SET (stack_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, -adjust))); emit_stack_probe (stack_pointer_rtx); /* Adjust back to account for the additional first interval. */ last = emit_insn (gen_rtx_SET (stack_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, (get_probe_interval () + dope)))); } /* Otherwise, do the same as above, but in a loop. Note that we must be extra careful with variables wrapping around because we might be at the very top (or the very bottom) of the address space and we have to be able to handle this case properly; in particular, we use an equality test for the loop condition. */ else { /* We expect the GP registers to be saved when probes are used as the probing sequences might need a scratch register and the routine to allocate one assumes the integer registers have already been saved. */ gcc_assert (int_registers_saved); HOST_WIDE_INT rounded_size; struct scratch_reg sr; get_scratch_register_on_entry (&sr); /* If we needed to save a register, then account for any space that was pushed (we are not going to pop the register when we do the restore). */ if (sr.saved) size -= UNITS_PER_WORD; /* Step 1: round SIZE to the previous multiple of the interval. */ rounded_size = ROUND_DOWN (size, get_probe_interval ()); /* Step 2: compute initial and final value of the loop counter. */ /* SP = SP_0 + PROBE_INTERVAL. */ emit_insn (gen_rtx_SET (stack_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, - (get_probe_interval () + dope)))); /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */ if (rounded_size <= (HOST_WIDE_INT_1 << 31)) emit_insn (gen_rtx_SET (sr.reg, plus_constant (Pmode, stack_pointer_rtx, -rounded_size))); else { emit_move_insn (sr.reg, GEN_INT (-rounded_size)); emit_insn (gen_rtx_SET (sr.reg, gen_rtx_PLUS (Pmode, sr.reg, stack_pointer_rtx))); } /* Step 3: the loop do { SP = SP + PROBE_INTERVAL probe at SP } while (SP != LAST_ADDR) adjusts SP and probes to PROBE_INTERVAL + N * PROBE_INTERVAL for values of N from 1 until it is equal to ROUNDED_SIZE. */ emit_insn (gen_adjust_stack_and_probe (Pmode, sr.reg, sr.reg, size_rtx)); /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot assert at compile-time that SIZE is equal to ROUNDED_SIZE. */ if (size != rounded_size) { emit_insn (gen_rtx_SET (stack_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, rounded_size - size))); emit_stack_probe (stack_pointer_rtx); } /* Adjust back to account for the additional first interval. */ last = emit_insn (gen_rtx_SET (stack_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, (get_probe_interval () + dope)))); /* This does not deallocate the space reserved for the scratch register. That will be deallocated in the epilogue. */ release_scratch_register_on_entry (&sr, size, false); } /* Even if the stack pointer isn't the CFA register, we need to correctly describe the adjustments made to it, in particular differentiate the frame-related ones from the frame-unrelated ones. */ if (size > 0) { rtx expr = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (2)); XVECEXP (expr, 0, 0) = gen_rtx_SET (stack_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, -size)); XVECEXP (expr, 0, 1) = gen_rtx_SET (stack_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, get_probe_interval () + dope + size)); add_reg_note (last, REG_FRAME_RELATED_EXPR, expr); RTX_FRAME_RELATED_P (last) = 1; cfun->machine->fs.sp_offset += size; } /* Make sure nothing is scheduled before we are done. */ emit_insn (gen_blockage ()); } /* Adjust the stack pointer up to REG while probing it. */ const char * output_adjust_stack_and_probe (rtx reg) { static int labelno = 0; char loop_lab[32]; rtx xops[2]; ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno++); /* Loop. */ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab); /* SP = SP + PROBE_INTERVAL. */ xops[0] = stack_pointer_rtx; xops[1] = GEN_INT (get_probe_interval ()); output_asm_insn ("sub%z0\t{%1, %0|%0, %1}", xops); /* Probe at SP. */ xops[1] = const0_rtx; output_asm_insn ("or%z0\t{%1, (%0)|DWORD PTR [%0], %1}", xops); /* Test if SP == LAST_ADDR. */ xops[0] = stack_pointer_rtx; xops[1] = reg; output_asm_insn ("cmp%z0\t{%1, %0|%0, %1}", xops); /* Branch. */ fputs ("\tjne\t", asm_out_file); assemble_name_raw (asm_out_file, loop_lab); fputc ('\n', asm_out_file); return ""; } /* Emit code to probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive. These are offsets from the current stack pointer. INT_REGISTERS_SAVED is true if integer registers have already been pushed on the stack. */ static void ix86_emit_probe_stack_range (HOST_WIDE_INT first, HOST_WIDE_INT size, const bool int_registers_saved) { /* See if we have a constant small number of probes to generate. If so, that's the easy case. The run-time loop is made up of 6 insns in the generic case while the compile-time loop is made up of n insns for n # of intervals. */ if (size <= 6 * get_probe_interval ()) { HOST_WIDE_INT i; /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until it exceeds SIZE. If only one probe is needed, this will not generate any code. Then probe at FIRST + SIZE. */ for (i = get_probe_interval (); i < size; i += get_probe_interval ()) emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx, -(first + i))); emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx, -(first + size))); } /* Otherwise, do the same as above, but in a loop. Note that we must be extra careful with variables wrapping around because we might be at the very top (or the very bottom) of the address space and we have to be able to handle this case properly; in particular, we use an equality test for the loop condition. */ else { /* We expect the GP registers to be saved when probes are used as the probing sequences might need a scratch register and the routine to allocate one assumes the integer registers have already been saved. */ gcc_assert (int_registers_saved); HOST_WIDE_INT rounded_size, last; struct scratch_reg sr; get_scratch_register_on_entry (&sr); /* Step 1: round SIZE to the previous multiple of the interval. */ rounded_size = ROUND_DOWN (size, get_probe_interval ()); /* Step 2: compute initial and final value of the loop counter. */ /* TEST_OFFSET = FIRST. */ emit_move_insn (sr.reg, GEN_INT (-first)); /* LAST_OFFSET = FIRST + ROUNDED_SIZE. */ last = first + rounded_size; /* Step 3: the loop do { TEST_ADDR = TEST_ADDR + PROBE_INTERVAL probe at TEST_ADDR } while (TEST_ADDR != LAST_ADDR) probes at FIRST + N * PROBE_INTERVAL for values of N from 1 until it is equal to ROUNDED_SIZE. */ emit_insn (gen_probe_stack_range (Pmode, sr.reg, sr.reg, GEN_INT (-last))); /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time that SIZE is equal to ROUNDED_SIZE. */ if (size != rounded_size) emit_stack_probe (plus_constant (Pmode, gen_rtx_PLUS (Pmode, stack_pointer_rtx, sr.reg), rounded_size - size)); release_scratch_register_on_entry (&sr, size, true); } /* Make sure nothing is scheduled before we are done. */ emit_insn (gen_blockage ()); } /* Probe a range of stack addresses from REG to END, inclusive. These are offsets from the current stack pointer. */ const char * output_probe_stack_range (rtx reg, rtx end) { static int labelno = 0; char loop_lab[32]; rtx xops[3]; ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno++); /* Loop. */ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab); /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */ xops[0] = reg; xops[1] = GEN_INT (get_probe_interval ()); output_asm_insn ("sub%z0\t{%1, %0|%0, %1}", xops); /* Probe at TEST_ADDR. */ xops[0] = stack_pointer_rtx; xops[1] = reg; xops[2] = const0_rtx; output_asm_insn ("or%z0\t{%2, (%0,%1)|DWORD PTR [%0+%1], %2}", xops); /* Test if TEST_ADDR == LAST_ADDR. */ xops[0] = reg; xops[1] = end; output_asm_insn ("cmp%z0\t{%1, %0|%0, %1}", xops); /* Branch. */ fputs ("\tjne\t", asm_out_file); assemble_name_raw (asm_out_file, loop_lab); fputc ('\n', asm_out_file); return ""; } /* Set stack_frame_required to false if stack frame isn't required. Update STACK_ALIGNMENT to the largest alignment, in bits, of stack slot used if stack frame is required and CHECK_STACK_SLOT is true. */ static void ix86_find_max_used_stack_alignment (unsigned int &stack_alignment, bool check_stack_slot) { HARD_REG_SET set_up_by_prologue, prologue_used; basic_block bb; CLEAR_HARD_REG_SET (prologue_used); CLEAR_HARD_REG_SET (set_up_by_prologue); add_to_hard_reg_set (&set_up_by_prologue, Pmode, STACK_POINTER_REGNUM); add_to_hard_reg_set (&set_up_by_prologue, Pmode, ARG_POINTER_REGNUM); add_to_hard_reg_set (&set_up_by_prologue, Pmode, HARD_FRAME_POINTER_REGNUM); /* The preferred stack alignment is the minimum stack alignment. */ if (stack_alignment > crtl->preferred_stack_boundary) stack_alignment = crtl->preferred_stack_boundary; bool require_stack_frame = false; FOR_EACH_BB_FN (bb, cfun) { rtx_insn *insn; FOR_BB_INSNS (bb, insn) if (NONDEBUG_INSN_P (insn) && requires_stack_frame_p (insn, prologue_used, set_up_by_prologue)) { require_stack_frame = true; if (check_stack_slot) { /* Find the maximum stack alignment. */ subrtx_iterator::array_type array; FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL) if (MEM_P (*iter) && (reg_mentioned_p (stack_pointer_rtx, *iter) || reg_mentioned_p (frame_pointer_rtx, *iter))) { unsigned int alignment = MEM_ALIGN (*iter); if (alignment > stack_alignment) stack_alignment = alignment; } } } } cfun->machine->stack_frame_required = require_stack_frame; } /* Finalize stack_realign_needed and frame_pointer_needed flags, which will guide prologue/epilogue to be generated in correct form. */ static void ix86_finalize_stack_frame_flags (void) { /* Check if stack realign is really needed after reload, and stores result in cfun */ unsigned int incoming_stack_boundary = (crtl->parm_stack_boundary > ix86_incoming_stack_boundary ? crtl->parm_stack_boundary : ix86_incoming_stack_boundary); unsigned int stack_alignment = (crtl->is_leaf && !ix86_current_function_calls_tls_descriptor ? crtl->max_used_stack_slot_alignment : crtl->stack_alignment_needed); unsigned int stack_realign = (incoming_stack_boundary < stack_alignment); bool recompute_frame_layout_p = false; if (crtl->stack_realign_finalized) { /* After stack_realign_needed is finalized, we can't no longer change it. */ gcc_assert (crtl->stack_realign_needed == stack_realign); return; } /* It is always safe to compute max_used_stack_alignment. We compute it only if 128-bit aligned load/store may be generated on misaligned stack slot which will lead to segfault. */ bool check_stack_slot = (stack_realign || crtl->max_used_stack_slot_alignment >= 128); ix86_find_max_used_stack_alignment (stack_alignment, check_stack_slot); /* If the only reason for frame_pointer_needed is that we conservatively assumed stack realignment might be needed or -fno-omit-frame-pointer is used, but in the end nothing that needed the stack alignment had been spilled nor stack access, clear frame_pointer_needed and say we don't need stack realignment. */ if ((stack_realign || (!flag_omit_frame_pointer && optimize)) && frame_pointer_needed && crtl->is_leaf && crtl->sp_is_unchanging && !ix86_current_function_calls_tls_descriptor && !crtl->accesses_prior_frames && !cfun->calls_alloca && !crtl->calls_eh_return /* See ira_setup_eliminable_regset for the rationale. */ && !(STACK_CHECK_MOVING_SP && flag_stack_check && flag_exceptions && cfun->can_throw_non_call_exceptions) && !ix86_frame_pointer_required () && ix86_get_frame_size () == 0 && ix86_nsaved_sseregs () == 0 && ix86_varargs_gpr_size + ix86_varargs_fpr_size == 0) { if (cfun->machine->stack_frame_required) { /* Stack frame is required. If stack alignment needed is less than incoming stack boundary, don't realign stack. */ stack_realign = incoming_stack_boundary < stack_alignment; if (!stack_realign) { crtl->max_used_stack_slot_alignment = incoming_stack_boundary; crtl->stack_alignment_needed = incoming_stack_boundary; /* Also update preferred_stack_boundary for leaf functions. */ crtl->preferred_stack_boundary = incoming_stack_boundary; } } else { /* If drap has been set, but it actually isn't live at the start of the function, there is no reason to set it up. */ if (crtl->drap_reg) { basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; if (! REGNO_REG_SET_P (DF_LR_IN (bb), REGNO (crtl->drap_reg))) { crtl->drap_reg = NULL_RTX; crtl->need_drap = false; } } else cfun->machine->no_drap_save_restore = true; frame_pointer_needed = false; stack_realign = false; crtl->max_used_stack_slot_alignment = incoming_stack_boundary; crtl->stack_alignment_needed = incoming_stack_boundary; crtl->stack_alignment_estimated = incoming_stack_boundary; if (crtl->preferred_stack_boundary > incoming_stack_boundary) crtl->preferred_stack_boundary = incoming_stack_boundary; df_finish_pass (true); df_scan_alloc (NULL); df_scan_blocks (); df_compute_regs_ever_live (true); df_analyze (); if (flag_var_tracking) { /* Since frame pointer is no longer available, replace it with stack pointer - UNITS_PER_WORD in debug insns. */ df_ref ref, next; for (ref = DF_REG_USE_CHAIN (HARD_FRAME_POINTER_REGNUM); ref; ref = next) { next = DF_REF_NEXT_REG (ref); if (!DF_REF_INSN_INFO (ref)) continue; /* Make sure the next ref is for a different instruction, so that we're not affected by the rescan. */ rtx_insn *insn = DF_REF_INSN (ref); while (next && DF_REF_INSN (next) == insn) next = DF_REF_NEXT_REG (next); if (DEBUG_INSN_P (insn)) { bool changed = false; for (; ref != next; ref = DF_REF_NEXT_REG (ref)) { rtx *loc = DF_REF_LOC (ref); if (*loc == hard_frame_pointer_rtx) { *loc = plus_constant (Pmode, stack_pointer_rtx, -UNITS_PER_WORD); changed = true; } } if (changed) df_insn_rescan (insn); } } } recompute_frame_layout_p = true; } } else if (crtl->max_used_stack_slot_alignment >= 128 && cfun->machine->stack_frame_required) { /* We don't need to realign stack. max_used_stack_alignment is used to decide how stack frame should be aligned. This is independent of any psABIs nor 32-bit vs 64-bit. */ cfun->machine->max_used_stack_alignment = stack_alignment / BITS_PER_UNIT; } if (crtl->stack_realign_needed != stack_realign) recompute_frame_layout_p = true; crtl->stack_realign_needed = stack_realign; crtl->stack_realign_finalized = true; if (recompute_frame_layout_p) ix86_compute_frame_layout (); } /* Delete SET_GOT right after entry block if it is allocated to reg. */ static void ix86_elim_entry_set_got (rtx reg) { basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; rtx_insn *c_insn = BB_HEAD (bb); if (!NONDEBUG_INSN_P (c_insn)) c_insn = next_nonnote_nondebug_insn (c_insn); if (c_insn && NONJUMP_INSN_P (c_insn)) { rtx pat = PATTERN (c_insn); if (GET_CODE (pat) == PARALLEL) { rtx vec = XVECEXP (pat, 0, 0); if (GET_CODE (vec) == SET && XINT (XEXP (vec, 1), 1) == UNSPEC_SET_GOT && REGNO (XEXP (vec, 0)) == REGNO (reg)) delete_insn (c_insn); } } } static rtx gen_frame_set (rtx reg, rtx frame_reg, int offset, bool store) { rtx addr, mem; if (offset) addr = gen_rtx_PLUS (Pmode, frame_reg, GEN_INT (offset)); mem = gen_frame_mem (GET_MODE (reg), offset ? addr : frame_reg); return gen_rtx_SET (store ? mem : reg, store ? reg : mem); } static inline rtx gen_frame_load (rtx reg, rtx frame_reg, int offset) { return gen_frame_set (reg, frame_reg, offset, false); } static inline rtx gen_frame_store (rtx reg, rtx frame_reg, int offset) { return gen_frame_set (reg, frame_reg, offset, true); } static void ix86_emit_outlined_ms2sysv_save (const struct ix86_frame &frame) { struct machine_function *m = cfun->machine; const unsigned ncregs = NUM_X86_64_MS_CLOBBERED_REGS + m->call_ms2sysv_extra_regs; rtvec v = rtvec_alloc (ncregs + 1); unsigned int align, i, vi = 0; rtx_insn *insn; rtx sym, addr; rtx rax = gen_rtx_REG (word_mode, AX_REG); const class xlogue_layout &xlogue = xlogue_layout::get_instance (); /* AL should only be live with sysv_abi. */ gcc_assert (!ix86_eax_live_at_start_p ()); gcc_assert (m->fs.sp_offset >= frame.sse_reg_save_offset); /* Setup RAX as the stub's base pointer. We use stack_realign_offset rather we've actually realigned the stack or not. */ align = GET_MODE_ALIGNMENT (V4SFmode); addr = choose_baseaddr (frame.stack_realign_offset + xlogue.get_stub_ptr_offset (), &align, AX_REG); gcc_assert (align >= GET_MODE_ALIGNMENT (V4SFmode)); emit_insn (gen_rtx_SET (rax, addr)); /* Get the stub symbol. */ sym = xlogue.get_stub_rtx (frame_pointer_needed ? XLOGUE_STUB_SAVE_HFP : XLOGUE_STUB_SAVE); RTVEC_ELT (v, vi++) = gen_rtx_USE (VOIDmode, sym); for (i = 0; i < ncregs; ++i) { const xlogue_layout::reginfo &r = xlogue.get_reginfo (i); rtx reg = gen_rtx_REG ((SSE_REGNO_P (r.regno) ? V4SFmode : word_mode), r.regno); RTVEC_ELT (v, vi++) = gen_frame_store (reg, rax, -r.offset); } gcc_assert (vi == (unsigned)GET_NUM_ELEM (v)); insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, v)); RTX_FRAME_RELATED_P (insn) = true; } /* Generate and return an insn body to AND X with Y. */ static rtx_insn * gen_and2_insn (rtx x, rtx y) { enum insn_code icode = optab_handler (and_optab, GET_MODE (x)); gcc_assert (insn_operand_matches (icode, 0, x)); gcc_assert (insn_operand_matches (icode, 1, x)); gcc_assert (insn_operand_matches (icode, 2, y)); return GEN_FCN (icode) (x, x, y); } /* Expand the prologue into a bunch of separate insns. */ void ix86_expand_prologue (void) { struct machine_function *m = cfun->machine; rtx insn, t; HOST_WIDE_INT allocate; bool int_registers_saved; bool sse_registers_saved; bool save_stub_call_needed; rtx static_chain = NULL_RTX; if (ix86_function_naked (current_function_decl)) return; ix86_finalize_stack_frame_flags (); /* DRAP should not coexist with stack_realign_fp */ gcc_assert (!(crtl->drap_reg && stack_realign_fp)); memset (&m->fs, 0, sizeof (m->fs)); /* Initialize CFA state for before the prologue. */ m->fs.cfa_reg = stack_pointer_rtx; m->fs.cfa_offset = INCOMING_FRAME_SP_OFFSET; /* Track SP offset to the CFA. We continue tracking this after we've swapped the CFA register away from SP. In the case of re-alignment this is fudged; we're interested to offsets within the local frame. */ m->fs.sp_offset = INCOMING_FRAME_SP_OFFSET; m->fs.sp_valid = true; m->fs.sp_realigned = false; const struct ix86_frame &frame = cfun->machine->frame; if (!TARGET_64BIT && ix86_function_ms_hook_prologue (current_function_decl)) { /* We should have already generated an error for any use of ms_hook on a nested function. */ gcc_checking_assert (!ix86_static_chain_on_stack); /* Check if profiling is active and we shall use profiling before prologue variant. If so sorry. */ if (crtl->profile && flag_fentry != 0) sorry ("% attribute is not compatible " "with %<-mfentry%> for 32-bit"); /* In ix86_asm_output_function_label we emitted: 8b ff movl.s %edi,%edi 55 push %ebp 8b ec movl.s %esp,%ebp This matches the hookable function prologue in Win32 API functions in Microsoft Windows XP Service Pack 2 and newer. Wine uses this to enable Windows apps to hook the Win32 API functions provided by Wine. What that means is that we've already set up the frame pointer. */ if (frame_pointer_needed && !(crtl->drap_reg && crtl->stack_realign_needed)) { rtx push, mov; /* We've decided to use the frame pointer already set up. Describe this to the unwinder by pretending that both push and mov insns happen right here. Putting the unwind info here at the end of the ms_hook is done so that we can make absolutely certain we get the required byte sequence at the start of the function, rather than relying on an assembler that can produce the exact encoding required. However it does mean (in the unpatched case) that we have a 1 insn window where the asynchronous unwind info is incorrect. However, if we placed the unwind info at its correct location we would have incorrect unwind info in the patched case. Which is probably all moot since I don't expect Wine generates dwarf2 unwind info for the system libraries that use this feature. */ insn = emit_insn (gen_blockage ()); push = gen_push (hard_frame_pointer_rtx); mov = gen_rtx_SET (hard_frame_pointer_rtx, stack_pointer_rtx); RTX_FRAME_RELATED_P (push) = 1; RTX_FRAME_RELATED_P (mov) = 1; RTX_FRAME_RELATED_P (insn) = 1; add_reg_note (insn, REG_FRAME_RELATED_EXPR, gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, push, mov))); /* Note that gen_push incremented m->fs.cfa_offset, even though we didn't emit the push insn here. */ m->fs.cfa_reg = hard_frame_pointer_rtx; m->fs.fp_offset = m->fs.cfa_offset; m->fs.fp_valid = true; } else { /* The frame pointer is not needed so pop %ebp again. This leaves us with a pristine state. */ emit_insn (gen_pop (hard_frame_pointer_rtx)); } } /* The first insn of a function that accepts its static chain on the stack is to push the register that would be filled in by a direct call. This insn will be skipped by the trampoline. */ else if (ix86_static_chain_on_stack) { static_chain = ix86_static_chain (cfun->decl, false); insn = emit_insn (gen_push (static_chain)); emit_insn (gen_blockage ()); /* We don't want to interpret this push insn as a register save, only as a stack adjustment. The real copy of the register as a save will be done later, if needed. */ t = plus_constant (Pmode, stack_pointer_rtx, -UNITS_PER_WORD); t = gen_rtx_SET (stack_pointer_rtx, t); add_reg_note (insn, REG_CFA_ADJUST_CFA, t); RTX_FRAME_RELATED_P (insn) = 1; } /* Emit prologue code to adjust stack alignment and setup DRAP, in case of DRAP is needed and stack realignment is really needed after reload */ if (stack_realign_drap) { int align_bytes = crtl->stack_alignment_needed / BITS_PER_UNIT; /* Can't use DRAP in interrupt function. */ if (cfun->machine->func_type != TYPE_NORMAL) sorry ("Dynamic Realign Argument Pointer (DRAP) not supported " "in interrupt service routine. This may be worked " "around by avoiding functions with aggregate return."); /* Only need to push parameter pointer reg if it is caller saved. */ if (!call_used_or_fixed_reg_p (REGNO (crtl->drap_reg))) { /* Push arg pointer reg */ insn = emit_insn (gen_push (crtl->drap_reg)); RTX_FRAME_RELATED_P (insn) = 1; } /* Grab the argument pointer. */ t = plus_constant (Pmode, stack_pointer_rtx, m->fs.sp_offset); insn = emit_insn (gen_rtx_SET (crtl->drap_reg, t)); RTX_FRAME_RELATED_P (insn) = 1; m->fs.cfa_reg = crtl->drap_reg; m->fs.cfa_offset = 0; /* Align the stack. */ insn = emit_insn (gen_and2_insn (stack_pointer_rtx, GEN_INT (-align_bytes))); RTX_FRAME_RELATED_P (insn) = 1; /* Replicate the return address on the stack so that return address can be reached via (argp - 1) slot. This is needed to implement macro RETURN_ADDR_RTX and intrinsic function expand_builtin_return_addr etc. */ t = plus_constant (Pmode, crtl->drap_reg, -UNITS_PER_WORD); t = gen_frame_mem (word_mode, t); insn = emit_insn (gen_push (t)); RTX_FRAME_RELATED_P (insn) = 1; /* For the purposes of frame and register save area addressing, we've started over with a new frame. */ m->fs.sp_offset = INCOMING_FRAME_SP_OFFSET; m->fs.realigned = true; if (static_chain) { /* Replicate static chain on the stack so that static chain can be reached via (argp - 2) slot. This is needed for nested function with stack realignment. */ insn = emit_insn (gen_push (static_chain)); RTX_FRAME_RELATED_P (insn) = 1; } } int_registers_saved = (frame.nregs == 0); sse_registers_saved = (frame.nsseregs == 0); save_stub_call_needed = (m->call_ms2sysv); gcc_assert (sse_registers_saved || !save_stub_call_needed); if (frame_pointer_needed && !m->fs.fp_valid) { /* Note: AT&T enter does NOT have reversed args. Enter is probably slower on all targets. Also sdb didn't like it. */ insn = emit_insn (gen_push (hard_frame_pointer_rtx)); RTX_FRAME_RELATED_P (insn) = 1; if (m->fs.sp_offset == frame.hard_frame_pointer_offset) { insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx); RTX_FRAME_RELATED_P (insn) = 1; if (m->fs.cfa_reg == stack_pointer_rtx) m->fs.cfa_reg = hard_frame_pointer_rtx; m->fs.fp_offset = m->fs.sp_offset; m->fs.fp_valid = true; } } if (!int_registers_saved) { /* If saving registers via PUSH, do so now. */ if (!frame.save_regs_using_mov) { ix86_emit_save_regs (); int_registers_saved = true; gcc_assert (m->fs.sp_offset == frame.reg_save_offset); } /* When using red zone we may start register saving before allocating the stack frame saving one cycle of the prologue. However, avoid doing this if we have to probe the stack; at least on x86_64 the stack probe can turn into a call that clobbers a red zone location. */ else if (ix86_using_red_zone () && (! TARGET_STACK_PROBE || frame.stack_pointer_offset < CHECK_STACK_LIMIT)) { ix86_emit_save_regs_using_mov (frame.reg_save_offset); int_registers_saved = true; } } if (stack_realign_fp) { int align_bytes = crtl->stack_alignment_needed / BITS_PER_UNIT; gcc_assert (align_bytes > MIN_STACK_BOUNDARY / BITS_PER_UNIT); /* Record last valid frame pointer offset. */ m->fs.sp_realigned_fp_last = frame.reg_save_offset; /* The computation of the size of the re-aligned stack frame means that we must allocate the size of the register save area before performing the actual alignment. Otherwise we cannot guarantee that there's enough storage above the realignment point. */ allocate = frame.reg_save_offset - m->fs.sp_offset + frame.stack_realign_allocate; if (allocate) pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-allocate), -1, false); /* Align the stack. */ emit_insn (gen_and2_insn (stack_pointer_rtx, GEN_INT (-align_bytes))); m->fs.sp_offset = ROUND_UP (m->fs.sp_offset, align_bytes); m->fs.sp_realigned_offset = m->fs.sp_offset - frame.stack_realign_allocate; /* The stack pointer may no longer be equal to CFA - m->fs.sp_offset. Beyond this point, stack access should be done via choose_baseaddr or by using sp_valid_at and fp_valid_at to determine the correct base register. Henceforth, any CFA offset should be thought of as logical and not physical. */ gcc_assert (m->fs.sp_realigned_offset >= m->fs.sp_realigned_fp_last); gcc_assert (m->fs.sp_realigned_offset == frame.stack_realign_offset); m->fs.sp_realigned = true; /* SEH unwind emit doesn't currently support REG_CFA_EXPRESSION, which is needed to describe where a register is saved using a realigned stack pointer, so we need to invalidate the stack pointer for that target. */ if (TARGET_SEH) m->fs.sp_valid = false; /* If SP offset is non-immediate after allocation of the stack frame, then emit SSE saves or stub call prior to allocating the rest of the stack frame. This is less efficient for the out-of-line stub because we can't combine allocations across the call barrier, but it's better than using a scratch register. */ else if (!x86_64_immediate_operand (GEN_INT (frame.stack_pointer_offset - m->fs.sp_realigned_offset), Pmode)) { if (!sse_registers_saved) { ix86_emit_save_sse_regs_using_mov (frame.sse_reg_save_offset); sse_registers_saved = true; } else if (save_stub_call_needed) { ix86_emit_outlined_ms2sysv_save (frame); save_stub_call_needed = false; } } } allocate = frame.stack_pointer_offset - m->fs.sp_offset; if (flag_stack_usage_info) { /* We start to count from ARG_POINTER. */ HOST_WIDE_INT stack_size = frame.stack_pointer_offset; /* If it was realigned, take into account the fake frame. */ if (stack_realign_drap) { if (ix86_static_chain_on_stack) stack_size += UNITS_PER_WORD; if (!call_used_or_fixed_reg_p (REGNO (crtl->drap_reg))) stack_size += UNITS_PER_WORD; /* This over-estimates by 1 minimal-stack-alignment-unit but mitigates that by counting in the new return address slot. */ current_function_dynamic_stack_size += crtl->stack_alignment_needed / BITS_PER_UNIT; } current_function_static_stack_size = stack_size; } /* On SEH target with very large frame size, allocate an area to save SSE registers (as the very large allocation won't be described). */ if (TARGET_SEH && frame.stack_pointer_offset > SEH_MAX_FRAME_SIZE && !sse_registers_saved) { HOST_WIDE_INT sse_size = frame.sse_reg_save_offset - frame.reg_save_offset; gcc_assert (int_registers_saved); /* No need to do stack checking as the area will be immediately written. */ pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-sse_size), -1, m->fs.cfa_reg == stack_pointer_rtx); allocate -= sse_size; ix86_emit_save_sse_regs_using_mov (frame.sse_reg_save_offset); sse_registers_saved = true; } /* The stack has already been decremented by the instruction calling us so probe if the size is non-negative to preserve the protection area. */ if (allocate >= 0 && (flag_stack_check == STATIC_BUILTIN_STACK_CHECK || flag_stack_clash_protection)) { if (flag_stack_clash_protection) { ix86_adjust_stack_and_probe_stack_clash (allocate, int_registers_saved); allocate = 0; } else if (STACK_CHECK_MOVING_SP) { if (!(crtl->is_leaf && !cfun->calls_alloca && allocate <= get_probe_interval ())) { ix86_adjust_stack_and_probe (allocate, int_registers_saved); allocate = 0; } } else { HOST_WIDE_INT size = allocate; if (TARGET_64BIT && size >= HOST_WIDE_INT_C (0x80000000)) size = 0x80000000 - get_stack_check_protect () - 1; if (TARGET_STACK_PROBE) { if (crtl->is_leaf && !cfun->calls_alloca) { if (size > get_probe_interval ()) ix86_emit_probe_stack_range (0, size, int_registers_saved); } else ix86_emit_probe_stack_range (0, size + get_stack_check_protect (), int_registers_saved); } else { if (crtl->is_leaf && !cfun->calls_alloca) { if (size > get_probe_interval () && size > get_stack_check_protect ()) ix86_emit_probe_stack_range (get_stack_check_protect (), (size - get_stack_check_protect ()), int_registers_saved); } else ix86_emit_probe_stack_range (get_stack_check_protect (), size, int_registers_saved); } } } if (allocate == 0) ; else if (!ix86_target_stack_probe () || frame.stack_pointer_offset < CHECK_STACK_LIMIT) { pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-allocate), -1, m->fs.cfa_reg == stack_pointer_rtx); } else { rtx eax = gen_rtx_REG (Pmode, AX_REG); rtx r10 = NULL; const bool sp_is_cfa_reg = (m->fs.cfa_reg == stack_pointer_rtx); bool eax_live = ix86_eax_live_at_start_p (); bool r10_live = false; if (TARGET_64BIT) r10_live = (DECL_STATIC_CHAIN (current_function_decl) != 0); if (eax_live) { insn = emit_insn (gen_push (eax)); allocate -= UNITS_PER_WORD; /* Note that SEH directives need to continue tracking the stack pointer even after the frame pointer has been set up. */ if (sp_is_cfa_reg || TARGET_SEH) { if (sp_is_cfa_reg) m->fs.cfa_offset += UNITS_PER_WORD; RTX_FRAME_RELATED_P (insn) = 1; add_reg_note (insn, REG_FRAME_RELATED_EXPR, gen_rtx_SET (stack_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, -UNITS_PER_WORD))); } } if (r10_live) { r10 = gen_rtx_REG (Pmode, R10_REG); insn = emit_insn (gen_push (r10)); allocate -= UNITS_PER_WORD; if (sp_is_cfa_reg || TARGET_SEH) { if (sp_is_cfa_reg) m->fs.cfa_offset += UNITS_PER_WORD; RTX_FRAME_RELATED_P (insn) = 1; add_reg_note (insn, REG_FRAME_RELATED_EXPR, gen_rtx_SET (stack_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, -UNITS_PER_WORD))); } } emit_move_insn (eax, GEN_INT (allocate)); emit_insn (gen_allocate_stack_worker_probe (Pmode, eax, eax)); /* Use the fact that AX still contains ALLOCATE. */ insn = emit_insn (gen_pro_epilogue_adjust_stack_sub (Pmode, stack_pointer_rtx, stack_pointer_rtx, eax)); if (sp_is_cfa_reg || TARGET_SEH) { if (sp_is_cfa_reg) m->fs.cfa_offset += allocate; RTX_FRAME_RELATED_P (insn) = 1; add_reg_note (insn, REG_FRAME_RELATED_EXPR, gen_rtx_SET (stack_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, -allocate))); } m->fs.sp_offset += allocate; /* Use stack_pointer_rtx for relative addressing so that code works for realigned stack. But this means that we need a blockage to prevent stores based on the frame pointer from being scheduled before. */ if (r10_live && eax_live) { t = gen_rtx_PLUS (Pmode, stack_pointer_rtx, eax); emit_move_insn (gen_rtx_REG (word_mode, R10_REG), gen_frame_mem (word_mode, t)); t = plus_constant (Pmode, t, UNITS_PER_WORD); emit_move_insn (gen_rtx_REG (word_mode, AX_REG), gen_frame_mem (word_mode, t)); emit_insn (gen_memory_blockage ()); } else if (eax_live || r10_live) { t = gen_rtx_PLUS (Pmode, stack_pointer_rtx, eax); emit_move_insn (gen_rtx_REG (word_mode, (eax_live ? AX_REG : R10_REG)), gen_frame_mem (word_mode, t)); emit_insn (gen_memory_blockage ()); } } gcc_assert (m->fs.sp_offset == frame.stack_pointer_offset); /* If we havn't already set up the frame pointer, do so now. */ if (frame_pointer_needed && !m->fs.fp_valid) { insn = gen_add3_insn (hard_frame_pointer_rtx, stack_pointer_rtx, GEN_INT (frame.stack_pointer_offset - frame.hard_frame_pointer_offset)); insn = emit_insn (insn); RTX_FRAME_RELATED_P (insn) = 1; add_reg_note (insn, REG_CFA_ADJUST_CFA, NULL); if (m->fs.cfa_reg == stack_pointer_rtx) m->fs.cfa_reg = hard_frame_pointer_rtx; m->fs.fp_offset = frame.hard_frame_pointer_offset; m->fs.fp_valid = true; } if (!int_registers_saved) ix86_emit_save_regs_using_mov (frame.reg_save_offset); if (!sse_registers_saved) ix86_emit_save_sse_regs_using_mov (frame.sse_reg_save_offset); else if (save_stub_call_needed) ix86_emit_outlined_ms2sysv_save (frame); /* For the mcount profiling on 32 bit PIC mode we need to emit SET_GOT in PROLOGUE. */ if (!TARGET_64BIT && pic_offset_table_rtx && crtl->profile && !flag_fentry) { rtx pic = gen_rtx_REG (Pmode, REAL_PIC_OFFSET_TABLE_REGNUM); insn = emit_insn (gen_set_got (pic)); RTX_FRAME_RELATED_P (insn) = 1; add_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL_RTX); emit_insn (gen_prologue_use (pic)); /* Deleting already emmitted SET_GOT if exist and allocated to REAL_PIC_OFFSET_TABLE_REGNUM. */ ix86_elim_entry_set_got (pic); } if (crtl->drap_reg && !crtl->stack_realign_needed) { /* vDRAP is setup but after reload it turns out stack realign isn't necessary, here we will emit prologue to setup DRAP without stack realign adjustment */ t = choose_baseaddr (0, NULL); emit_insn (gen_rtx_SET (crtl->drap_reg, t)); } /* Prevent instructions from being scheduled into register save push sequence when access to the redzone area is done through frame pointer. The offset between the frame pointer and the stack pointer is calculated relative to the value of the stack pointer at the end of the function prologue, and moving instructions that access redzone area via frame pointer inside push sequence violates this assumption. */ if (frame_pointer_needed && frame.red_zone_size) emit_insn (gen_memory_blockage ()); /* SEH requires that the prologue end within 256 bytes of the start of the function. Prevent instruction schedules that would extend that. Further, prevent alloca modifications to the stack pointer from being combined with prologue modifications. */ if (TARGET_SEH) emit_insn (gen_prologue_use (stack_pointer_rtx)); } /* Emit code to restore REG using a POP insn. */ static void ix86_emit_restore_reg_using_pop (rtx reg) { struct machine_function *m = cfun->machine; rtx_insn *insn = emit_insn (gen_pop (reg)); ix86_add_cfa_restore_note (insn, reg, m->fs.sp_offset); m->fs.sp_offset -= UNITS_PER_WORD; if (m->fs.cfa_reg == crtl->drap_reg && REGNO (reg) == REGNO (crtl->drap_reg)) { /* Previously we'd represented the CFA as an expression like *(%ebp - 8). We've just popped that value from the stack, which means we need to reset the CFA to the drap register. This will remain until we restore the stack pointer. */ add_reg_note (insn, REG_CFA_DEF_CFA, reg); RTX_FRAME_RELATED_P (insn) = 1; /* This means that the DRAP register is valid for addressing too. */ m->fs.drap_valid = true; return; } if (m->fs.cfa_reg == stack_pointer_rtx) { rtx x = plus_constant (Pmode, stack_pointer_rtx, UNITS_PER_WORD); x = gen_rtx_SET (stack_pointer_rtx, x); add_reg_note (insn, REG_CFA_ADJUST_CFA, x); RTX_FRAME_RELATED_P (insn) = 1; m->fs.cfa_offset -= UNITS_PER_WORD; } /* When the frame pointer is the CFA, and we pop it, we are swapping back to the stack pointer as the CFA. This happens for stack frames that don't allocate other data, so we assume the stack pointer is now pointing at the return address, i.e. the function entry state, which makes the offset be 1 word. */ if (reg == hard_frame_pointer_rtx) { m->fs.fp_valid = false; if (m->fs.cfa_reg == hard_frame_pointer_rtx) { m->fs.cfa_reg = stack_pointer_rtx; m->fs.cfa_offset -= UNITS_PER_WORD; add_reg_note (insn, REG_CFA_DEF_CFA, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (m->fs.cfa_offset))); RTX_FRAME_RELATED_P (insn) = 1; } } } /* Emit code to restore saved registers using POP insns. */ static void ix86_emit_restore_regs_using_pop (void) { unsigned int regno; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (GENERAL_REGNO_P (regno) && ix86_save_reg (regno, false, true)) ix86_emit_restore_reg_using_pop (gen_rtx_REG (word_mode, regno)); } /* Emit code and notes for the LEAVE instruction. If insn is non-null, omits the emit and only attaches the notes. */ static void ix86_emit_leave (rtx_insn *insn) { struct machine_function *m = cfun->machine; if (!insn) insn = emit_insn (gen_leave (word_mode)); ix86_add_queued_cfa_restore_notes (insn); gcc_assert (m->fs.fp_valid); m->fs.sp_valid = true; m->fs.sp_realigned = false; m->fs.sp_offset = m->fs.fp_offset - UNITS_PER_WORD; m->fs.fp_valid = false; if (m->fs.cfa_reg == hard_frame_pointer_rtx) { m->fs.cfa_reg = stack_pointer_rtx; m->fs.cfa_offset = m->fs.sp_offset; add_reg_note (insn, REG_CFA_DEF_CFA, plus_constant (Pmode, stack_pointer_rtx, m->fs.sp_offset)); RTX_FRAME_RELATED_P (insn) = 1; } ix86_add_cfa_restore_note (insn, hard_frame_pointer_rtx, m->fs.fp_offset); } /* Emit code to restore saved registers using MOV insns. First register is restored from CFA - CFA_OFFSET. */ static void ix86_emit_restore_regs_using_mov (HOST_WIDE_INT cfa_offset, bool maybe_eh_return) { struct machine_function *m = cfun->machine; unsigned int regno; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (GENERAL_REGNO_P (regno) && ix86_save_reg (regno, maybe_eh_return, true)) { rtx reg = gen_rtx_REG (word_mode, regno); rtx mem; rtx_insn *insn; mem = choose_baseaddr (cfa_offset, NULL); mem = gen_frame_mem (word_mode, mem); insn = emit_move_insn (reg, mem); if (m->fs.cfa_reg == crtl->drap_reg && regno == REGNO (crtl->drap_reg)) { /* Previously we'd represented the CFA as an expression like *(%ebp - 8). We've just popped that value from the stack, which means we need to reset the CFA to the drap register. This will remain until we restore the stack pointer. */ add_reg_note (insn, REG_CFA_DEF_CFA, reg); RTX_FRAME_RELATED_P (insn) = 1; /* This means that the DRAP register is valid for addressing. */ m->fs.drap_valid = true; } else ix86_add_cfa_restore_note (NULL, reg, cfa_offset); cfa_offset -= UNITS_PER_WORD; } } /* Emit code to restore saved registers using MOV insns. First register is restored from CFA - CFA_OFFSET. */ static void ix86_emit_restore_sse_regs_using_mov (HOST_WIDE_INT cfa_offset, bool maybe_eh_return) { unsigned int regno; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (SSE_REGNO_P (regno) && ix86_save_reg (regno, maybe_eh_return, true)) { rtx reg = gen_rtx_REG (V4SFmode, regno); rtx mem; unsigned int align = GET_MODE_ALIGNMENT (V4SFmode); mem = choose_baseaddr (cfa_offset, &align); mem = gen_rtx_MEM (V4SFmode, mem); /* The location aligment depends upon the base register. */ align = MIN (GET_MODE_ALIGNMENT (V4SFmode), align); gcc_assert (! (cfa_offset & (align / BITS_PER_UNIT - 1))); set_mem_align (mem, align); emit_insn (gen_rtx_SET (reg, mem)); ix86_add_cfa_restore_note (NULL, reg, cfa_offset); cfa_offset -= GET_MODE_SIZE (V4SFmode); } } static void ix86_emit_outlined_ms2sysv_restore (const struct ix86_frame &frame, bool use_call, int style) { struct machine_function *m = cfun->machine; const unsigned ncregs = NUM_X86_64_MS_CLOBBERED_REGS + m->call_ms2sysv_extra_regs; rtvec v; unsigned int elems_needed, align, i, vi = 0; rtx_insn *insn; rtx sym, tmp; rtx rsi = gen_rtx_REG (word_mode, SI_REG); rtx r10 = NULL_RTX; const class xlogue_layout &xlogue = xlogue_layout::get_instance (); HOST_WIDE_INT stub_ptr_offset = xlogue.get_stub_ptr_offset (); HOST_WIDE_INT rsi_offset = frame.stack_realign_offset + stub_ptr_offset; rtx rsi_frame_load = NULL_RTX; HOST_WIDE_INT rsi_restore_offset = (HOST_WIDE_INT)-1; enum xlogue_stub stub; gcc_assert (!m->fs.fp_valid || frame_pointer_needed); /* If using a realigned stack, we should never start with padding. */ gcc_assert (!stack_realign_fp || !xlogue.get_stack_align_off_in ()); /* Setup RSI as the stub's base pointer. */ align = GET_MODE_ALIGNMENT (V4SFmode); tmp = choose_baseaddr (rsi_offset, &align, SI_REG); gcc_assert (align >= GET_MODE_ALIGNMENT (V4SFmode)); emit_insn (gen_rtx_SET (rsi, tmp)); /* Get a symbol for the stub. */ if (frame_pointer_needed) stub = use_call ? XLOGUE_STUB_RESTORE_HFP : XLOGUE_STUB_RESTORE_HFP_TAIL; else stub = use_call ? XLOGUE_STUB_RESTORE : XLOGUE_STUB_RESTORE_TAIL; sym = xlogue.get_stub_rtx (stub); elems_needed = ncregs; if (use_call) elems_needed += 1; else elems_needed += frame_pointer_needed ? 5 : 3; v = rtvec_alloc (elems_needed); /* We call the epilogue stub when we need to pop incoming args or we are doing a sibling call as the tail. Otherwise, we will emit a jmp to the epilogue stub and it is the tail-call. */ if (use_call) RTVEC_ELT (v, vi++) = gen_rtx_USE (VOIDmode, sym); else { RTVEC_ELT (v, vi++) = ret_rtx; RTVEC_ELT (v, vi++) = gen_rtx_USE (VOIDmode, sym); if (frame_pointer_needed) { rtx rbp = gen_rtx_REG (DImode, BP_REG); gcc_assert (m->fs.fp_valid); gcc_assert (m->fs.cfa_reg == hard_frame_pointer_rtx); tmp = gen_rtx_PLUS (DImode, rbp, GEN_INT (8)); RTVEC_ELT (v, vi++) = gen_rtx_SET (stack_pointer_rtx, tmp); RTVEC_ELT (v, vi++) = gen_rtx_SET (rbp, gen_rtx_MEM (DImode, rbp)); tmp = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)); RTVEC_ELT (v, vi++) = gen_rtx_CLOBBER (VOIDmode, tmp); } else { /* If no hard frame pointer, we set R10 to the SP restore value. */ gcc_assert (!m->fs.fp_valid); gcc_assert (m->fs.cfa_reg == stack_pointer_rtx); gcc_assert (m->fs.sp_valid); r10 = gen_rtx_REG (DImode, R10_REG); tmp = gen_rtx_PLUS (Pmode, rsi, GEN_INT (stub_ptr_offset)); emit_insn (gen_rtx_SET (r10, tmp)); RTVEC_ELT (v, vi++) = gen_rtx_SET (stack_pointer_rtx, r10); } } /* Generate frame load insns and restore notes. */ for (i = 0; i < ncregs; ++i) { const xlogue_layout::reginfo &r = xlogue.get_reginfo (i); machine_mode mode = SSE_REGNO_P (r.regno) ? V4SFmode : word_mode; rtx reg, frame_load; reg = gen_rtx_REG (mode, r.regno); frame_load = gen_frame_load (reg, rsi, r.offset); /* Save RSI frame load insn & note to add last. */ if (r.regno == SI_REG) { gcc_assert (!rsi_frame_load); rsi_frame_load = frame_load; rsi_restore_offset = r.offset; } else { RTVEC_ELT (v, vi++) = frame_load; ix86_add_cfa_restore_note (NULL, reg, r.offset); } } /* Add RSI frame load & restore note at the end. */ gcc_assert (rsi_frame_load); gcc_assert (rsi_restore_offset != (HOST_WIDE_INT)-1); RTVEC_ELT (v, vi++) = rsi_frame_load; ix86_add_cfa_restore_note (NULL, gen_rtx_REG (DImode, SI_REG), rsi_restore_offset); /* Finally, for tail-call w/o a hard frame pointer, set SP to R10. */ if (!use_call && !frame_pointer_needed) { gcc_assert (m->fs.sp_valid); gcc_assert (!m->fs.sp_realigned); /* At this point, R10 should point to frame.stack_realign_offset. */ if (m->fs.cfa_reg == stack_pointer_rtx) m->fs.cfa_offset += m->fs.sp_offset - frame.stack_realign_offset; m->fs.sp_offset = frame.stack_realign_offset; } gcc_assert (vi == (unsigned int)GET_NUM_ELEM (v)); tmp = gen_rtx_PARALLEL (VOIDmode, v); if (use_call) insn = emit_insn (tmp); else { insn = emit_jump_insn (tmp); JUMP_LABEL (insn) = ret_rtx; if (frame_pointer_needed) ix86_emit_leave (insn); else { /* Need CFA adjust note. */ tmp = gen_rtx_SET (stack_pointer_rtx, r10); add_reg_note (insn, REG_CFA_ADJUST_CFA, tmp); } } RTX_FRAME_RELATED_P (insn) = true; ix86_add_queued_cfa_restore_notes (insn); /* If we're not doing a tail-call, we need to adjust the stack. */ if (use_call && m->fs.sp_valid) { HOST_WIDE_INT dealloc = m->fs.sp_offset - frame.stack_realign_offset; pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (dealloc), style, m->fs.cfa_reg == stack_pointer_rtx); } } /* Restore function stack, frame, and registers. */ void ix86_expand_epilogue (int style) { struct machine_function *m = cfun->machine; struct machine_frame_state frame_state_save = m->fs; bool restore_regs_via_mov; bool using_drap; bool restore_stub_is_tail = false; if (ix86_function_naked (current_function_decl)) { /* The program should not reach this point. */ emit_insn (gen_ud2 ()); return; } ix86_finalize_stack_frame_flags (); const struct ix86_frame &frame = cfun->machine->frame; m->fs.sp_realigned = stack_realign_fp; m->fs.sp_valid = stack_realign_fp || !frame_pointer_needed || crtl->sp_is_unchanging; gcc_assert (!m->fs.sp_valid || m->fs.sp_offset == frame.stack_pointer_offset); /* The FP must be valid if the frame pointer is present. */ gcc_assert (frame_pointer_needed == m->fs.fp_valid); gcc_assert (!m->fs.fp_valid || m->fs.fp_offset == frame.hard_frame_pointer_offset); /* We must have *some* valid pointer to the stack frame. */ gcc_assert (m->fs.sp_valid || m->fs.fp_valid); /* The DRAP is never valid at this point. */ gcc_assert (!m->fs.drap_valid); /* See the comment about red zone and frame pointer usage in ix86_expand_prologue. */ if (frame_pointer_needed && frame.red_zone_size) emit_insn (gen_memory_blockage ()); using_drap = crtl->drap_reg && crtl->stack_realign_needed; gcc_assert (!using_drap || m->fs.cfa_reg == crtl->drap_reg); /* Determine the CFA offset of the end of the red-zone. */ m->fs.red_zone_offset = 0; if (ix86_using_red_zone () && crtl->args.pops_args < 65536) { /* The red-zone begins below return address and error code in exception handler. */ m->fs.red_zone_offset = RED_ZONE_SIZE + INCOMING_FRAME_SP_OFFSET; /* When the register save area is in the aligned portion of the stack, determine the maximum runtime displacement that matches up with the aligned frame. */ if (stack_realign_drap) m->fs.red_zone_offset -= (crtl->stack_alignment_needed / BITS_PER_UNIT + UNITS_PER_WORD); } HOST_WIDE_INT reg_save_offset = frame.reg_save_offset; /* Special care must be taken for the normal return case of a function using eh_return: the eax and edx registers are marked as saved, but not restored along this path. Adjust the save location to match. */ if (crtl->calls_eh_return && style != 2) reg_save_offset -= 2 * UNITS_PER_WORD; /* EH_RETURN requires the use of moves to function properly. */ if (crtl->calls_eh_return) restore_regs_via_mov = true; /* SEH requires the use of pops to identify the epilogue. */ else if (TARGET_SEH) restore_regs_via_mov = false; /* If we're only restoring one register and sp cannot be used then using a move instruction to restore the register since it's less work than reloading sp and popping the register. */ else if (!sp_valid_at (frame.hfp_save_offset) && frame.nregs <= 1) restore_regs_via_mov = true; else if (TARGET_EPILOGUE_USING_MOVE && cfun->machine->use_fast_prologue_epilogue && (frame.nregs > 1 || m->fs.sp_offset != reg_save_offset)) restore_regs_via_mov = true; else if (frame_pointer_needed && !frame.nregs && m->fs.sp_offset != reg_save_offset) restore_regs_via_mov = true; else if (frame_pointer_needed && TARGET_USE_LEAVE && cfun->machine->use_fast_prologue_epilogue && frame.nregs == 1) restore_regs_via_mov = true; else restore_regs_via_mov = false; if (restore_regs_via_mov || frame.nsseregs) { /* Ensure that the entire register save area is addressable via the stack pointer, if we will restore SSE regs via sp. */ if (TARGET_64BIT && m->fs.sp_offset > 0x7fffffff && sp_valid_at (frame.stack_realign_offset + 1) && (frame.nsseregs + frame.nregs) != 0) { pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (m->fs.sp_offset - frame.sse_reg_save_offset), style, m->fs.cfa_reg == stack_pointer_rtx); } } /* If there are any SSE registers to restore, then we have to do it via moves, since there's obviously no pop for SSE regs. */ if (frame.nsseregs) ix86_emit_restore_sse_regs_using_mov (frame.sse_reg_save_offset, style == 2); if (m->call_ms2sysv) { int pop_incoming_args = crtl->args.pops_args && crtl->args.size; /* We cannot use a tail-call for the stub if: 1. We have to pop incoming args, 2. We have additional int regs to restore, or 3. A sibling call will be the tail-call, or 4. We are emitting an eh_return_internal epilogue. TODO: Item 4 has not yet tested! If any of the above are true, we will call the stub rather than jump to it. */ restore_stub_is_tail = !(pop_incoming_args || frame.nregs || style != 1); ix86_emit_outlined_ms2sysv_restore (frame, !restore_stub_is_tail, style); } /* If using out-of-line stub that is a tail-call, then...*/ if (m->call_ms2sysv && restore_stub_is_tail) { /* TODO: parinoid tests. (remove eventually) */ gcc_assert (m->fs.sp_valid); gcc_assert (!m->fs.sp_realigned); gcc_assert (!m->fs.fp_valid); gcc_assert (!m->fs.realigned); gcc_assert (m->fs.sp_offset == UNITS_PER_WORD); gcc_assert (!crtl->drap_reg); gcc_assert (!frame.nregs); } else if (restore_regs_via_mov) { rtx t; if (frame.nregs) ix86_emit_restore_regs_using_mov (reg_save_offset, style == 2); /* eh_return epilogues need %ecx added to the stack pointer. */ if (style == 2) { rtx sa = EH_RETURN_STACKADJ_RTX; rtx_insn *insn; /* %ecx can't be used for both DRAP register and eh_return. */ if (crtl->drap_reg) gcc_assert (REGNO (crtl->drap_reg) != CX_REG); /* regparm nested functions don't work with eh_return. */ gcc_assert (!ix86_static_chain_on_stack); if (frame_pointer_needed) { t = gen_rtx_PLUS (Pmode, hard_frame_pointer_rtx, sa); t = plus_constant (Pmode, t, m->fs.fp_offset - UNITS_PER_WORD); emit_insn (gen_rtx_SET (sa, t)); /* NB: eh_return epilogues must restore the frame pointer in word_mode since the upper 32 bits of RBP register can have any values. */ t = gen_frame_mem (word_mode, hard_frame_pointer_rtx); rtx frame_reg = gen_rtx_REG (word_mode, HARD_FRAME_POINTER_REGNUM); insn = emit_move_insn (frame_reg, t); /* Note that we use SA as a temporary CFA, as the return address is at the proper place relative to it. We pretend this happens at the FP restore insn because prior to this insn the FP would be stored at the wrong offset relative to SA, and after this insn we have no other reasonable register to use for the CFA. We don't bother resetting the CFA to the SP for the duration of the return insn, unless the control flow instrumentation is done. In this case the SP is used later and we have to reset CFA to SP. */ add_reg_note (insn, REG_CFA_DEF_CFA, plus_constant (Pmode, sa, UNITS_PER_WORD)); ix86_add_queued_cfa_restore_notes (insn); add_reg_note (insn, REG_CFA_RESTORE, frame_reg); RTX_FRAME_RELATED_P (insn) = 1; m->fs.cfa_reg = sa; m->fs.cfa_offset = UNITS_PER_WORD; m->fs.fp_valid = false; pro_epilogue_adjust_stack (stack_pointer_rtx, sa, const0_rtx, style, flag_cf_protection); } else { t = gen_rtx_PLUS (Pmode, stack_pointer_rtx, sa); t = plus_constant (Pmode, t, m->fs.sp_offset - UNITS_PER_WORD); insn = emit_insn (gen_rtx_SET (stack_pointer_rtx, t)); ix86_add_queued_cfa_restore_notes (insn); gcc_assert (m->fs.cfa_reg == stack_pointer_rtx); if (m->fs.cfa_offset != UNITS_PER_WORD) { m->fs.cfa_offset = UNITS_PER_WORD; add_reg_note (insn, REG_CFA_DEF_CFA, plus_constant (Pmode, stack_pointer_rtx, UNITS_PER_WORD)); RTX_FRAME_RELATED_P (insn) = 1; } } m->fs.sp_offset = UNITS_PER_WORD; m->fs.sp_valid = true; m->fs.sp_realigned = false; } } else { /* SEH requires that the function end with (1) a stack adjustment if necessary, (2) a sequence of pops, and (3) a return or jump instruction. Prevent insns from the function body from being scheduled into this sequence. */ if (TARGET_SEH) { /* Prevent a catch region from being adjacent to the standard epilogue sequence. Unfortunately neither crtl->uses_eh_lsda nor several other flags that would be interesting to test are set up yet. */ if (flag_non_call_exceptions) emit_insn (gen_nops (const1_rtx)); else emit_insn (gen_blockage ()); } /* First step is to deallocate the stack frame so that we can pop the registers. If the stack pointer was realigned, it needs to be restored now. Also do it on SEH target for very large frame as the emitted instructions aren't allowed by the ABI in epilogues. */ if (!m->fs.sp_valid || m->fs.sp_realigned || (TARGET_SEH && (m->fs.sp_offset - reg_save_offset >= SEH_MAX_FRAME_SIZE))) { pro_epilogue_adjust_stack (stack_pointer_rtx, hard_frame_pointer_rtx, GEN_INT (m->fs.fp_offset - reg_save_offset), style, false); } else if (m->fs.sp_offset != reg_save_offset) { pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (m->fs.sp_offset - reg_save_offset), style, m->fs.cfa_reg == stack_pointer_rtx); } ix86_emit_restore_regs_using_pop (); } /* If we used a stack pointer and haven't already got rid of it, then do so now. */ if (m->fs.fp_valid) { /* If the stack pointer is valid and pointing at the frame pointer store address, then we only need a pop. */ if (sp_valid_at (frame.hfp_save_offset) && m->fs.sp_offset == frame.hfp_save_offset) ix86_emit_restore_reg_using_pop (hard_frame_pointer_rtx); /* Leave results in shorter dependency chains on CPUs that are able to grok it fast. */ else if (TARGET_USE_LEAVE || optimize_bb_for_size_p (EXIT_BLOCK_PTR_FOR_FN (cfun)) || !cfun->machine->use_fast_prologue_epilogue) ix86_emit_leave (NULL); else { pro_epilogue_adjust_stack (stack_pointer_rtx, hard_frame_pointer_rtx, const0_rtx, style, !using_drap); ix86_emit_restore_reg_using_pop (hard_frame_pointer_rtx); } } if (using_drap) { int param_ptr_offset = UNITS_PER_WORD; rtx_insn *insn; gcc_assert (stack_realign_drap); if (ix86_static_chain_on_stack) param_ptr_offset += UNITS_PER_WORD; if (!call_used_or_fixed_reg_p (REGNO (crtl->drap_reg))) param_ptr_offset += UNITS_PER_WORD; insn = emit_insn (gen_rtx_SET (stack_pointer_rtx, gen_rtx_PLUS (Pmode, crtl->drap_reg, GEN_INT (-param_ptr_offset)))); m->fs.cfa_reg = stack_pointer_rtx; m->fs.cfa_offset = param_ptr_offset; m->fs.sp_offset = param_ptr_offset; m->fs.realigned = false; add_reg_note (insn, REG_CFA_DEF_CFA, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (param_ptr_offset))); RTX_FRAME_RELATED_P (insn) = 1; if (!call_used_or_fixed_reg_p (REGNO (crtl->drap_reg))) ix86_emit_restore_reg_using_pop (crtl->drap_reg); } /* At this point the stack pointer must be valid, and we must have restored all of the registers. We may not have deallocated the entire stack frame. We've delayed this until now because it may be possible to merge the local stack deallocation with the deallocation forced by ix86_static_chain_on_stack. */ gcc_assert (m->fs.sp_valid); gcc_assert (!m->fs.sp_realigned); gcc_assert (!m->fs.fp_valid); gcc_assert (!m->fs.realigned); if (m->fs.sp_offset != UNITS_PER_WORD) { pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (m->fs.sp_offset - UNITS_PER_WORD), style, true); } else ix86_add_queued_cfa_restore_notes (get_last_insn ()); /* Sibcall epilogues don't want a return instruction. */ if (style == 0) { m->fs = frame_state_save; return; } if (cfun->machine->func_type != TYPE_NORMAL) emit_jump_insn (gen_interrupt_return ()); else if (crtl->args.pops_args && crtl->args.size) { rtx popc = GEN_INT (crtl->args.pops_args); /* i386 can only pop 64K bytes. If asked to pop more, pop return address, do explicit add, and jump indirectly to the caller. */ if (crtl->args.pops_args >= 65536) { rtx ecx = gen_rtx_REG (SImode, CX_REG); rtx_insn *insn; /* There is no "pascal" calling convention in any 64bit ABI. */ gcc_assert (!TARGET_64BIT); insn = emit_insn (gen_pop (ecx)); m->fs.cfa_offset -= UNITS_PER_WORD; m->fs.sp_offset -= UNITS_PER_WORD; rtx x = plus_constant (Pmode, stack_pointer_rtx, UNITS_PER_WORD); x = gen_rtx_SET (stack_pointer_rtx, x); add_reg_note (insn, REG_CFA_ADJUST_CFA, x); add_reg_note (insn, REG_CFA_REGISTER, gen_rtx_SET (ecx, pc_rtx)); RTX_FRAME_RELATED_P (insn) = 1; pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, popc, -1, true); emit_jump_insn (gen_simple_return_indirect_internal (ecx)); } else emit_jump_insn (gen_simple_return_pop_internal (popc)); } else if (!m->call_ms2sysv || !restore_stub_is_tail) { /* In case of return from EH a simple return cannot be used as a return address will be compared with a shadow stack return address. Use indirect jump instead. */ if (style == 2 && flag_cf_protection) { /* Register used in indirect jump must be in word_mode. But Pmode may not be the same as word_mode for x32. */ rtx ecx = gen_rtx_REG (word_mode, CX_REG); rtx_insn *insn; insn = emit_insn (gen_pop (ecx)); m->fs.cfa_offset -= UNITS_PER_WORD; m->fs.sp_offset -= UNITS_PER_WORD; rtx x = plus_constant (Pmode, stack_pointer_rtx, UNITS_PER_WORD); x = gen_rtx_SET (stack_pointer_rtx, x); add_reg_note (insn, REG_CFA_ADJUST_CFA, x); add_reg_note (insn, REG_CFA_REGISTER, gen_rtx_SET (ecx, pc_rtx)); RTX_FRAME_RELATED_P (insn) = 1; emit_jump_insn (gen_simple_return_indirect_internal (ecx)); } else emit_jump_insn (gen_simple_return_internal ()); } /* Restore the state back to the state from the prologue, so that it's correct for the next epilogue. */ m->fs = frame_state_save; } /* Reset from the function's potential modifications. */ static void ix86_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED) { if (pic_offset_table_rtx && !ix86_use_pseudo_pic_reg ()) SET_REGNO (pic_offset_table_rtx, REAL_PIC_OFFSET_TABLE_REGNUM); if (TARGET_MACHO) { rtx_insn *insn = get_last_insn (); rtx_insn *deleted_debug_label = NULL; /* Mach-O doesn't support labels at the end of objects, so if it looks like we might want one, take special action. First, collect any sequence of deleted debug labels. */ while (insn && NOTE_P (insn) && NOTE_KIND (insn) != NOTE_INSN_DELETED_LABEL) { /* Don't insert a nop for NOTE_INSN_DELETED_DEBUG_LABEL notes only, instead set their CODE_LABEL_NUMBER to -1, otherwise there would be code generation differences in between -g and -g0. */ if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_DELETED_DEBUG_LABEL) deleted_debug_label = insn; insn = PREV_INSN (insn); } /* If we have: label: barrier then this needs to be detected, so skip past the barrier. */ if (insn && BARRIER_P (insn)) insn = PREV_INSN (insn); /* Up to now we've only seen notes or barriers. */ if (insn) { if (LABEL_P (insn) || (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL)) /* Trailing label. */ fputs ("\tnop\n", file); else if (cfun && ! cfun->is_thunk) { /* See if we have a completely empty function body, skipping the special case of the picbase thunk emitted as asm. */ while (insn && ! INSN_P (insn)) insn = PREV_INSN (insn); /* If we don't find any insns, we've got an empty function body; I.e. completely empty - without a return or branch. This is taken as the case where a function body has been removed because it contains an inline __builtin_unreachable(). GCC declares that reaching __builtin_unreachable() means UB so we're not obliged to do anything special; however, we want non-zero-sized function bodies. To meet this, and help the user out, let's trap the case. */ if (insn == NULL) fputs ("\tud2\n", file); } } else if (deleted_debug_label) for (insn = deleted_debug_label; insn; insn = NEXT_INSN (insn)) if (NOTE_KIND (insn) == NOTE_INSN_DELETED_DEBUG_LABEL) CODE_LABEL_NUMBER (insn) = -1; } } /* Return a scratch register to use in the split stack prologue. The split stack prologue is used for -fsplit-stack. It is the first instructions in the function, even before the regular prologue. The scratch register can be any caller-saved register which is not used for parameters or for the static chain. */ static unsigned int split_stack_prologue_scratch_regno (void) { if (TARGET_64BIT) return R11_REG; else { bool is_fastcall, is_thiscall; int regparm; is_fastcall = (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (TREE_TYPE (cfun->decl))) != NULL); is_thiscall = (lookup_attribute ("thiscall", TYPE_ATTRIBUTES (TREE_TYPE (cfun->decl))) != NULL); regparm = ix86_function_regparm (TREE_TYPE (cfun->decl), cfun->decl); if (is_fastcall) { if (DECL_STATIC_CHAIN (cfun->decl)) { sorry ("%<-fsplit-stack%> does not support fastcall with " "nested function"); return INVALID_REGNUM; } return AX_REG; } else if (is_thiscall) { if (!DECL_STATIC_CHAIN (cfun->decl)) return DX_REG; return AX_REG; } else if (regparm < 3) { if (!DECL_STATIC_CHAIN (cfun->decl)) return CX_REG; else { if (regparm >= 2) { sorry ("%<-fsplit-stack%> does not support 2 register " "parameters for a nested function"); return INVALID_REGNUM; } return DX_REG; } } else { /* FIXME: We could make this work by pushing a register around the addition and comparison. */ sorry ("%<-fsplit-stack%> does not support 3 register parameters"); return INVALID_REGNUM; } } } /* A SYMBOL_REF for the function which allocates new stackspace for -fsplit-stack. */ static GTY(()) rtx split_stack_fn; /* A SYMBOL_REF for the more stack function when using the large model. */ static GTY(()) rtx split_stack_fn_large; /* Return location of the stack guard value in the TLS block. */ rtx ix86_split_stack_guard (void) { int offset; addr_space_t as = DEFAULT_TLS_SEG_REG; rtx r; gcc_assert (flag_split_stack); #ifdef TARGET_THREAD_SPLIT_STACK_OFFSET offset = TARGET_THREAD_SPLIT_STACK_OFFSET; #else gcc_unreachable (); #endif r = GEN_INT (offset); r = gen_const_mem (Pmode, r); set_mem_addr_space (r, as); return r; } /* Handle -fsplit-stack. These are the first instructions in the function, even before the regular prologue. */ void ix86_expand_split_stack_prologue (void) { HOST_WIDE_INT allocate; unsigned HOST_WIDE_INT args_size; rtx_code_label *label; rtx limit, current, allocate_rtx, call_fusage; rtx_insn *call_insn; rtx scratch_reg = NULL_RTX; rtx_code_label *varargs_label = NULL; rtx fn; gcc_assert (flag_split_stack && reload_completed); ix86_finalize_stack_frame_flags (); struct ix86_frame &frame = cfun->machine->frame; allocate = frame.stack_pointer_offset - INCOMING_FRAME_SP_OFFSET; /* This is the label we will branch to if we have enough stack space. We expect the basic block reordering pass to reverse this branch if optimizing, so that we branch in the unlikely case. */ label = gen_label_rtx (); /* We need to compare the stack pointer minus the frame size with the stack boundary in the TCB. The stack boundary always gives us SPLIT_STACK_AVAILABLE bytes, so if we need less than that we can compare directly. Otherwise we need to do an addition. */ limit = ix86_split_stack_guard (); if (allocate < SPLIT_STACK_AVAILABLE) current = stack_pointer_rtx; else { unsigned int scratch_regno; rtx offset; /* We need a scratch register to hold the stack pointer minus the required frame size. Since this is the very start of the function, the scratch register can be any caller-saved register which is not used for parameters. */ offset = GEN_INT (- allocate); scratch_regno = split_stack_prologue_scratch_regno (); if (scratch_regno == INVALID_REGNUM) return; scratch_reg = gen_rtx_REG (Pmode, scratch_regno); if (!TARGET_64BIT || x86_64_immediate_operand (offset, Pmode)) { /* We don't use gen_add in this case because it will want to split to lea, but when not optimizing the insn will not be split after this point. */ emit_insn (gen_rtx_SET (scratch_reg, gen_rtx_PLUS (Pmode, stack_pointer_rtx, offset))); } else { emit_move_insn (scratch_reg, offset); emit_insn (gen_add2_insn (scratch_reg, stack_pointer_rtx)); } current = scratch_reg; } ix86_expand_branch (GEU, current, limit, label); rtx_insn *jump_insn = get_last_insn (); JUMP_LABEL (jump_insn) = label; /* Mark the jump as very likely to be taken. */ add_reg_br_prob_note (jump_insn, profile_probability::very_likely ()); if (split_stack_fn == NULL_RTX) { split_stack_fn = gen_rtx_SYMBOL_REF (Pmode, "__morestack"); SYMBOL_REF_FLAGS (split_stack_fn) |= SYMBOL_FLAG_LOCAL; } fn = split_stack_fn; /* Get more stack space. We pass in the desired stack space and the size of the arguments to copy to the new stack. In 32-bit mode we push the parameters; __morestack will return on a new stack anyhow. In 64-bit mode we pass the parameters in r10 and r11. */ allocate_rtx = GEN_INT (allocate); args_size = crtl->args.size >= 0 ? (HOST_WIDE_INT) crtl->args.size : 0; call_fusage = NULL_RTX; rtx pop = NULL_RTX; if (TARGET_64BIT) { rtx reg10, reg11; reg10 = gen_rtx_REG (Pmode, R10_REG); reg11 = gen_rtx_REG (Pmode, R11_REG); /* If this function uses a static chain, it will be in %r10. Preserve it across the call to __morestack. */ if (DECL_STATIC_CHAIN (cfun->decl)) { rtx rax; rax = gen_rtx_REG (word_mode, AX_REG); emit_move_insn (rax, gen_rtx_REG (word_mode, R10_REG)); use_reg (&call_fusage, rax); } if ((ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC) && !TARGET_PECOFF) { HOST_WIDE_INT argval; gcc_assert (Pmode == DImode); /* When using the large model we need to load the address into a register, and we've run out of registers. So we switch to a different calling convention, and we call a different function: __morestack_large. We pass the argument size in the upper 32 bits of r10 and pass the frame size in the lower 32 bits. */ gcc_assert ((allocate & HOST_WIDE_INT_C (0xffffffff)) == allocate); gcc_assert ((args_size & 0xffffffff) == args_size); if (split_stack_fn_large == NULL_RTX) { split_stack_fn_large = gen_rtx_SYMBOL_REF (Pmode, "__morestack_large_model"); SYMBOL_REF_FLAGS (split_stack_fn_large) |= SYMBOL_FLAG_LOCAL; } if (ix86_cmodel == CM_LARGE_PIC) { rtx_code_label *label; rtx x; label = gen_label_rtx (); emit_label (label); LABEL_PRESERVE_P (label) = 1; emit_insn (gen_set_rip_rex64 (reg10, label)); emit_insn (gen_set_got_offset_rex64 (reg11, label)); emit_insn (gen_add2_insn (reg10, reg11)); x = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, split_stack_fn_large), UNSPEC_GOT); x = gen_rtx_CONST (Pmode, x); emit_move_insn (reg11, x); x = gen_rtx_PLUS (Pmode, reg10, reg11); x = gen_const_mem (Pmode, x); emit_move_insn (reg11, x); } else emit_move_insn (reg11, split_stack_fn_large); fn = reg11; argval = ((args_size << 16) << 16) + allocate; emit_move_insn (reg10, GEN_INT (argval)); } else { emit_move_insn (reg10, allocate_rtx); emit_move_insn (reg11, GEN_INT (args_size)); use_reg (&call_fusage, reg11); } use_reg (&call_fusage, reg10); } else { rtx_insn *insn = emit_insn (gen_push (GEN_INT (args_size))); add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (UNITS_PER_WORD)); insn = emit_insn (gen_push (allocate_rtx)); add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (2 * UNITS_PER_WORD)); pop = GEN_INT (2 * UNITS_PER_WORD); } call_insn = ix86_expand_call (NULL_RTX, gen_rtx_MEM (QImode, fn), GEN_INT (UNITS_PER_WORD), constm1_rtx, pop, false); add_function_usage_to (call_insn, call_fusage); if (!TARGET_64BIT) add_reg_note (call_insn, REG_ARGS_SIZE, GEN_INT (0)); /* Indicate that this function can't jump to non-local gotos. */ make_reg_eh_region_note_nothrow_nononlocal (call_insn); /* In order to make call/return prediction work right, we now need to execute a return instruction. See libgcc/config/i386/morestack.S for the details on how this works. For flow purposes gcc must not see this as a return instruction--we need control flow to continue at the subsequent label. Therefore, we use an unspec. */ gcc_assert (crtl->args.pops_args < 65536); rtx_insn *ret_insn = emit_insn (gen_split_stack_return (GEN_INT (crtl->args.pops_args))); if ((flag_cf_protection & CF_BRANCH)) { /* Insert ENDBR since __morestack will jump back here via indirect call. */ rtx cet_eb = gen_nop_endbr (); emit_insn_after (cet_eb, ret_insn); } /* If we are in 64-bit mode and this function uses a static chain, we saved %r10 in %rax before calling _morestack. */ if (TARGET_64BIT && DECL_STATIC_CHAIN (cfun->decl)) emit_move_insn (gen_rtx_REG (word_mode, R10_REG), gen_rtx_REG (word_mode, AX_REG)); /* If this function calls va_start, we need to store a pointer to the arguments on the old stack, because they may not have been all copied to the new stack. At this point the old stack can be found at the frame pointer value used by __morestack, because __morestack has set that up before calling back to us. Here we store that pointer in a scratch register, and in ix86_expand_prologue we store the scratch register in a stack slot. */ if (cfun->machine->split_stack_varargs_pointer != NULL_RTX) { unsigned int scratch_regno; rtx frame_reg; int words; scratch_regno = split_stack_prologue_scratch_regno (); scratch_reg = gen_rtx_REG (Pmode, scratch_regno); frame_reg = gen_rtx_REG (Pmode, BP_REG); /* 64-bit: fp -> old fp value return address within this function return address of caller of this function stack arguments So we add three words to get to the stack arguments. 32-bit: fp -> old fp value return address within this function first argument to __morestack second argument to __morestack return address of caller of this function stack arguments So we add five words to get to the stack arguments. */ words = TARGET_64BIT ? 3 : 5; emit_insn (gen_rtx_SET (scratch_reg, gen_rtx_PLUS (Pmode, frame_reg, GEN_INT (words * UNITS_PER_WORD)))); varargs_label = gen_label_rtx (); emit_jump_insn (gen_jump (varargs_label)); JUMP_LABEL (get_last_insn ()) = varargs_label; emit_barrier (); } emit_label (label); LABEL_NUSES (label) = 1; /* If this function calls va_start, we now have to set the scratch register for the case where we do not call __morestack. In this case we need to set it based on the stack pointer. */ if (cfun->machine->split_stack_varargs_pointer != NULL_RTX) { emit_insn (gen_rtx_SET (scratch_reg, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (UNITS_PER_WORD)))); emit_label (varargs_label); LABEL_NUSES (varargs_label) = 1; } } /* We may have to tell the dataflow pass that the split stack prologue is initializing a scratch register. */ static void ix86_live_on_entry (bitmap regs) { if (cfun->machine->split_stack_varargs_pointer != NULL_RTX) { gcc_assert (flag_split_stack); bitmap_set_bit (regs, split_stack_prologue_scratch_regno ()); } } /* Extract the parts of an RTL expression that is a valid memory address for an instruction. Return 0 if the structure of the address is grossly off. Return -1 if the address contains ASHIFT, so it is not strictly valid, but still used for computing length of lea instruction. */ int ix86_decompose_address (rtx addr, struct ix86_address *out) { rtx base = NULL_RTX, index = NULL_RTX, disp = NULL_RTX; rtx base_reg, index_reg; HOST_WIDE_INT scale = 1; rtx scale_rtx = NULL_RTX; rtx tmp; int retval = 1; addr_space_t seg = ADDR_SPACE_GENERIC; /* Allow zero-extended SImode addresses, they will be emitted with addr32 prefix. */ if (TARGET_64BIT && GET_MODE (addr) == DImode) { if (GET_CODE (addr) == ZERO_EXTEND && GET_MODE (XEXP (addr, 0)) == SImode) { addr = XEXP (addr, 0); if (CONST_INT_P (addr)) return 0; } else if (GET_CODE (addr) == AND && const_32bit_mask (XEXP (addr, 1), DImode)) { addr = lowpart_subreg (SImode, XEXP (addr, 0), DImode); if (addr == NULL_RTX) return 0; if (CONST_INT_P (addr)) return 0; } } /* Allow SImode subregs of DImode addresses, they will be emitted with addr32 prefix. */ if (TARGET_64BIT && GET_MODE (addr) == SImode) { if (SUBREG_P (addr) && GET_MODE (SUBREG_REG (addr)) == DImode) { addr = SUBREG_REG (addr); if (CONST_INT_P (addr)) return 0; } } if (REG_P (addr)) base = addr; else if (SUBREG_P (addr)) { if (REG_P (SUBREG_REG (addr))) base = addr; else return 0; } else if (GET_CODE (addr) == PLUS) { rtx addends[4], op; int n = 0, i; op = addr; do { if (n >= 4) return 0; addends[n++] = XEXP (op, 1); op = XEXP (op, 0); } while (GET_CODE (op) == PLUS); if (n >= 4) return 0; addends[n] = op; for (i = n; i >= 0; --i) { op = addends[i]; switch (GET_CODE (op)) { case MULT: if (index) return 0; index = XEXP (op, 0); scale_rtx = XEXP (op, 1); break; case ASHIFT: if (index) return 0; index = XEXP (op, 0); tmp = XEXP (op, 1); if (!CONST_INT_P (tmp)) return 0; scale = INTVAL (tmp); if ((unsigned HOST_WIDE_INT) scale > 3) return 0; scale = 1 << scale; break; case ZERO_EXTEND: op = XEXP (op, 0); if (GET_CODE (op) != UNSPEC) return 0; /* FALLTHRU */ case UNSPEC: if (XINT (op, 1) == UNSPEC_TP && TARGET_TLS_DIRECT_SEG_REFS && seg == ADDR_SPACE_GENERIC) seg = DEFAULT_TLS_SEG_REG; else return 0; break; case SUBREG: if (!REG_P (SUBREG_REG (op))) return 0; /* FALLTHRU */ case REG: if (!base) base = op; else if (!index) index = op; else return 0; break; case CONST: case CONST_INT: case SYMBOL_REF: case LABEL_REF: if (disp) return 0; disp = op; break; default: return 0; } } } else if (GET_CODE (addr) == MULT) { index = XEXP (addr, 0); /* index*scale */ scale_rtx = XEXP (addr, 1); } else if (GET_CODE (addr) == ASHIFT) { /* We're called for lea too, which implements ashift on occasion. */ index = XEXP (addr, 0); tmp = XEXP (addr, 1); if (!CONST_INT_P (tmp)) return 0; scale = INTVAL (tmp); if ((unsigned HOST_WIDE_INT) scale > 3) return 0; scale = 1 << scale; retval = -1; } else disp = addr; /* displacement */ if (index) { if (REG_P (index)) ; else if (SUBREG_P (index) && REG_P (SUBREG_REG (index))) ; else return 0; } /* Extract the integral value of scale. */ if (scale_rtx) { if (!CONST_INT_P (scale_rtx)) return 0; scale = INTVAL (scale_rtx); } base_reg = base && SUBREG_P (base) ? SUBREG_REG (base) : base; index_reg = index && SUBREG_P (index) ? SUBREG_REG (index) : index; /* Avoid useless 0 displacement. */ if (disp == const0_rtx && (base || index)) disp = NULL_RTX; /* Allow arg pointer and stack pointer as index if there is not scaling. */ if (base_reg && index_reg && scale == 1 && (REGNO (index_reg) == ARG_POINTER_REGNUM || REGNO (index_reg) == FRAME_POINTER_REGNUM || REGNO (index_reg) == SP_REG)) { std::swap (base, index); std::swap (base_reg, index_reg); } /* Special case: %ebp cannot be encoded as a base without a displacement. Similarly %r13. */ if (!disp && base_reg && (REGNO (base_reg) == ARG_POINTER_REGNUM || REGNO (base_reg) == FRAME_POINTER_REGNUM || REGNO (base_reg) == BP_REG || REGNO (base_reg) == R13_REG)) disp = const0_rtx; /* Special case: on K6, [%esi] makes the instruction vector decoded. Avoid this by transforming to [%esi+0]. Reload calls address legitimization without cfun defined, so we need to test cfun for being non-NULL. */ if (TARGET_K6 && cfun && optimize_function_for_speed_p (cfun) && base_reg && !index_reg && !disp && REGNO (base_reg) == SI_REG) disp = const0_rtx; /* Special case: encode reg+reg instead of reg*2. */ if (!base && index && scale == 2) base = index, base_reg = index_reg, scale = 1; /* Special case: scaling cannot be encoded without base or displacement. */ if (!base && !disp && index && scale != 1) disp = const0_rtx; out->base = base; out->index = index; out->disp = disp; out->scale = scale; out->seg = seg; return retval; } /* Return cost of the memory address x. For i386, it is better to use a complex address than let gcc copy the address into a reg and make a new pseudo. But not if the address requires to two regs - that would mean more pseudos with longer lifetimes. */ static int ix86_address_cost (rtx x, machine_mode, addr_space_t, bool) { struct ix86_address parts; int cost = 1; int ok = ix86_decompose_address (x, &parts); gcc_assert (ok); if (parts.base && SUBREG_P (parts.base)) parts.base = SUBREG_REG (parts.base); if (parts.index && SUBREG_P (parts.index)) parts.index = SUBREG_REG (parts.index); /* Attempt to minimize number of registers in the address by increasing address cost for each used register. We don't increase address cost for "pic_offset_table_rtx". When a memopt with "pic_offset_table_rtx" is not invariant itself it most likely means that base or index is not invariant. Therefore only "pic_offset_table_rtx" could be hoisted out, which is not profitable for x86. */ if (parts.base && (!REG_P (parts.base) || REGNO (parts.base) >= FIRST_PSEUDO_REGISTER) && (current_pass->type == GIMPLE_PASS || !pic_offset_table_rtx || !REG_P (parts.base) || REGNO (pic_offset_table_rtx) != REGNO (parts.base))) cost++; if (parts.index && (!REG_P (parts.index) || REGNO (parts.index) >= FIRST_PSEUDO_REGISTER) && (current_pass->type == GIMPLE_PASS || !pic_offset_table_rtx || !REG_P (parts.index) || REGNO (pic_offset_table_rtx) != REGNO (parts.index))) cost++; /* AMD-K6 don't like addresses with ModR/M set to 00_xxx_100b, since it's predecode logic can't detect the length of instructions and it degenerates to vector decoded. Increase cost of such addresses here. The penalty is minimally 2 cycles. It may be worthwhile to split such addresses or even refuse such addresses at all. Following addressing modes are affected: [base+scale*index] [scale*index+disp] [base+index] The first and last case may be avoidable by explicitly coding the zero in memory address, but I don't have AMD-K6 machine handy to check this theory. */ if (TARGET_K6 && ((!parts.disp && parts.base && parts.index && parts.scale != 1) || (parts.disp && !parts.base && parts.index && parts.scale != 1) || (!parts.disp && parts.base && parts.index && parts.scale == 1))) cost += 10; return cost; } /* Allow {LABEL | SYMBOL}_REF - SYMBOL_REF-FOR-PICBASE for Mach-O as this is used for to form addresses to local data when -fPIC is in use. */ static bool darwin_local_data_pic (rtx disp) { return (GET_CODE (disp) == UNSPEC && XINT (disp, 1) == UNSPEC_MACHOPIC_OFFSET); } /* True if operand X should be loaded from GOT. */ bool ix86_force_load_from_GOT_p (rtx x) { return ((TARGET_64BIT || HAVE_AS_IX86_GOT32X) && !TARGET_PECOFF && !TARGET_MACHO && !flag_pic && ix86_cmodel != CM_LARGE && GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_FUNCTION_P (x) && (!flag_plt || (SYMBOL_REF_DECL (x) && lookup_attribute ("noplt", DECL_ATTRIBUTES (SYMBOL_REF_DECL (x))))) && !SYMBOL_REF_LOCAL_P (x)); } /* Determine if a given RTX is a valid constant. We already know this satisfies CONSTANT_P. */ static bool ix86_legitimate_constant_p (machine_mode mode, rtx x) { switch (GET_CODE (x)) { case CONST: x = XEXP (x, 0); if (GET_CODE (x) == PLUS) { if (!CONST_INT_P (XEXP (x, 1))) return false; x = XEXP (x, 0); } if (TARGET_MACHO && darwin_local_data_pic (x)) return true; /* Only some unspecs are valid as "constants". */ if (GET_CODE (x) == UNSPEC) switch (XINT (x, 1)) { case UNSPEC_GOT: case UNSPEC_GOTOFF: case UNSPEC_PLTOFF: return TARGET_64BIT; case UNSPEC_TPOFF: case UNSPEC_NTPOFF: x = XVECEXP (x, 0, 0); return (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_EXEC); case UNSPEC_DTPOFF: x = XVECEXP (x, 0, 0); return (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC); default: return false; } /* We must have drilled down to a symbol. */ if (GET_CODE (x) == LABEL_REF) return true; if (GET_CODE (x) != SYMBOL_REF) return false; /* FALLTHRU */ case SYMBOL_REF: /* TLS symbols are never valid. */ if (SYMBOL_REF_TLS_MODEL (x)) return false; /* DLLIMPORT symbols are never valid. */ if (TARGET_DLLIMPORT_DECL_ATTRIBUTES && SYMBOL_REF_DLLIMPORT_P (x)) return false; #if TARGET_MACHO /* mdynamic-no-pic */ if (MACHO_DYNAMIC_NO_PIC_P) return machopic_symbol_defined_p (x); #endif /* External function address should be loaded via the GOT slot to avoid PLT. */ if (ix86_force_load_from_GOT_p (x)) return false; break; CASE_CONST_SCALAR_INT: switch (mode) { case E_TImode: if (TARGET_64BIT) return true; /* FALLTHRU */ case E_OImode: case E_XImode: if (!standard_sse_constant_p (x, mode)) return false; default: break; } break; case CONST_VECTOR: if (!standard_sse_constant_p (x, mode)) return false; default: break; } /* Otherwise we handle everything else in the move patterns. */ return true; } /* Determine if it's legal to put X into the constant pool. This is not possible for the address of thread-local symbols, which is checked above. */ static bool ix86_cannot_force_const_mem (machine_mode mode, rtx x) { /* We can put any immediate constant in memory. */ switch (GET_CODE (x)) { CASE_CONST_ANY: return false; default: break; } return !ix86_legitimate_constant_p (mode, x); } /* Nonzero if the symbol is marked as dllimport, or as stub-variable, otherwise zero. */ static bool is_imported_p (rtx x) { if (!TARGET_DLLIMPORT_DECL_ATTRIBUTES || GET_CODE (x) != SYMBOL_REF) return false; return SYMBOL_REF_DLLIMPORT_P (x) || SYMBOL_REF_STUBVAR_P (x); } /* Nonzero if the constant value X is a legitimate general operand when generating PIC code. It is given that flag_pic is on and that X satisfies CONSTANT_P. */ bool legitimate_pic_operand_p (rtx x) { rtx inner; switch (GET_CODE (x)) { case CONST: inner = XEXP (x, 0); if (GET_CODE (inner) == PLUS && CONST_INT_P (XEXP (inner, 1))) inner = XEXP (inner, 0); /* Only some unspecs are valid as "constants". */ if (GET_CODE (inner) == UNSPEC) switch (XINT (inner, 1)) { case UNSPEC_GOT: case UNSPEC_GOTOFF: case UNSPEC_PLTOFF: return TARGET_64BIT; case UNSPEC_TPOFF: x = XVECEXP (inner, 0, 0); return (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_EXEC); case UNSPEC_MACHOPIC_OFFSET: return legitimate_pic_address_disp_p (x); default: return false; } /* FALLTHRU */ case SYMBOL_REF: case LABEL_REF: return legitimate_pic_address_disp_p (x); default: return true; } } /* Determine if a given CONST RTX is a valid memory displacement in PIC mode. */ bool legitimate_pic_address_disp_p (rtx disp) { bool saw_plus; /* In 64bit mode we can allow direct addresses of symbols and labels when they are not dynamic symbols. */ if (TARGET_64BIT) { rtx op0 = disp, op1; switch (GET_CODE (disp)) { case LABEL_REF: return true; case CONST: if (GET_CODE (XEXP (disp, 0)) != PLUS) break; op0 = XEXP (XEXP (disp, 0), 0); op1 = XEXP (XEXP (disp, 0), 1); if (!CONST_INT_P (op1)) break; if (GET_CODE (op0) == UNSPEC && (XINT (op0, 1) == UNSPEC_DTPOFF || XINT (op0, 1) == UNSPEC_NTPOFF) && trunc_int_for_mode (INTVAL (op1), SImode) == INTVAL (op1)) return true; if (INTVAL (op1) >= 16*1024*1024 || INTVAL (op1) < -16*1024*1024) break; if (GET_CODE (op0) == LABEL_REF) return true; if (GET_CODE (op0) == CONST && GET_CODE (XEXP (op0, 0)) == UNSPEC && XINT (XEXP (op0, 0), 1) == UNSPEC_PCREL) return true; if (GET_CODE (op0) == UNSPEC && XINT (op0, 1) == UNSPEC_PCREL) return true; if (GET_CODE (op0) != SYMBOL_REF) break; /* FALLTHRU */ case SYMBOL_REF: /* TLS references should always be enclosed in UNSPEC. The dllimported symbol needs always to be resolved. */ if (SYMBOL_REF_TLS_MODEL (op0) || (TARGET_DLLIMPORT_DECL_ATTRIBUTES && SYMBOL_REF_DLLIMPORT_P (op0))) return false; if (TARGET_PECOFF) { if (is_imported_p (op0)) return true; if (SYMBOL_REF_FAR_ADDR_P (op0) || !SYMBOL_REF_LOCAL_P (op0)) break; /* Non-external-weak function symbols need to be resolved only for the large model. Non-external symbols don't need to be resolved for large and medium models. For the small model, we don't need to resolve anything here. */ if ((ix86_cmodel != CM_LARGE_PIC && SYMBOL_REF_FUNCTION_P (op0) && !(SYMBOL_REF_EXTERNAL_P (op0) && SYMBOL_REF_WEAK (op0))) || !SYMBOL_REF_EXTERNAL_P (op0) || ix86_cmodel == CM_SMALL_PIC) return true; } else if (!SYMBOL_REF_FAR_ADDR_P (op0) && (SYMBOL_REF_LOCAL_P (op0) || (HAVE_LD_PIE_COPYRELOC && flag_pie && !SYMBOL_REF_WEAK (op0) && !SYMBOL_REF_FUNCTION_P (op0))) && ix86_cmodel != CM_LARGE_PIC) return true; break; default: break; } } if (GET_CODE (disp) != CONST) return false; disp = XEXP (disp, 0); if (TARGET_64BIT) { /* We are unsafe to allow PLUS expressions. This limit allowed distance of GOT tables. We should not need these anyway. */ if (GET_CODE (disp) != UNSPEC || (XINT (disp, 1) != UNSPEC_GOTPCREL && XINT (disp, 1) != UNSPEC_GOTOFF && XINT (disp, 1) != UNSPEC_PCREL && XINT (disp, 1) != UNSPEC_PLTOFF)) return false; if (GET_CODE (XVECEXP (disp, 0, 0)) != SYMBOL_REF && GET_CODE (XVECEXP (disp, 0, 0)) != LABEL_REF) return false; return true; } saw_plus = false; if (GET_CODE (disp) == PLUS) { if (!CONST_INT_P (XEXP (disp, 1))) return false; disp = XEXP (disp, 0); saw_plus = true; } if (TARGET_MACHO && darwin_local_data_pic (disp)) return true; if (GET_CODE (disp) != UNSPEC) return false; switch (XINT (disp, 1)) { case UNSPEC_GOT: if (saw_plus) return false; /* We need to check for both symbols and labels because VxWorks loads text labels with @GOT rather than @GOTOFF. See gotoff_operand for details. */ return (GET_CODE (XVECEXP (disp, 0, 0)) == SYMBOL_REF || GET_CODE (XVECEXP (disp, 0, 0)) == LABEL_REF); case UNSPEC_GOTOFF: /* Refuse GOTOFF in 64bit mode since it is always 64bit when used. While ABI specify also 32bit relocation but we don't produce it in small PIC model at all. */ if ((GET_CODE (XVECEXP (disp, 0, 0)) == SYMBOL_REF || GET_CODE (XVECEXP (disp, 0, 0)) == LABEL_REF) && !TARGET_64BIT) return !TARGET_PECOFF && gotoff_operand (XVECEXP (disp, 0, 0), Pmode); return false; case UNSPEC_GOTTPOFF: case UNSPEC_GOTNTPOFF: case UNSPEC_INDNTPOFF: if (saw_plus) return false; disp = XVECEXP (disp, 0, 0); return (GET_CODE (disp) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (disp) == TLS_MODEL_INITIAL_EXEC); case UNSPEC_NTPOFF: disp = XVECEXP (disp, 0, 0); return (GET_CODE (disp) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (disp) == TLS_MODEL_LOCAL_EXEC); case UNSPEC_DTPOFF: disp = XVECEXP (disp, 0, 0); return (GET_CODE (disp) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (disp) == TLS_MODEL_LOCAL_DYNAMIC); } return false; } /* Determine if op is suitable RTX for an address register. Return naked register if a register or a register subreg is found, otherwise return NULL_RTX. */ static rtx ix86_validate_address_register (rtx op) { machine_mode mode = GET_MODE (op); /* Only SImode or DImode registers can form the address. */ if (mode != SImode && mode != DImode) return NULL_RTX; if (REG_P (op)) return op; else if (SUBREG_P (op)) { rtx reg = SUBREG_REG (op); if (!REG_P (reg)) return NULL_RTX; mode = GET_MODE (reg); /* Don't allow SUBREGs that span more than a word. It can lead to spill failures when the register is one word out of a two word structure. */ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD) return NULL_RTX; /* Allow only SUBREGs of non-eliminable hard registers. */ if (register_no_elim_operand (reg, mode)) return reg; } /* Op is not a register. */ return NULL_RTX; } /* Recognizes RTL expressions that are valid memory addresses for an instruction. The MODE argument is the machine mode for the MEM expression that wants to use this address. It only recognizes address in canonical form. LEGITIMIZE_ADDRESS should convert common non-canonical forms to canonical form so that they will be recognized. */ static bool ix86_legitimate_address_p (machine_mode, rtx addr, bool strict) { struct ix86_address parts; rtx base, index, disp; HOST_WIDE_INT scale; addr_space_t seg; if (ix86_decompose_address (addr, &parts) <= 0) /* Decomposition failed. */ return false; base = parts.base; index = parts.index; disp = parts.disp; scale = parts.scale; seg = parts.seg; /* Validate base register. */ if (base) { rtx reg = ix86_validate_address_register (base); if (reg == NULL_RTX) return false; if ((strict && ! REG_OK_FOR_BASE_STRICT_P (reg)) || (! strict && ! REG_OK_FOR_BASE_NONSTRICT_P (reg))) /* Base is not valid. */ return false; } /* Validate index register. */ if (index) { rtx reg = ix86_validate_address_register (index); if (reg == NULL_RTX) return false; if ((strict && ! REG_OK_FOR_INDEX_STRICT_P (reg)) || (! strict && ! REG_OK_FOR_INDEX_NONSTRICT_P (reg))) /* Index is not valid. */ return false; } /* Index and base should have the same mode. */ if (base && index && GET_MODE (base) != GET_MODE (index)) return false; /* Address override works only on the (%reg) part of %fs:(%reg). */ if (seg != ADDR_SPACE_GENERIC && ((base && GET_MODE (base) != word_mode) || (index && GET_MODE (index) != word_mode))) return false; /* Validate scale factor. */ if (scale != 1) { if (!index) /* Scale without index. */ return false; if (scale != 2 && scale != 4 && scale != 8) /* Scale is not a valid multiplier. */ return false; } /* Validate displacement. */ if (disp) { if (GET_CODE (disp) == CONST && GET_CODE (XEXP (disp, 0)) == UNSPEC && XINT (XEXP (disp, 0), 1) != UNSPEC_MACHOPIC_OFFSET) switch (XINT (XEXP (disp, 0), 1)) { /* Refuse GOTOFF and GOT in 64bit mode since it is always 64bit when used. While ABI specify also 32bit relocations, we don't produce them at all and use IP relative instead. Allow GOT in 32bit mode for both PIC and non-PIC if symbol should be loaded via GOT. */ case UNSPEC_GOT: if (!TARGET_64BIT && ix86_force_load_from_GOT_p (XVECEXP (XEXP (disp, 0), 0, 0))) goto is_legitimate_pic; /* FALLTHRU */ case UNSPEC_GOTOFF: gcc_assert (flag_pic); if (!TARGET_64BIT) goto is_legitimate_pic; /* 64bit address unspec. */ return false; case UNSPEC_GOTPCREL: if (ix86_force_load_from_GOT_p (XVECEXP (XEXP (disp, 0), 0, 0))) goto is_legitimate_pic; /* FALLTHRU */ case UNSPEC_PCREL: gcc_assert (flag_pic); goto is_legitimate_pic; case UNSPEC_GOTTPOFF: case UNSPEC_GOTNTPOFF: case UNSPEC_INDNTPOFF: case UNSPEC_NTPOFF: case UNSPEC_DTPOFF: break; default: /* Invalid address unspec. */ return false; } else if (SYMBOLIC_CONST (disp) && (flag_pic || (TARGET_MACHO #if TARGET_MACHO && MACHOPIC_INDIRECT && !machopic_operand_p (disp) #endif ))) { is_legitimate_pic: if (TARGET_64BIT && (index || base)) { /* foo@dtpoff(%rX) is ok. */ if (GET_CODE (disp) != CONST || GET_CODE (XEXP (disp, 0)) != PLUS || GET_CODE (XEXP (XEXP (disp, 0), 0)) != UNSPEC || !CONST_INT_P (XEXP (XEXP (disp, 0), 1)) || (XINT (XEXP (XEXP (disp, 0), 0), 1) != UNSPEC_DTPOFF && XINT (XEXP (XEXP (disp, 0), 0), 1) != UNSPEC_NTPOFF)) /* Non-constant pic memory reference. */ return false; } else if ((!TARGET_MACHO || flag_pic) && ! legitimate_pic_address_disp_p (disp)) /* Displacement is an invalid pic construct. */ return false; #if TARGET_MACHO else if (MACHO_DYNAMIC_NO_PIC_P && !ix86_legitimate_constant_p (Pmode, disp)) /* displacment must be referenced via non_lazy_pointer */ return false; #endif /* This code used to verify that a symbolic pic displacement includes the pic_offset_table_rtx register. While this is good idea, unfortunately these constructs may be created by "adds using lea" optimization for incorrect code like: int a; int foo(int i) { return *(&a+i); } This code is nonsensical, but results in addressing GOT table with pic_offset_table_rtx base. We can't just refuse it easily, since it gets matched by "addsi3" pattern, that later gets split to lea in the case output register differs from input. While this can be handled by separate addsi pattern for this case that never results in lea, this seems to be easier and correct fix for crash to disable this test. */ } else if (GET_CODE (disp) != LABEL_REF && !CONST_INT_P (disp) && (GET_CODE (disp) != CONST || !ix86_legitimate_constant_p (Pmode, disp)) && (GET_CODE (disp) != SYMBOL_REF || !ix86_legitimate_constant_p (Pmode, disp))) /* Displacement is not constant. */ return false; else if (TARGET_64BIT && !x86_64_immediate_operand (disp, VOIDmode)) /* Displacement is out of range. */ return false; /* In x32 mode, constant addresses are sign extended to 64bit, so we have to prevent addresses from 0x80000000 to 0xffffffff. */ else if (TARGET_X32 && !(index || base) && CONST_INT_P (disp) && val_signbit_known_set_p (SImode, INTVAL (disp))) return false; } /* Everything looks valid. */ return true; } /* Determine if a given RTX is a valid constant address. */ bool constant_address_p (rtx x) { return CONSTANT_P (x) && ix86_legitimate_address_p (Pmode, x, 1); } /* Return a unique alias set for the GOT. */ alias_set_type ix86_GOT_alias_set (void) { static alias_set_type set = -1; if (set == -1) set = new_alias_set (); return set; } /* Return a legitimate reference for ORIG (an address) using the register REG. If REG is 0, a new pseudo is generated. There are two types of references that must be handled: 1. Global data references must load the address from the GOT, via the PIC reg. An insn is emitted to do this load, and the reg is returned. 2. Static data references, constant pool addresses, and code labels compute the address as an offset from the GOT, whose base is in the PIC reg. Static data objects have SYMBOL_FLAG_LOCAL set to differentiate them from global data objects. The returned address is the PIC reg + an unspec constant. TARGET_LEGITIMATE_ADDRESS_P rejects symbolic references unless the PIC reg also appears in the address. */ rtx legitimize_pic_address (rtx orig, rtx reg) { rtx addr = orig; rtx new_rtx = orig; #if TARGET_MACHO if (TARGET_MACHO && !TARGET_64BIT) { if (reg == 0) reg = gen_reg_rtx (Pmode); /* Use the generic Mach-O PIC machinery. */ return machopic_legitimize_pic_address (orig, GET_MODE (orig), reg); } #endif if (TARGET_64BIT && TARGET_DLLIMPORT_DECL_ATTRIBUTES) { rtx tmp = legitimize_pe_coff_symbol (addr, true); if (tmp) return tmp; } if (TARGET_64BIT && legitimate_pic_address_disp_p (addr)) new_rtx = addr; else if ((!TARGET_64BIT || /* TARGET_64BIT && */ ix86_cmodel != CM_SMALL_PIC) && !TARGET_PECOFF && gotoff_operand (addr, Pmode)) { /* This symbol may be referenced via a displacement from the PIC base address (@GOTOFF). */ if (GET_CODE (addr) == CONST) addr = XEXP (addr, 0); if (GET_CODE (addr) == PLUS) { new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, XEXP (addr, 0)), UNSPEC_GOTOFF); new_rtx = gen_rtx_PLUS (Pmode, new_rtx, XEXP (addr, 1)); } else new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTOFF); new_rtx = gen_rtx_CONST (Pmode, new_rtx); if (TARGET_64BIT) new_rtx = copy_to_suggested_reg (new_rtx, reg, Pmode); if (reg != 0) { gcc_assert (REG_P (reg)); new_rtx = expand_simple_binop (Pmode, PLUS, pic_offset_table_rtx, new_rtx, reg, 1, OPTAB_DIRECT); } else new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new_rtx); } else if ((GET_CODE (addr) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (addr) == 0) /* We can't use @GOTOFF for text labels on VxWorks, see gotoff_operand. */ || (TARGET_VXWORKS_RTP && GET_CODE (addr) == LABEL_REF)) { rtx tmp = legitimize_pe_coff_symbol (addr, true); if (tmp) return tmp; /* For x64 PE-COFF there is no GOT table, so we use address directly. */ if (TARGET_64BIT && TARGET_PECOFF) { new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_PCREL); new_rtx = gen_rtx_CONST (Pmode, new_rtx); } else if (TARGET_64BIT && ix86_cmodel != CM_LARGE_PIC) { new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTPCREL); new_rtx = gen_rtx_CONST (Pmode, new_rtx); new_rtx = gen_const_mem (Pmode, new_rtx); set_mem_alias_set (new_rtx, ix86_GOT_alias_set ()); } else { /* This symbol must be referenced via a load from the Global Offset Table (@GOT). */ new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOT); new_rtx = gen_rtx_CONST (Pmode, new_rtx); if (TARGET_64BIT) new_rtx = force_reg (Pmode, new_rtx); new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new_rtx); new_rtx = gen_const_mem (Pmode, new_rtx); set_mem_alias_set (new_rtx, ix86_GOT_alias_set ()); } new_rtx = copy_to_suggested_reg (new_rtx, reg, Pmode); } else { if (CONST_INT_P (addr) && !x86_64_immediate_operand (addr, VOIDmode)) new_rtx = copy_to_suggested_reg (addr, reg, Pmode); else if (GET_CODE (addr) == CONST) { addr = XEXP (addr, 0); /* We must match stuff we generate before. Assume the only unspecs that can get here are ours. Not that we could do anything with them anyway.... */ if (GET_CODE (addr) == UNSPEC || (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 0)) == UNSPEC)) return orig; gcc_assert (GET_CODE (addr) == PLUS); } if (GET_CODE (addr) == PLUS) { rtx op0 = XEXP (addr, 0), op1 = XEXP (addr, 1); /* Check first to see if this is a constant offset from a @GOTOFF symbol reference. */ if (!TARGET_PECOFF && gotoff_operand (op0, Pmode) && CONST_INT_P (op1)) { if (!TARGET_64BIT) { new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op0), UNSPEC_GOTOFF); new_rtx = gen_rtx_PLUS (Pmode, new_rtx, op1); new_rtx = gen_rtx_CONST (Pmode, new_rtx); if (reg != 0) { gcc_assert (REG_P (reg)); new_rtx = expand_simple_binop (Pmode, PLUS, pic_offset_table_rtx, new_rtx, reg, 1, OPTAB_DIRECT); } else new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new_rtx); } else { if (INTVAL (op1) < -16*1024*1024 || INTVAL (op1) >= 16*1024*1024) { if (!x86_64_immediate_operand (op1, Pmode)) op1 = force_reg (Pmode, op1); new_rtx = gen_rtx_PLUS (Pmode, force_reg (Pmode, op0), op1); } } } else { rtx base = legitimize_pic_address (op0, reg); machine_mode mode = GET_MODE (base); new_rtx = legitimize_pic_address (op1, base == reg ? NULL_RTX : reg); if (CONST_INT_P (new_rtx)) { if (INTVAL (new_rtx) < -16*1024*1024 || INTVAL (new_rtx) >= 16*1024*1024) { if (!x86_64_immediate_operand (new_rtx, mode)) new_rtx = force_reg (mode, new_rtx); new_rtx = gen_rtx_PLUS (mode, force_reg (mode, base), new_rtx); } else new_rtx = plus_constant (mode, base, INTVAL (new_rtx)); } else { /* For %rip addressing, we have to use just disp32, not base nor index. */ if (TARGET_64BIT && (GET_CODE (base) == SYMBOL_REF || GET_CODE (base) == LABEL_REF)) base = force_reg (mode, base); if (GET_CODE (new_rtx) == PLUS && CONSTANT_P (XEXP (new_rtx, 1))) { base = gen_rtx_PLUS (mode, base, XEXP (new_rtx, 0)); new_rtx = XEXP (new_rtx, 1); } new_rtx = gen_rtx_PLUS (mode, base, new_rtx); } } } } return new_rtx; } /* Load the thread pointer. If TO_REG is true, force it into a register. */ static rtx get_thread_pointer (machine_mode tp_mode, bool to_reg) { rtx tp = gen_rtx_UNSPEC (ptr_mode, gen_rtvec (1, const0_rtx), UNSPEC_TP); if (GET_MODE (tp) != tp_mode) { gcc_assert (GET_MODE (tp) == SImode); gcc_assert (tp_mode == DImode); tp = gen_rtx_ZERO_EXTEND (tp_mode, tp); } if (to_reg) tp = copy_to_mode_reg (tp_mode, tp); return tp; } /* Construct the SYMBOL_REF for the tls_get_addr function. */ static GTY(()) rtx ix86_tls_symbol; static rtx ix86_tls_get_addr (void) { if (!ix86_tls_symbol) { const char *sym = ((TARGET_ANY_GNU_TLS && !TARGET_64BIT) ? "___tls_get_addr" : "__tls_get_addr"); ix86_tls_symbol = gen_rtx_SYMBOL_REF (Pmode, sym); } if (ix86_cmodel == CM_LARGE_PIC && !TARGET_PECOFF) { rtx unspec = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, ix86_tls_symbol), UNSPEC_PLTOFF); return gen_rtx_PLUS (Pmode, pic_offset_table_rtx, gen_rtx_CONST (Pmode, unspec)); } return ix86_tls_symbol; } /* Construct the SYMBOL_REF for the _TLS_MODULE_BASE_ symbol. */ static GTY(()) rtx ix86_tls_module_base_symbol; rtx ix86_tls_module_base (void) { if (!ix86_tls_module_base_symbol) { ix86_tls_module_base_symbol = gen_rtx_SYMBOL_REF (ptr_mode, "_TLS_MODULE_BASE_"); SYMBOL_REF_FLAGS (ix86_tls_module_base_symbol) |= TLS_MODEL_GLOBAL_DYNAMIC << SYMBOL_FLAG_TLS_SHIFT; } return ix86_tls_module_base_symbol; } /* A subroutine of ix86_legitimize_address and ix86_expand_move. FOR_MOV is false if we expect this to be used for a memory address and true if we expect to load the address into a register. */ rtx legitimize_tls_address (rtx x, enum tls_model model, bool for_mov) { rtx dest, base, off; rtx pic = NULL_RTX, tp = NULL_RTX; machine_mode tp_mode = Pmode; int type; /* Fall back to global dynamic model if tool chain cannot support local dynamic. */ if (TARGET_SUN_TLS && !TARGET_64BIT && !HAVE_AS_IX86_TLSLDMPLT && !HAVE_AS_IX86_TLSLDM && model == TLS_MODEL_LOCAL_DYNAMIC) model = TLS_MODEL_GLOBAL_DYNAMIC; switch (model) { case TLS_MODEL_GLOBAL_DYNAMIC: if (!TARGET_64BIT) { if (flag_pic && !TARGET_PECOFF) pic = pic_offset_table_rtx; else { pic = gen_reg_rtx (Pmode); emit_insn (gen_set_got (pic)); } } if (TARGET_GNU2_TLS) { dest = gen_reg_rtx (ptr_mode); if (TARGET_64BIT) emit_insn (gen_tls_dynamic_gnu2_64 (ptr_mode, dest, x)); else emit_insn (gen_tls_dynamic_gnu2_32 (dest, x, pic)); tp = get_thread_pointer (ptr_mode, true); dest = gen_rtx_PLUS (ptr_mode, tp, dest); if (GET_MODE (dest) != Pmode) dest = gen_rtx_ZERO_EXTEND (Pmode, dest); dest = force_reg (Pmode, dest); if (GET_MODE (x) != Pmode) x = gen_rtx_ZERO_EXTEND (Pmode, x); set_unique_reg_note (get_last_insn (), REG_EQUAL, x); } else { rtx caddr = ix86_tls_get_addr (); dest = gen_reg_rtx (Pmode); if (TARGET_64BIT) { rtx rax = gen_rtx_REG (Pmode, AX_REG); rtx_insn *insns; start_sequence (); emit_call_insn (gen_tls_global_dynamic_64 (Pmode, rax, x, caddr)); insns = get_insns (); end_sequence (); if (GET_MODE (x) != Pmode) x = gen_rtx_ZERO_EXTEND (Pmode, x); RTL_CONST_CALL_P (insns) = 1; emit_libcall_block (insns, dest, rax, x); } else emit_insn (gen_tls_global_dynamic_32 (dest, x, pic, caddr)); } break; case TLS_MODEL_LOCAL_DYNAMIC: if (!TARGET_64BIT) { if (flag_pic) pic = pic_offset_table_rtx; else { pic = gen_reg_rtx (Pmode); emit_insn (gen_set_got (pic)); } } if (TARGET_GNU2_TLS) { rtx tmp = ix86_tls_module_base (); base = gen_reg_rtx (ptr_mode); if (TARGET_64BIT) emit_insn (gen_tls_dynamic_gnu2_64 (ptr_mode, base, tmp)); else emit_insn (gen_tls_dynamic_gnu2_32 (base, tmp, pic)); tp = get_thread_pointer (ptr_mode, true); if (GET_MODE (base) != Pmode) base = gen_rtx_ZERO_EXTEND (Pmode, base); base = force_reg (Pmode, base); } else { rtx caddr = ix86_tls_get_addr (); base = gen_reg_rtx (Pmode); if (TARGET_64BIT) { rtx rax = gen_rtx_REG (Pmode, AX_REG); rtx_insn *insns; rtx eqv; start_sequence (); emit_call_insn (gen_tls_local_dynamic_base_64 (Pmode, rax, caddr)); insns = get_insns (); end_sequence (); /* Attach a unique REG_EQUAL, to allow the RTL optimizers to share the LD_BASE result with other LD model accesses. */ eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), UNSPEC_TLS_LD_BASE); RTL_CONST_CALL_P (insns) = 1; emit_libcall_block (insns, base, rax, eqv); } else emit_insn (gen_tls_local_dynamic_base_32 (base, pic, caddr)); } off = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), UNSPEC_DTPOFF); off = gen_rtx_CONST (Pmode, off); dest = force_reg (Pmode, gen_rtx_PLUS (Pmode, base, off)); if (TARGET_GNU2_TLS) { if (GET_MODE (tp) != Pmode) { dest = lowpart_subreg (ptr_mode, dest, Pmode); dest = gen_rtx_PLUS (ptr_mode, tp, dest); dest = gen_rtx_ZERO_EXTEND (Pmode, dest); } else dest = gen_rtx_PLUS (Pmode, tp, dest); dest = force_reg (Pmode, dest); if (GET_MODE (x) != Pmode) x = gen_rtx_ZERO_EXTEND (Pmode, x); set_unique_reg_note (get_last_insn (), REG_EQUAL, x); } break; case TLS_MODEL_INITIAL_EXEC: if (TARGET_64BIT) { if (TARGET_SUN_TLS && !TARGET_X32) { /* The Sun linker took the AMD64 TLS spec literally and can only handle %rax as destination of the initial executable code sequence. */ dest = gen_reg_rtx (DImode); emit_insn (gen_tls_initial_exec_64_sun (dest, x)); return dest; } /* Generate DImode references to avoid %fs:(%reg32) problems and linker IE->LE relaxation bug. */ tp_mode = DImode; pic = NULL; type = UNSPEC_GOTNTPOFF; } else if (flag_pic) { pic = pic_offset_table_rtx; type = TARGET_ANY_GNU_TLS ? UNSPEC_GOTNTPOFF : UNSPEC_GOTTPOFF; } else if (!TARGET_ANY_GNU_TLS) { pic = gen_reg_rtx (Pmode); emit_insn (gen_set_got (pic)); type = UNSPEC_GOTTPOFF; } else { pic = NULL; type = UNSPEC_INDNTPOFF; } off = gen_rtx_UNSPEC (tp_mode, gen_rtvec (1, x), type); off = gen_rtx_CONST (tp_mode, off); if (pic) off = gen_rtx_PLUS (tp_mode, pic, off); off = gen_const_mem (tp_mode, off); set_mem_alias_set (off, ix86_GOT_alias_set ()); if (TARGET_64BIT || TARGET_ANY_GNU_TLS) { base = get_thread_pointer (tp_mode, for_mov || !TARGET_TLS_DIRECT_SEG_REFS); off = force_reg (tp_mode, off); dest = gen_rtx_PLUS (tp_mode, base, off); if (tp_mode != Pmode) dest = convert_to_mode (Pmode, dest, 1); } else { base = get_thread_pointer (Pmode, true); dest = gen_reg_rtx (Pmode); emit_insn (gen_sub3_insn (dest, base, off)); } break; case TLS_MODEL_LOCAL_EXEC: off = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), (TARGET_64BIT || TARGET_ANY_GNU_TLS) ? UNSPEC_NTPOFF : UNSPEC_TPOFF); off = gen_rtx_CONST (Pmode, off); if (TARGET_64BIT || TARGET_ANY_GNU_TLS) { base = get_thread_pointer (Pmode, for_mov || !TARGET_TLS_DIRECT_SEG_REFS); return gen_rtx_PLUS (Pmode, base, off); } else { base = get_thread_pointer (Pmode, true); dest = gen_reg_rtx (Pmode); emit_insn (gen_sub3_insn (dest, base, off)); } break; default: gcc_unreachable (); } return dest; } /* Return true if OP refers to a TLS address. */ bool ix86_tls_address_pattern_p (rtx op) { subrtx_var_iterator::array_type array; FOR_EACH_SUBRTX_VAR (iter, array, op, ALL) { rtx op = *iter; if (MEM_P (op)) { rtx *x = &XEXP (op, 0); while (GET_CODE (*x) == PLUS) { int i; for (i = 0; i < 2; i++) { rtx u = XEXP (*x, i); if (GET_CODE (u) == ZERO_EXTEND) u = XEXP (u, 0); if (GET_CODE (u) == UNSPEC && XINT (u, 1) == UNSPEC_TP) return true; } x = &XEXP (*x, 0); } iter.skip_subrtxes (); } } return false; } /* Rewrite *LOC so that it refers to a default TLS address space. */ void ix86_rewrite_tls_address_1 (rtx *loc) { subrtx_ptr_iterator::array_type array; FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL) { rtx *loc = *iter; if (MEM_P (*loc)) { rtx addr = XEXP (*loc, 0); rtx *x = &addr; while (GET_CODE (*x) == PLUS) { int i; for (i = 0; i < 2; i++) { rtx u = XEXP (*x, i); if (GET_CODE (u) == ZERO_EXTEND) u = XEXP (u, 0); if (GET_CODE (u) == UNSPEC && XINT (u, 1) == UNSPEC_TP) { addr_space_t as = DEFAULT_TLS_SEG_REG; *x = XEXP (*x, 1 - i); *loc = replace_equiv_address_nv (*loc, addr, true); set_mem_addr_space (*loc, as); return; } } x = &XEXP (*x, 0); } iter.skip_subrtxes (); } } } /* Rewrite instruction pattern involvning TLS address so that it refers to a default TLS address space. */ rtx ix86_rewrite_tls_address (rtx pattern) { pattern = copy_insn (pattern); ix86_rewrite_tls_address_1 (&pattern); return pattern; } /* Create or return the unique __imp_DECL dllimport symbol corresponding to symbol DECL if BEIMPORT is true. Otherwise create or return the unique refptr-DECL symbol corresponding to symbol DECL. */ struct dllimport_hasher : ggc_cache_ptr_hash { static inline hashval_t hash (tree_map *m) { return m->hash; } static inline bool equal (tree_map *a, tree_map *b) { return a->base.from == b->base.from; } static int keep_cache_entry (tree_map *&m) { return ggc_marked_p (m->base.from); } }; static GTY((cache)) hash_table *dllimport_map; static tree get_dllimport_decl (tree decl, bool beimport) { struct tree_map *h, in; const char *name; const char *prefix; size_t namelen, prefixlen; char *imp_name; tree to; rtx rtl; if (!dllimport_map) dllimport_map = hash_table::create_ggc (512); in.hash = htab_hash_pointer (decl); in.base.from = decl; tree_map **loc = dllimport_map->find_slot_with_hash (&in, in.hash, INSERT); h = *loc; if (h) return h->to; *loc = h = ggc_alloc (); h->hash = in.hash; h->base.from = decl; h->to = to = build_decl (DECL_SOURCE_LOCATION (decl), VAR_DECL, NULL, ptr_type_node); DECL_ARTIFICIAL (to) = 1; DECL_IGNORED_P (to) = 1; DECL_EXTERNAL (to) = 1; TREE_READONLY (to) = 1; name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); name = targetm.strip_name_encoding (name); if (beimport) prefix = name[0] == FASTCALL_PREFIX || user_label_prefix[0] == 0 ? "*__imp_" : "*__imp__"; else prefix = user_label_prefix[0] == 0 ? "*.refptr." : "*refptr."; namelen = strlen (name); prefixlen = strlen (prefix); imp_name = (char *) alloca (namelen + prefixlen + 1); memcpy (imp_name, prefix, prefixlen); memcpy (imp_name + prefixlen, name, namelen + 1); name = ggc_alloc_string (imp_name, namelen + prefixlen); rtl = gen_rtx_SYMBOL_REF (Pmode, name); SET_SYMBOL_REF_DECL (rtl, to); SYMBOL_REF_FLAGS (rtl) = SYMBOL_FLAG_LOCAL | SYMBOL_FLAG_STUBVAR; if (!beimport) { SYMBOL_REF_FLAGS (rtl) |= SYMBOL_FLAG_EXTERNAL; #ifdef SUB_TARGET_RECORD_STUB SUB_TARGET_RECORD_STUB (name); #endif } rtl = gen_const_mem (Pmode, rtl); set_mem_alias_set (rtl, ix86_GOT_alias_set ()); SET_DECL_RTL (to, rtl); SET_DECL_ASSEMBLER_NAME (to, get_identifier (name)); return to; } /* Expand SYMBOL into its corresponding far-address symbol. WANT_REG is true if we require the result be a register. */ static rtx legitimize_pe_coff_extern_decl (rtx symbol, bool want_reg) { tree imp_decl; rtx x; gcc_assert (SYMBOL_REF_DECL (symbol)); imp_decl = get_dllimport_decl (SYMBOL_REF_DECL (symbol), false); x = DECL_RTL (imp_decl); if (want_reg) x = force_reg (Pmode, x); return x; } /* Expand SYMBOL into its corresponding dllimport symbol. WANT_REG is true if we require the result be a register. */ static rtx legitimize_dllimport_symbol (rtx symbol, bool want_reg) { tree imp_decl; rtx x; gcc_assert (SYMBOL_REF_DECL (symbol)); imp_decl = get_dllimport_decl (SYMBOL_REF_DECL (symbol), true); x = DECL_RTL (imp_decl); if (want_reg) x = force_reg (Pmode, x); return x; } /* Expand SYMBOL into its corresponding dllimport or refptr symbol. WANT_REG is true if we require the result be a register. */ rtx legitimize_pe_coff_symbol (rtx addr, bool inreg) { if (!TARGET_PECOFF) return NULL_RTX; if (TARGET_DLLIMPORT_DECL_ATTRIBUTES) { if (GET_CODE (addr) == SYMBOL_REF && SYMBOL_REF_DLLIMPORT_P (addr)) return legitimize_dllimport_symbol (addr, inreg); if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF && SYMBOL_REF_DLLIMPORT_P (XEXP (XEXP (addr, 0), 0))) { rtx t = legitimize_dllimport_symbol (XEXP (XEXP (addr, 0), 0), inreg); return gen_rtx_PLUS (Pmode, t, XEXP (XEXP (addr, 0), 1)); } } if (ix86_cmodel != CM_LARGE_PIC && ix86_cmodel != CM_MEDIUM_PIC) return NULL_RTX; if (GET_CODE (addr) == SYMBOL_REF && !is_imported_p (addr) && SYMBOL_REF_EXTERNAL_P (addr) && SYMBOL_REF_DECL (addr)) return legitimize_pe_coff_extern_decl (addr, inreg); if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF && !is_imported_p (XEXP (XEXP (addr, 0), 0)) && SYMBOL_REF_EXTERNAL_P (XEXP (XEXP (addr, 0), 0)) && SYMBOL_REF_DECL (XEXP (XEXP (addr, 0), 0))) { rtx t = legitimize_pe_coff_extern_decl (XEXP (XEXP (addr, 0), 0), inreg); return gen_rtx_PLUS (Pmode, t, XEXP (XEXP (addr, 0), 1)); } return NULL_RTX; } /* Try machine-dependent ways of modifying an illegitimate address to be legitimate. If we find one, return the new, valid address. This macro is used in only one place: `memory_address' in explow.c. OLDX is the address as it was before break_out_memory_refs was called. In some cases it is useful to look at this to decide what needs to be done. It is always safe for this macro to do nothing. It exists to recognize opportunities to optimize the output. For the 80386, we handle X+REG by loading X into a register R and using R+REG. R will go in a general reg and indexing will be used. However, if REG is a broken-out memory address or multiplication, nothing needs to be done because REG can certainly go in a general reg. When -fpic is used, special handling is needed for symbolic references. See comments by legitimize_pic_address in i386.c for details. */ static rtx ix86_legitimize_address (rtx x, rtx, machine_mode mode) { bool changed = false; unsigned log; log = GET_CODE (x) == SYMBOL_REF ? SYMBOL_REF_TLS_MODEL (x) : 0; if (log) return legitimize_tls_address (x, (enum tls_model) log, false); if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF && (log = SYMBOL_REF_TLS_MODEL (XEXP (XEXP (x, 0), 0)))) { rtx t = legitimize_tls_address (XEXP (XEXP (x, 0), 0), (enum tls_model) log, false); return gen_rtx_PLUS (Pmode, t, XEXP (XEXP (x, 0), 1)); } if (TARGET_DLLIMPORT_DECL_ATTRIBUTES) { rtx tmp = legitimize_pe_coff_symbol (x, true); if (tmp) return tmp; } if (flag_pic && SYMBOLIC_CONST (x)) return legitimize_pic_address (x, 0); #if TARGET_MACHO if (MACHO_DYNAMIC_NO_PIC_P && SYMBOLIC_CONST (x)) return machopic_indirect_data_reference (x, 0); #endif /* Canonicalize shifts by 0, 1, 2, 3 into multiply */ if (GET_CODE (x) == ASHIFT && CONST_INT_P (XEXP (x, 1)) && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) < 4) { changed = true; log = INTVAL (XEXP (x, 1)); x = gen_rtx_MULT (Pmode, force_reg (Pmode, XEXP (x, 0)), GEN_INT (1 << log)); } if (GET_CODE (x) == PLUS) { /* Canonicalize shifts by 0, 1, 2, 3 into multiply. */ if (GET_CODE (XEXP (x, 0)) == ASHIFT && CONST_INT_P (XEXP (XEXP (x, 0), 1)) && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (x, 0), 1)) < 4) { changed = true; log = INTVAL (XEXP (XEXP (x, 0), 1)); XEXP (x, 0) = gen_rtx_MULT (Pmode, force_reg (Pmode, XEXP (XEXP (x, 0), 0)), GEN_INT (1 << log)); } if (GET_CODE (XEXP (x, 1)) == ASHIFT && CONST_INT_P (XEXP (XEXP (x, 1), 1)) && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (x, 1), 1)) < 4) { changed = true; log = INTVAL (XEXP (XEXP (x, 1), 1)); XEXP (x, 1) = gen_rtx_MULT (Pmode, force_reg (Pmode, XEXP (XEXP (x, 1), 0)), GEN_INT (1 << log)); } /* Put multiply first if it isn't already. */ if (GET_CODE (XEXP (x, 1)) == MULT) { std::swap (XEXP (x, 0), XEXP (x, 1)); changed = true; } /* Canonicalize (plus (mult (reg) (const)) (plus (reg) (const))) into (plus (plus (mult (reg) (const)) (reg)) (const)). This can be created by virtual register instantiation, register elimination, and similar optimizations. */ if (GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == PLUS) { changed = true; x = gen_rtx_PLUS (Pmode, gen_rtx_PLUS (Pmode, XEXP (x, 0), XEXP (XEXP (x, 1), 0)), XEXP (XEXP (x, 1), 1)); } /* Canonicalize (plus (plus (mult (reg) (const)) (plus (reg) (const))) const) into (plus (plus (mult (reg) (const)) (reg)) (const)). */ else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT && GET_CODE (XEXP (XEXP (x, 0), 1)) == PLUS && CONSTANT_P (XEXP (x, 1))) { rtx constant; rtx other = NULL_RTX; if (CONST_INT_P (XEXP (x, 1))) { constant = XEXP (x, 1); other = XEXP (XEXP (XEXP (x, 0), 1), 1); } else if (CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 1), 1))) { constant = XEXP (XEXP (XEXP (x, 0), 1), 1); other = XEXP (x, 1); } else constant = 0; if (constant) { changed = true; x = gen_rtx_PLUS (Pmode, gen_rtx_PLUS (Pmode, XEXP (XEXP (x, 0), 0), XEXP (XEXP (XEXP (x, 0), 1), 0)), plus_constant (Pmode, other, INTVAL (constant))); } } if (changed && ix86_legitimate_address_p (mode, x, false)) return x; if (GET_CODE (XEXP (x, 0)) == MULT) { changed = true; XEXP (x, 0) = copy_addr_to_reg (XEXP (x, 0)); } if (GET_CODE (XEXP (x, 1)) == MULT) { changed = true; XEXP (x, 1) = copy_addr_to_reg (XEXP (x, 1)); } if (changed && REG_P (XEXP (x, 1)) && REG_P (XEXP (x, 0))) return x; if (flag_pic && SYMBOLIC_CONST (XEXP (x, 1))) { changed = true; x = legitimize_pic_address (x, 0); } if (changed && ix86_legitimate_address_p (mode, x, false)) return x; if (REG_P (XEXP (x, 0))) { rtx temp = gen_reg_rtx (Pmode); rtx val = force_operand (XEXP (x, 1), temp); if (val != temp) { val = convert_to_mode (Pmode, val, 1); emit_move_insn (temp, val); } XEXP (x, 1) = temp; return x; } else if (REG_P (XEXP (x, 1))) { rtx temp = gen_reg_rtx (Pmode); rtx val = force_operand (XEXP (x, 0), temp); if (val != temp) { val = convert_to_mode (Pmode, val, 1); emit_move_insn (temp, val); } XEXP (x, 0) = temp; return x; } } return x; } /* Print an integer constant expression in assembler syntax. Addition and subtraction are the only arithmetic that may appear in these expressions. FILE is the stdio stream to write to, X is the rtx, and CODE is the operand print code from the output string. */ static void output_pic_addr_const (FILE *file, rtx x, int code) { char buf[256]; switch (GET_CODE (x)) { case PC: gcc_assert (flag_pic); putc ('.', file); break; case SYMBOL_REF: if (TARGET_64BIT || ! TARGET_MACHO_SYMBOL_STUBS) output_addr_const (file, x); else { const char *name = XSTR (x, 0); /* Mark the decl as referenced so that cgraph will output the function. */ if (SYMBOL_REF_DECL (x)) mark_decl_referenced (SYMBOL_REF_DECL (x)); #if TARGET_MACHO if (MACHOPIC_INDIRECT && machopic_classify_symbol (x) == MACHOPIC_UNDEFINED_FUNCTION) name = machopic_indirection_name (x, /*stub_p=*/true); #endif assemble_name (file, name); } if (!TARGET_MACHO && !(TARGET_64BIT && TARGET_PECOFF) && code == 'P' && ! SYMBOL_REF_LOCAL_P (x)) fputs ("@PLT", file); break; case LABEL_REF: x = XEXP (x, 0); /* FALLTHRU */ case CODE_LABEL: ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x)); assemble_name (asm_out_file, buf); break; case CONST_INT: fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x)); break; case CONST: /* This used to output parentheses around the expression, but that does not work on the 386 (either ATT or BSD assembler). */ output_pic_addr_const (file, XEXP (x, 0), code); break; case CONST_DOUBLE: /* We can't handle floating point constants; TARGET_PRINT_OPERAND must handle them. */ output_operand_lossage ("floating constant misused"); break; case PLUS: /* Some assemblers need integer constants to appear first. */ if (CONST_INT_P (XEXP (x, 0))) { output_pic_addr_const (file, XEXP (x, 0), code); putc ('+', file); output_pic_addr_const (file, XEXP (x, 1), code); } else { gcc_assert (CONST_INT_P (XEXP (x, 1))); output_pic_addr_const (file, XEXP (x, 1), code); putc ('+', file); output_pic_addr_const (file, XEXP (x, 0), code); } break; case MINUS: if (!TARGET_MACHO) putc (ASSEMBLER_DIALECT == ASM_INTEL ? '(' : '[', file); output_pic_addr_const (file, XEXP (x, 0), code); putc ('-', file); output_pic_addr_const (file, XEXP (x, 1), code); if (!TARGET_MACHO) putc (ASSEMBLER_DIALECT == ASM_INTEL ? ')' : ']', file); break; case UNSPEC: gcc_assert (XVECLEN (x, 0) == 1); output_pic_addr_const (file, XVECEXP (x, 0, 0), code); switch (XINT (x, 1)) { case UNSPEC_GOT: fputs ("@GOT", file); break; case UNSPEC_GOTOFF: fputs ("@GOTOFF", file); break; case UNSPEC_PLTOFF: fputs ("@PLTOFF", file); break; case UNSPEC_PCREL: fputs (ASSEMBLER_DIALECT == ASM_ATT ? "(%rip)" : "[rip]", file); break; case UNSPEC_GOTPCREL: fputs (ASSEMBLER_DIALECT == ASM_ATT ? "@GOTPCREL(%rip)" : "@GOTPCREL[rip]", file); break; case UNSPEC_GOTTPOFF: /* FIXME: This might be @TPOFF in Sun ld too. */ fputs ("@gottpoff", file); break; case UNSPEC_TPOFF: fputs ("@tpoff", file); break; case UNSPEC_NTPOFF: if (TARGET_64BIT) fputs ("@tpoff", file); else fputs ("@ntpoff", file); break; case UNSPEC_DTPOFF: fputs ("@dtpoff", file); break; case UNSPEC_GOTNTPOFF: if (TARGET_64BIT) fputs (ASSEMBLER_DIALECT == ASM_ATT ? "@gottpoff(%rip)": "@gottpoff[rip]", file); else fputs ("@gotntpoff", file); break; case UNSPEC_INDNTPOFF: fputs ("@indntpoff", file); break; #if TARGET_MACHO case UNSPEC_MACHOPIC_OFFSET: putc ('-', file); machopic_output_function_base_name (file); break; #endif default: output_operand_lossage ("invalid UNSPEC as operand"); break; } break; default: output_operand_lossage ("invalid expression as operand"); } } /* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL. We need to emit DTP-relative relocations. */ static void ATTRIBUTE_UNUSED i386_output_dwarf_dtprel (FILE *file, int size, rtx x) { fputs (ASM_LONG, file); output_addr_const (file, x); fputs ("@dtpoff", file); switch (size) { case 4: break; case 8: fputs (", 0", file); break; default: gcc_unreachable (); } } /* Return true if X is a representation of the PIC register. This copes with calls from ix86_find_base_term, where the register might have been replaced by a cselib value. */ static bool ix86_pic_register_p (rtx x) { if (GET_CODE (x) == VALUE && CSELIB_VAL_PTR (x)) return (pic_offset_table_rtx && rtx_equal_for_cselib_p (x, pic_offset_table_rtx)); else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_SET_GOT) return true; else if (!REG_P (x)) return false; else if (pic_offset_table_rtx) { if (REGNO (x) == REGNO (pic_offset_table_rtx)) return true; if (HARD_REGISTER_P (x) && !HARD_REGISTER_P (pic_offset_table_rtx) && ORIGINAL_REGNO (x) == REGNO (pic_offset_table_rtx)) return true; return false; } else return REGNO (x) == PIC_OFFSET_TABLE_REGNUM; } /* Helper function for ix86_delegitimize_address. Attempt to delegitimize TLS local-exec accesses. */ static rtx ix86_delegitimize_tls_address (rtx orig_x) { rtx x = orig_x, unspec; struct ix86_address addr; if (!TARGET_TLS_DIRECT_SEG_REFS) return orig_x; if (MEM_P (x)) x = XEXP (x, 0); if (GET_CODE (x) != PLUS || GET_MODE (x) != Pmode) return orig_x; if (ix86_decompose_address (x, &addr) == 0 || addr.seg != DEFAULT_TLS_SEG_REG || addr.disp == NULL_RTX || GET_CODE (addr.disp) != CONST) return orig_x; unspec = XEXP (addr.disp, 0); if (GET_CODE (unspec) == PLUS && CONST_INT_P (XEXP (unspec, 1))) unspec = XEXP (unspec, 0); if (GET_CODE (unspec) != UNSPEC || XINT (unspec, 1) != UNSPEC_NTPOFF) return orig_x; x = XVECEXP (unspec, 0, 0); gcc_assert (GET_CODE (x) == SYMBOL_REF); if (unspec != XEXP (addr.disp, 0)) x = gen_rtx_PLUS (Pmode, x, XEXP (XEXP (addr.disp, 0), 1)); if (addr.index) { rtx idx = addr.index; if (addr.scale != 1) idx = gen_rtx_MULT (Pmode, idx, GEN_INT (addr.scale)); x = gen_rtx_PLUS (Pmode, idx, x); } if (addr.base) x = gen_rtx_PLUS (Pmode, addr.base, x); if (MEM_P (orig_x)) x = replace_equiv_address_nv (orig_x, x); return x; } /* In the name of slightly smaller debug output, and to cater to general assembler lossage, recognize PIC+GOTOFF and turn it back into a direct symbol reference. On Darwin, this is necessary to avoid a crash, because Darwin has a different PIC label for each routine but the DWARF debugging information is not associated with any particular routine, so it's necessary to remove references to the PIC label from RTL stored by the DWARF output code. This helper is used in the normal ix86_delegitimize_address entrypoint (e.g. used in the target delegitimization hook) and in ix86_find_base_term. As compile time memory optimization, we avoid allocating rtxes that will not change anything on the outcome of the callers (find_base_value and find_base_term). */ static inline rtx ix86_delegitimize_address_1 (rtx x, bool base_term_p) { rtx orig_x = delegitimize_mem_from_attrs (x); /* addend is NULL or some rtx if x is something+GOTOFF where something doesn't include the PIC register. */ rtx addend = NULL_RTX; /* reg_addend is NULL or a multiple of some register. */ rtx reg_addend = NULL_RTX; /* const_addend is NULL or a const_int. */ rtx const_addend = NULL_RTX; /* This is the result, or NULL. */ rtx result = NULL_RTX; x = orig_x; if (MEM_P (x)) x = XEXP (x, 0); if (TARGET_64BIT) { if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS && GET_MODE (XEXP (x, 0)) == Pmode && CONST_INT_P (XEXP (XEXP (x, 0), 1)) && GET_CODE (XEXP (XEXP (x, 0), 0)) == UNSPEC && XINT (XEXP (XEXP (x, 0), 0), 1) == UNSPEC_PCREL) { /* find_base_{value,term} only care about MEMs with arg_pointer_rtx base. A CONST can't be arg_pointer_rtx based. */ if (base_term_p && MEM_P (orig_x)) return orig_x; rtx x2 = XVECEXP (XEXP (XEXP (x, 0), 0), 0, 0); x = gen_rtx_PLUS (Pmode, XEXP (XEXP (x, 0), 1), x2); if (MEM_P (orig_x)) x = replace_equiv_address_nv (orig_x, x); return x; } if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == UNSPEC && (XINT (XEXP (x, 0), 1) == UNSPEC_GOTPCREL || XINT (XEXP (x, 0), 1) == UNSPEC_PCREL) && (MEM_P (orig_x) || XINT (XEXP (x, 0), 1) == UNSPEC_PCREL)) { x = XVECEXP (XEXP (x, 0), 0, 0); if (GET_MODE (orig_x) != GET_MODE (x) && MEM_P (orig_x)) { x = lowpart_subreg (GET_MODE (orig_x), x, GET_MODE (x)); if (x == NULL_RTX) return orig_x; } return x; } if (ix86_cmodel != CM_MEDIUM_PIC && ix86_cmodel != CM_LARGE_PIC) return ix86_delegitimize_tls_address (orig_x); /* Fall thru into the code shared with -m32 for -mcmodel=large -fpic and -mcmodel=medium -fpic. */ } if (GET_CODE (x) != PLUS || GET_CODE (XEXP (x, 1)) != CONST) return ix86_delegitimize_tls_address (orig_x); if (ix86_pic_register_p (XEXP (x, 0))) /* %ebx + GOT/GOTOFF */ ; else if (GET_CODE (XEXP (x, 0)) == PLUS) { /* %ebx + %reg * scale + GOT/GOTOFF */ reg_addend = XEXP (x, 0); if (ix86_pic_register_p (XEXP (reg_addend, 0))) reg_addend = XEXP (reg_addend, 1); else if (ix86_pic_register_p (XEXP (reg_addend, 1))) reg_addend = XEXP (reg_addend, 0); else { reg_addend = NULL_RTX; addend = XEXP (x, 0); } } else addend = XEXP (x, 0); x = XEXP (XEXP (x, 1), 0); if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1))) { const_addend = XEXP (x, 1); x = XEXP (x, 0); } if (GET_CODE (x) == UNSPEC && ((XINT (x, 1) == UNSPEC_GOT && MEM_P (orig_x) && !addend) || (XINT (x, 1) == UNSPEC_GOTOFF && !MEM_P (orig_x)) || (XINT (x, 1) == UNSPEC_PLTOFF && ix86_cmodel == CM_LARGE_PIC && !MEM_P (orig_x) && !addend))) result = XVECEXP (x, 0, 0); if (!TARGET_64BIT && TARGET_MACHO && darwin_local_data_pic (x) && !MEM_P (orig_x)) result = XVECEXP (x, 0, 0); if (! result) return ix86_delegitimize_tls_address (orig_x); /* For (PLUS something CONST_INT) both find_base_{value,term} just recurse on the first operand. */ if (const_addend && !base_term_p) result = gen_rtx_CONST (Pmode, gen_rtx_PLUS (Pmode, result, const_addend)); if (reg_addend) result = gen_rtx_PLUS (Pmode, reg_addend, result); if (addend) { /* If the rest of original X doesn't involve the PIC register, add addend and subtract pic_offset_table_rtx. This can happen e.g. for code like: leal (%ebx, %ecx, 4), %ecx ... movl foo@GOTOFF(%ecx), %edx in which case we return (%ecx - %ebx) + foo or (%ecx - _GLOBAL_OFFSET_TABLE_) + foo if pseudo_pic_reg and reload has completed. Don't do the latter for debug, as _GLOBAL_OFFSET_TABLE_ can't be expressed in the assembly. */ if (pic_offset_table_rtx && (!reload_completed || !ix86_use_pseudo_pic_reg ())) result = gen_rtx_PLUS (Pmode, gen_rtx_MINUS (Pmode, copy_rtx (addend), pic_offset_table_rtx), result); else if (base_term_p && pic_offset_table_rtx && !TARGET_MACHO && !TARGET_VXWORKS_RTP) { rtx tmp = gen_rtx_SYMBOL_REF (Pmode, GOT_SYMBOL_NAME); tmp = gen_rtx_MINUS (Pmode, copy_rtx (addend), tmp); result = gen_rtx_PLUS (Pmode, tmp, result); } else return orig_x; } if (GET_MODE (orig_x) != Pmode && MEM_P (orig_x)) { result = lowpart_subreg (GET_MODE (orig_x), result, Pmode); if (result == NULL_RTX) return orig_x; } return result; } /* The normal instantiation of the above template. */ static rtx ix86_delegitimize_address (rtx x) { return ix86_delegitimize_address_1 (x, false); } /* If X is a machine specific address (i.e. a symbol or label being referenced as a displacement from the GOT implemented using an UNSPEC), then return the base term. Otherwise return X. */ rtx ix86_find_base_term (rtx x) { rtx term; if (TARGET_64BIT) { if (GET_CODE (x) != CONST) return x; term = XEXP (x, 0); if (GET_CODE (term) == PLUS && CONST_INT_P (XEXP (term, 1))) term = XEXP (term, 0); if (GET_CODE (term) != UNSPEC || (XINT (term, 1) != UNSPEC_GOTPCREL && XINT (term, 1) != UNSPEC_PCREL)) return x; return XVECEXP (term, 0, 0); } return ix86_delegitimize_address_1 (x, true); } /* Return true if X shouldn't be emitted into the debug info. Disallow UNSPECs other than @gotoff - we can't emit _GLOBAL_OFFSET_TABLE_ symbol easily into the .debug_info section, so we need not to delegitimize, but instead assemble as @gotoff. Disallow _GLOBAL_OFFSET_TABLE_ SYMBOL_REF - the assembler magically assembles that as _GLOBAL_OFFSET_TABLE_-. expression. */ static bool ix86_const_not_ok_for_debug_p (rtx x) { if (GET_CODE (x) == UNSPEC && XINT (x, 1) != UNSPEC_GOTOFF) return true; if (SYMBOL_REF_P (x) && strcmp (XSTR (x, 0), GOT_SYMBOL_NAME) == 0) return true; return false; } static void put_condition_code (enum rtx_code code, machine_mode mode, bool reverse, bool fp, FILE *file) { const char *suffix; if (mode == CCFPmode) { code = ix86_fp_compare_code_to_integer (code); mode = CCmode; } if (reverse) code = reverse_condition (code); switch (code) { case EQ: gcc_assert (mode != CCGZmode); switch (mode) { case E_CCAmode: suffix = "a"; break; case E_CCCmode: suffix = "c"; break; case E_CCOmode: suffix = "o"; break; case E_CCPmode: suffix = "p"; break; case E_CCSmode: suffix = "s"; break; default: suffix = "e"; break; } break; case NE: gcc_assert (mode != CCGZmode); switch (mode) { case E_CCAmode: suffix = "na"; break; case E_CCCmode: suffix = "nc"; break; case E_CCOmode: suffix = "no"; break; case E_CCPmode: suffix = "np"; break; case E_CCSmode: suffix = "ns"; break; default: suffix = "ne"; break; } break; case GT: gcc_assert (mode == CCmode || mode == CCNOmode || mode == CCGCmode); suffix = "g"; break; case GTU: /* ??? Use "nbe" instead of "a" for fcmov lossage on some assemblers. Those same assemblers have the same but opposite lossage on cmov. */ if (mode == CCmode) suffix = fp ? "nbe" : "a"; else gcc_unreachable (); break; case LT: switch (mode) { case E_CCNOmode: case E_CCGOCmode: suffix = "s"; break; case E_CCmode: case E_CCGCmode: case E_CCGZmode: suffix = "l"; break; default: gcc_unreachable (); } break; case LTU: if (mode == CCmode || mode == CCGZmode) suffix = "b"; else if (mode == CCCmode) suffix = fp ? "b" : "c"; else gcc_unreachable (); break; case GE: switch (mode) { case E_CCNOmode: case E_CCGOCmode: suffix = "ns"; break; case E_CCmode: case E_CCGCmode: case E_CCGZmode: suffix = "ge"; break; default: gcc_unreachable (); } break; case GEU: if (mode == CCmode || mode == CCGZmode) suffix = "nb"; else if (mode == CCCmode) suffix = fp ? "nb" : "nc"; else gcc_unreachable (); break; case LE: gcc_assert (mode == CCmode || mode == CCGCmode || mode == CCNOmode); suffix = "le"; break; case LEU: if (mode == CCmode) suffix = "be"; else gcc_unreachable (); break; case UNORDERED: suffix = fp ? "u" : "p"; break; case ORDERED: suffix = fp ? "nu" : "np"; break; default: gcc_unreachable (); } fputs (suffix, file); } /* Print the name of register X to FILE based on its machine mode and number. If CODE is 'w', pretend the mode is HImode. If CODE is 'b', pretend the mode is QImode. If CODE is 'k', pretend the mode is SImode. If CODE is 'q', pretend the mode is DImode. If CODE is 'x', pretend the mode is V4SFmode. If CODE is 't', pretend the mode is V8SFmode. If CODE is 'g', pretend the mode is V16SFmode. If CODE is 'h', pretend the reg is the 'high' byte register. If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. If CODE is 'd', duplicate the operand for AVX instruction. If CODE is 'V', print naked full integer register name without %. */ void print_reg (rtx x, int code, FILE *file) { const char *reg; int msize; unsigned int regno; bool duplicated; if (ASSEMBLER_DIALECT == ASM_ATT && code != 'V') putc ('%', file); if (x == pc_rtx) { gcc_assert (TARGET_64BIT); fputs ("rip", file); return; } if (code == 'y' && STACK_TOP_P (x)) { fputs ("st(0)", file); return; } if (code == 'w') msize = 2; else if (code == 'b') msize = 1; else if (code == 'k') msize = 4; else if (code == 'q') msize = 8; else if (code == 'h') msize = 0; else if (code == 'x') msize = 16; else if (code == 't') msize = 32; else if (code == 'g') msize = 64; else msize = GET_MODE_SIZE (GET_MODE (x)); regno = REGNO (x); if (regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM || regno == FPSR_REG) { output_operand_lossage ("invalid use of register '%s'", reg_names[regno]); return; } else if (regno == FLAGS_REG) { output_operand_lossage ("invalid use of asm flag output"); return; } if (code == 'V') { if (GENERAL_REGNO_P (regno)) msize = GET_MODE_SIZE (word_mode); else error ("% modifier on non-integer register"); } duplicated = code == 'd' && TARGET_AVX; switch (msize) { case 16: case 12: case 8: if (GENERAL_REGNO_P (regno) && msize > GET_MODE_SIZE (word_mode)) warning (0, "unsupported size for integer register"); /* FALLTHRU */ case 4: if (LEGACY_INT_REGNO_P (regno)) putc (msize > 4 && TARGET_64BIT ? 'r' : 'e', file); /* FALLTHRU */ case 2: normal: reg = hi_reg_name[regno]; break; case 1: if (regno >= ARRAY_SIZE (qi_reg_name)) goto normal; if (!ANY_QI_REGNO_P (regno)) error ("unsupported size for integer register"); reg = qi_reg_name[regno]; break; case 0: if (regno >= ARRAY_SIZE (qi_high_reg_name)) goto normal; reg = qi_high_reg_name[regno]; break; case 32: case 64: if (SSE_REGNO_P (regno)) { gcc_assert (!duplicated); putc (msize == 32 ? 'y' : 'z', file); reg = hi_reg_name[regno] + 1; break; } goto normal; default: gcc_unreachable (); } fputs (reg, file); /* Irritatingly, AMD extended registers use different naming convention: "r%d[bwd]" */ if (REX_INT_REGNO_P (regno)) { gcc_assert (TARGET_64BIT); switch (msize) { case 0: error ("extended registers have no high halves"); break; case 1: putc ('b', file); break; case 2: putc ('w', file); break; case 4: putc ('d', file); break; case 8: /* no suffix */ break; default: error ("unsupported operand size for extended register"); break; } return; } if (duplicated) { if (ASSEMBLER_DIALECT == ASM_ATT) fprintf (file, ", %%%s", reg); else fprintf (file, ", %s", reg); } } /* Meaning of CODE: L,W,B,Q,S,T -- print the opcode suffix for specified size of operand. C -- print opcode suffix for set/cmov insn. c -- like C, but print reversed condition F,f -- likewise, but for floating-point. O -- if HAVE_AS_IX86_CMOV_SUN_SYNTAX, expand to "w.", "l." or "q.", otherwise nothing R -- print embedded rounding and sae. r -- print only sae. z -- print the opcode suffix for the size of the current operand. Z -- likewise, with special suffixes for x87 instructions. * -- print a star (in certain assembler syntax) A -- print an absolute memory reference. E -- print address with DImode register names if TARGET_64BIT. w -- print the operand as if it's a "word" (HImode) even if it isn't. s -- print a shift double count, followed by the assemblers argument delimiter. b -- print the QImode name of the register for the indicated operand. %b0 would print %al if operands[0] is reg 0. w -- likewise, print the HImode name of the register. k -- likewise, print the SImode name of the register. q -- likewise, print the DImode name of the register. x -- likewise, print the V4SFmode name of the register. t -- likewise, print the V8SFmode name of the register. g -- likewise, print the V16SFmode name of the register. h -- print the QImode name for a "high" register, either ah, bh, ch or dh. y -- print "st(0)" instead of "st" as a register. d -- print duplicated register operand for AVX instruction. D -- print condition for SSE cmp instruction. P -- if PIC, print an @PLT suffix. p -- print raw symbol name. X -- don't print any sort of PIC '@' suffix for a symbol. & -- print some in-use local-dynamic symbol name. H -- print a memory address offset by 8; used for sse high-parts Y -- print condition for XOP pcom* instruction. V -- print naked full integer register name without %. + -- print a branch hint as 'cs' or 'ds' prefix ; -- print a semicolon (after prefixes due to bug in older gas). ~ -- print "i" if TARGET_AVX2, "f" otherwise. ^ -- print addr32 prefix if TARGET_64BIT and Pmode != word_mode M -- print addr32 prefix for TARGET_X32 with VSIB address. ! -- print NOTRACK prefix for jxx/call/ret instructions if required. */ void ix86_print_operand (FILE *file, rtx x, int code) { if (code) { switch (code) { case 'A': switch (ASSEMBLER_DIALECT) { case ASM_ATT: putc ('*', file); break; case ASM_INTEL: /* Intel syntax. For absolute addresses, registers should not be surrounded by braces. */ if (!REG_P (x)) { putc ('[', file); ix86_print_operand (file, x, 0); putc (']', file); return; } break; default: gcc_unreachable (); } ix86_print_operand (file, x, 0); return; case 'E': /* Wrap address in an UNSPEC to declare special handling. */ if (TARGET_64BIT) x = gen_rtx_UNSPEC (DImode, gen_rtvec (1, x), UNSPEC_LEA_ADDR); output_address (VOIDmode, x); return; case 'L': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('l', file); return; case 'W': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('w', file); return; case 'B': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('b', file); return; case 'Q': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('l', file); return; case 'S': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('s', file); return; case 'T': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('t', file); return; case 'O': #ifdef HAVE_AS_IX86_CMOV_SUN_SYNTAX if (ASSEMBLER_DIALECT != ASM_ATT) return; switch (GET_MODE_SIZE (GET_MODE (x))) { case 2: putc ('w', file); break; case 4: putc ('l', file); break; case 8: putc ('q', file); break; default: output_operand_lossage ("invalid operand size for operand " "code 'O'"); return; } putc ('.', file); #endif return; case 'z': if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT) { /* Opcodes don't get size suffixes if using Intel opcodes. */ if (ASSEMBLER_DIALECT == ASM_INTEL) return; switch (GET_MODE_SIZE (GET_MODE (x))) { case 1: putc ('b', file); return; case 2: putc ('w', file); return; case 4: putc ('l', file); return; case 8: putc ('q', file); return; default: output_operand_lossage ("invalid operand size for operand " "code 'z'"); return; } } if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) warning (0, "non-integer operand used with operand code %"); /* FALLTHRU */ case 'Z': /* 387 opcodes don't get size suffixes if using Intel opcodes. */ if (ASSEMBLER_DIALECT == ASM_INTEL) return; if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT) { switch (GET_MODE_SIZE (GET_MODE (x))) { case 2: #ifdef HAVE_AS_IX86_FILDS putc ('s', file); #endif return; case 4: putc ('l', file); return; case 8: #ifdef HAVE_AS_IX86_FILDQ putc ('q', file); #else fputs ("ll", file); #endif return; default: break; } } else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) { /* 387 opcodes don't get size suffixes if the operands are registers. */ if (STACK_REG_P (x)) return; switch (GET_MODE_SIZE (GET_MODE (x))) { case 4: putc ('s', file); return; case 8: putc ('l', file); return; case 12: case 16: putc ('t', file); return; default: break; } } else { output_operand_lossage ("invalid operand type used with " "operand code 'Z'"); return; } output_operand_lossage ("invalid operand size for operand code 'Z'"); return; case 'd': case 'b': case 'w': case 'k': case 'q': case 'h': case 't': case 'g': case 'y': case 'x': case 'X': case 'P': case 'p': case 'V': break; case 's': if (CONST_INT_P (x) || ! SHIFT_DOUBLE_OMITS_COUNT) { ix86_print_operand (file, x, 0); fputs (", ", file); } return; case 'Y': switch (GET_CODE (x)) { case NE: fputs ("neq", file); break; case EQ: fputs ("eq", file); break; case GE: case GEU: fputs (INTEGRAL_MODE_P (GET_MODE (x)) ? "ge" : "unlt", file); break; case GT: case GTU: fputs (INTEGRAL_MODE_P (GET_MODE (x)) ? "gt" : "unle", file); break; case LE: case LEU: fputs ("le", file); break; case LT: case LTU: fputs ("lt", file); break; case UNORDERED: fputs ("unord", file); break; case ORDERED: fputs ("ord", file); break; case UNEQ: fputs ("ueq", file); break; case UNGE: fputs ("nlt", file); break; case UNGT: fputs ("nle", file); break; case UNLE: fputs ("ule", file); break; case UNLT: fputs ("ult", file); break; case LTGT: fputs ("une", file); break; default: output_operand_lossage ("operand is not a condition code, " "invalid operand code 'Y'"); return; } return; case 'D': /* Little bit of braindamage here. The SSE compare instructions does use completely different names for the comparisons that the fp conditional moves. */ switch (GET_CODE (x)) { case UNEQ: if (TARGET_AVX) { fputs ("eq_us", file); break; } /* FALLTHRU */ case EQ: fputs ("eq", file); break; case UNLT: if (TARGET_AVX) { fputs ("nge", file); break; } /* FALLTHRU */ case LT: fputs ("lt", file); break; case UNLE: if (TARGET_AVX) { fputs ("ngt", file); break; } /* FALLTHRU */ case LE: fputs ("le", file); break; case UNORDERED: fputs ("unord", file); break; case LTGT: if (TARGET_AVX) { fputs ("neq_oq", file); break; } /* FALLTHRU */ case NE: fputs ("neq", file); break; case GE: if (TARGET_AVX) { fputs ("ge", file); break; } /* FALLTHRU */ case UNGE: fputs ("nlt", file); break; case GT: if (TARGET_AVX) { fputs ("gt", file); break; } /* FALLTHRU */ case UNGT: fputs ("nle", file); break; case ORDERED: fputs ("ord", file); break; default: output_operand_lossage ("operand is not a condition code, " "invalid operand code 'D'"); return; } return; case 'F': case 'f': #ifdef HAVE_AS_IX86_CMOV_SUN_SYNTAX if (ASSEMBLER_DIALECT == ASM_ATT) putc ('.', file); gcc_fallthrough (); #endif case 'C': case 'c': if (!COMPARISON_P (x)) { output_operand_lossage ("operand is not a condition code, " "invalid operand code '%c'", code); return; } put_condition_code (GET_CODE (x), GET_MODE (XEXP (x, 0)), code == 'c' || code == 'f', code == 'F' || code == 'f', file); return; case 'H': if (!offsettable_memref_p (x)) { output_operand_lossage ("operand is not an offsettable memory " "reference, invalid operand code 'H'"); return; } /* It doesn't actually matter what mode we use here, as we're only going to use this for printing. */ x = adjust_address_nv (x, DImode, 8); /* Output 'qword ptr' for intel assembler dialect. */ if (ASSEMBLER_DIALECT == ASM_INTEL) code = 'q'; break; case 'K': if (!CONST_INT_P (x)) { output_operand_lossage ("operand is not an integer, invalid " "operand code 'K'"); return; } if (INTVAL (x) & IX86_HLE_ACQUIRE) #ifdef HAVE_AS_IX86_HLE fputs ("xacquire ", file); #else fputs ("\n" ASM_BYTE "0xf2\n\t", file); #endif else if (INTVAL (x) & IX86_HLE_RELEASE) #ifdef HAVE_AS_IX86_HLE fputs ("xrelease ", file); #else fputs ("\n" ASM_BYTE "0xf3\n\t", file); #endif /* We do not want to print value of the operand. */ return; case 'N': if (x == const0_rtx || x == CONST0_RTX (GET_MODE (x))) fputs ("{z}", file); return; case 'r': if (!CONST_INT_P (x) || INTVAL (x) != ROUND_SAE) { output_operand_lossage ("operand is not a specific integer, " "invalid operand code 'r'"); return; } if (ASSEMBLER_DIALECT == ASM_INTEL) fputs (", ", file); fputs ("{sae}", file); if (ASSEMBLER_DIALECT == ASM_ATT) fputs (", ", file); return; case 'R': if (!CONST_INT_P (x)) { output_operand_lossage ("operand is not an integer, invalid " "operand code 'R'"); return; } if (ASSEMBLER_DIALECT == ASM_INTEL) fputs (", ", file); switch (INTVAL (x)) { case ROUND_NEAREST_INT | ROUND_SAE: fputs ("{rn-sae}", file); break; case ROUND_NEG_INF | ROUND_SAE: fputs ("{rd-sae}", file); break; case ROUND_POS_INF | ROUND_SAE: fputs ("{ru-sae}", file); break; case ROUND_ZERO | ROUND_SAE: fputs ("{rz-sae}", file); break; default: output_operand_lossage ("operand is not a specific integer, " "invalid operand code 'R'"); } if (ASSEMBLER_DIALECT == ASM_ATT) fputs (", ", file); return; case '*': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('*', file); return; case '&': { const char *name = get_some_local_dynamic_name (); if (name == NULL) output_operand_lossage ("'%%&' used without any " "local dynamic TLS references"); else assemble_name (file, name); return; } case '+': { rtx x; if (!optimize || optimize_function_for_size_p (cfun) || !TARGET_BRANCH_PREDICTION_HINTS) return; x = find_reg_note (current_output_insn, REG_BR_PROB, 0); if (x) { int pred_val = profile_probability::from_reg_br_prob_note (XINT (x, 0)).to_reg_br_prob_base (); if (pred_val < REG_BR_PROB_BASE * 45 / 100 || pred_val > REG_BR_PROB_BASE * 55 / 100) { bool taken = pred_val > REG_BR_PROB_BASE / 2; bool cputaken = final_forward_branch_p (current_output_insn) == 0; /* Emit hints only in the case default branch prediction heuristics would fail. */ if (taken != cputaken) { /* We use 3e (DS) prefix for taken branches and 2e (CS) prefix for not taken branches. */ if (taken) fputs ("ds ; ", file); else fputs ("cs ; ", file); } } } return; } case ';': #ifndef HAVE_AS_IX86_REP_LOCK_PREFIX putc (';', file); #endif return; case '~': putc (TARGET_AVX2 ? 'i' : 'f', file); return; case 'M': if (TARGET_X32) { /* NB: 32-bit indices in VSIB address are sign-extended to 64 bits. In x32, if 32-bit address 0xf7fa3010 is sign-extended to 0xfffffffff7fa3010 which is invalid address. Add addr32 prefix if there is no base register nor symbol. */ bool ok; struct ix86_address parts; ok = ix86_decompose_address (x, &parts); gcc_assert (ok && parts.index == NULL_RTX); if (parts.base == NULL_RTX && (parts.disp == NULL_RTX || !symbolic_operand (parts.disp, GET_MODE (parts.disp)))) fputs ("addr32 ", file); } return; case '^': if (TARGET_64BIT && Pmode != word_mode) fputs ("addr32 ", file); return; case '!': if (ix86_notrack_prefixed_insn_p (current_output_insn)) fputs ("notrack ", file); return; default: output_operand_lossage ("invalid operand code '%c'", code); } } if (REG_P (x)) print_reg (x, code, file); else if (MEM_P (x)) { rtx addr = XEXP (x, 0); /* No `byte ptr' prefix for call instructions ... */ if (ASSEMBLER_DIALECT == ASM_INTEL && code != 'X' && code != 'P') { machine_mode mode = GET_MODE (x); const char *size; /* Check for explicit size override codes. */ if (code == 'b') size = "BYTE"; else if (code == 'w') size = "WORD"; else if (code == 'k') size = "DWORD"; else if (code == 'q') size = "QWORD"; else if (code == 'x') size = "XMMWORD"; else if (code == 't') size = "YMMWORD"; else if (code == 'g') size = "ZMMWORD"; else if (mode == BLKmode) /* ... or BLKmode operands, when not overridden. */ size = NULL; else switch (GET_MODE_SIZE (mode)) { case 1: size = "BYTE"; break; case 2: size = "WORD"; break; case 4: size = "DWORD"; break; case 8: size = "QWORD"; break; case 12: size = "TBYTE"; break; case 16: if (mode == XFmode) size = "TBYTE"; else size = "XMMWORD"; break; case 32: size = "YMMWORD"; break; case 64: size = "ZMMWORD"; break; default: gcc_unreachable (); } if (size) { fputs (size, file); fputs (" PTR ", file); } } if (this_is_asm_operands && ! address_operand (addr, VOIDmode)) output_operand_lossage ("invalid constraints for operand"); else ix86_print_operand_address_as (file, addr, MEM_ADDR_SPACE (x), code == 'p' || code == 'P'); } else if (CONST_DOUBLE_P (x) && GET_MODE (x) == SFmode) { long l; REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (x), l); if (ASSEMBLER_DIALECT == ASM_ATT) putc ('$', file); /* Sign extend 32bit SFmode immediate to 8 bytes. */ if (code == 'q') fprintf (file, "0x%08" HOST_LONG_LONG_FORMAT "x", (unsigned long long) (int) l); else fprintf (file, "0x%08x", (unsigned int) l); } else if (CONST_DOUBLE_P (x) && GET_MODE (x) == DFmode) { long l[2]; REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (x), l); if (ASSEMBLER_DIALECT == ASM_ATT) putc ('$', file); fprintf (file, "0x%lx%08lx", l[1] & 0xffffffff, l[0] & 0xffffffff); } /* These float cases don't actually occur as immediate operands. */ else if (CONST_DOUBLE_P (x) && GET_MODE (x) == XFmode) { char dstr[30]; real_to_decimal (dstr, CONST_DOUBLE_REAL_VALUE (x), sizeof (dstr), 0, 1); fputs (dstr, file); } else { /* We have patterns that allow zero sets of memory, for instance. In 64-bit mode, we should probably support all 8-byte vectors, since we can in fact encode that into an immediate. */ if (GET_CODE (x) == CONST_VECTOR) { if (x != CONST0_RTX (GET_MODE (x))) output_operand_lossage ("invalid vector immediate"); x = const0_rtx; } if (code != 'P' && code != 'p') { if (CONST_INT_P (x)) { if (ASSEMBLER_DIALECT == ASM_ATT) putc ('$', file); } else if (GET_CODE (x) == CONST || GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF) { if (ASSEMBLER_DIALECT == ASM_ATT) putc ('$', file); else fputs ("OFFSET FLAT:", file); } } if (CONST_INT_P (x)) fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x)); else if (flag_pic || MACHOPIC_INDIRECT) output_pic_addr_const (file, x, code); else output_addr_const (file, x); } } static bool ix86_print_operand_punct_valid_p (unsigned char code) { return (code == '*' || code == '+' || code == '&' || code == ';' || code == '~' || code == '^' || code == '!'); } /* Print a memory operand whose address is ADDR. */ static void ix86_print_operand_address_as (FILE *file, rtx addr, addr_space_t as, bool no_rip) { struct ix86_address parts; rtx base, index, disp; int scale; int ok; bool vsib = false; int code = 0; if (GET_CODE (addr) == UNSPEC && XINT (addr, 1) == UNSPEC_VSIBADDR) { ok = ix86_decompose_address (XVECEXP (addr, 0, 0), &parts); gcc_assert (parts.index == NULL_RTX); parts.index = XVECEXP (addr, 0, 1); parts.scale = INTVAL (XVECEXP (addr, 0, 2)); addr = XVECEXP (addr, 0, 0); vsib = true; } else if (GET_CODE (addr) == UNSPEC && XINT (addr, 1) == UNSPEC_LEA_ADDR) { gcc_assert (TARGET_64BIT); ok = ix86_decompose_address (XVECEXP (addr, 0, 0), &parts); code = 'q'; } else ok = ix86_decompose_address (addr, &parts); gcc_assert (ok); base = parts.base; index = parts.index; disp = parts.disp; scale = parts.scale; if (ADDR_SPACE_GENERIC_P (as)) as = parts.seg; else gcc_assert (ADDR_SPACE_GENERIC_P (parts.seg)); if (!ADDR_SPACE_GENERIC_P (as)) { if (ASSEMBLER_DIALECT == ASM_ATT) putc ('%', file); switch (as) { case ADDR_SPACE_SEG_FS: fputs ("fs:", file); break; case ADDR_SPACE_SEG_GS: fputs ("gs:", file); break; default: gcc_unreachable (); } } /* Use one byte shorter RIP relative addressing for 64bit mode. */ if (TARGET_64BIT && !base && !index && !no_rip) { rtx symbol = disp; if (GET_CODE (disp) == CONST && GET_CODE (XEXP (disp, 0)) == PLUS && CONST_INT_P (XEXP (XEXP (disp, 0), 1))) symbol = XEXP (XEXP (disp, 0), 0); if (GET_CODE (symbol) == LABEL_REF || (GET_CODE (symbol) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (symbol) == 0)) base = pc_rtx; } if (!base && !index) { /* Displacement only requires special attention. */ if (CONST_INT_P (disp)) { if (ASSEMBLER_DIALECT == ASM_INTEL && ADDR_SPACE_GENERIC_P (as)) fputs ("ds:", file); fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (disp)); } /* Load the external function address via the GOT slot to avoid PLT. */ else if (GET_CODE (disp) == CONST && GET_CODE (XEXP (disp, 0)) == UNSPEC && (XINT (XEXP (disp, 0), 1) == UNSPEC_GOTPCREL || XINT (XEXP (disp, 0), 1) == UNSPEC_GOT) && ix86_force_load_from_GOT_p (XVECEXP (XEXP (disp, 0), 0, 0))) output_pic_addr_const (file, disp, 0); else if (flag_pic) output_pic_addr_const (file, disp, 0); else output_addr_const (file, disp); } else { /* Print SImode register names to force addr32 prefix. */ if (SImode_address_operand (addr, VOIDmode)) { if (flag_checking) { gcc_assert (TARGET_64BIT); switch (GET_CODE (addr)) { case SUBREG: gcc_assert (GET_MODE (addr) == SImode); gcc_assert (GET_MODE (SUBREG_REG (addr)) == DImode); break; case ZERO_EXTEND: case AND: gcc_assert (GET_MODE (addr) == DImode); break; default: gcc_unreachable (); } } gcc_assert (!code); code = 'k'; } else if (code == 0 && TARGET_X32 && disp && CONST_INT_P (disp) && INTVAL (disp) < -16*1024*1024) { /* X32 runs in 64-bit mode, where displacement, DISP, in address DISP(%r64), is encoded as 32-bit immediate sign- extended from 32-bit to 64-bit. For -0x40000300(%r64), address is %r64 + 0xffffffffbffffd00. When %r64 < 0x40000300, like 0x37ffe064, address is 0xfffffffff7ffdd64, which is invalid for x32. The correct address is %r64 - 0x40000300 == 0xf7ffdd64. To properly encode -0x40000300(%r64) for x32, we zero-extend negative displacement by forcing addr32 prefix which truncates 0xfffffffff7ffdd64 to 0xf7ffdd64. In theory, we should zero-extend all negative displacements, including -1(%rsp). However, for small negative displacements, sign-extension won't cause overflow. We only zero-extend negative displacements if they < -16*1024*1024, which is also used to check legitimate address displacements for PIC. */ code = 'k'; } /* Since the upper 32 bits of RSP are always zero for x32, we can encode %esp as %rsp to avoid 0x67 prefix if there is no index register. */ if (TARGET_X32 && Pmode == SImode && !index && base && REG_P (base) && REGNO (base) == SP_REG) code = 'q'; if (ASSEMBLER_DIALECT == ASM_ATT) { if (disp) { if (flag_pic) output_pic_addr_const (file, disp, 0); else if (GET_CODE (disp) == LABEL_REF) output_asm_label (disp); else output_addr_const (file, disp); } putc ('(', file); if (base) print_reg (base, code, file); if (index) { putc (',', file); print_reg (index, vsib ? 0 : code, file); if (scale != 1 || vsib) fprintf (file, ",%d", scale); } putc (')', file); } else { rtx offset = NULL_RTX; if (disp) { /* Pull out the offset of a symbol; print any symbol itself. */ if (GET_CODE (disp) == CONST && GET_CODE (XEXP (disp, 0)) == PLUS && CONST_INT_P (XEXP (XEXP (disp, 0), 1))) { offset = XEXP (XEXP (disp, 0), 1); disp = gen_rtx_CONST (VOIDmode, XEXP (XEXP (disp, 0), 0)); } if (flag_pic) output_pic_addr_const (file, disp, 0); else if (GET_CODE (disp) == LABEL_REF) output_asm_label (disp); else if (CONST_INT_P (disp)) offset = disp; else output_addr_const (file, disp); } putc ('[', file); if (base) { print_reg (base, code, file); if (offset) { if (INTVAL (offset) >= 0) putc ('+', file); fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (offset)); } } else if (offset) fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (offset)); else putc ('0', file); if (index) { putc ('+', file); print_reg (index, vsib ? 0 : code, file); if (scale != 1 || vsib) fprintf (file, "*%d", scale); } putc (']', file); } } } static void ix86_print_operand_address (FILE *file, machine_mode /*mode*/, rtx addr) { if (this_is_asm_operands && ! address_operand (addr, VOIDmode)) output_operand_lossage ("invalid constraints for operand"); else ix86_print_operand_address_as (file, addr, ADDR_SPACE_GENERIC, false); } /* Implementation of TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA. */ static bool i386_asm_output_addr_const_extra (FILE *file, rtx x) { rtx op; if (GET_CODE (x) != UNSPEC) return false; op = XVECEXP (x, 0, 0); switch (XINT (x, 1)) { case UNSPEC_GOTOFF: output_addr_const (file, op); fputs ("@gotoff", file); break; case UNSPEC_GOTTPOFF: output_addr_const (file, op); /* FIXME: This might be @TPOFF in Sun ld. */ fputs ("@gottpoff", file); break; case UNSPEC_TPOFF: output_addr_const (file, op); fputs ("@tpoff", file); break; case UNSPEC_NTPOFF: output_addr_const (file, op); if (TARGET_64BIT) fputs ("@tpoff", file); else fputs ("@ntpoff", file); break; case UNSPEC_DTPOFF: output_addr_const (file, op); fputs ("@dtpoff", file); break; case UNSPEC_GOTNTPOFF: output_addr_const (file, op); if (TARGET_64BIT) fputs (ASSEMBLER_DIALECT == ASM_ATT ? "@gottpoff(%rip)" : "@gottpoff[rip]", file); else fputs ("@gotntpoff", file); break; case UNSPEC_INDNTPOFF: output_addr_const (file, op); fputs ("@indntpoff", file); break; #if TARGET_MACHO case UNSPEC_MACHOPIC_OFFSET: output_addr_const (file, op); putc ('-', file); machopic_output_function_base_name (file); break; #endif default: return false; } return true; } /* Output code to perform a 387 binary operation in INSN, one of PLUS, MINUS, MULT or DIV. OPERANDS are the insn operands, where operands[3] is the expression of the binary operation. The output may either be emitted here, or returned to the caller, like all output_* functions. There is no guarantee that the operands are the same mode, as they might be within FLOAT or FLOAT_EXTEND expressions. */ #ifndef SYSV386_COMPAT /* Set to 1 for compatibility with brain-damaged assemblers. No-one wants to fix the assemblers because that causes incompatibility with gcc. No-one wants to fix gcc because that causes incompatibility with assemblers... You can use the option of -DSYSV386_COMPAT=0 if you recompile both gcc and gas this way. */ #define SYSV386_COMPAT 1 #endif const char * output_387_binary_op (rtx_insn *insn, rtx *operands) { static char buf[40]; const char *p; bool is_sse = (SSE_REG_P (operands[0]) || SSE_REG_P (operands[1]) || SSE_REG_P (operands[2])); if (is_sse) p = "%v"; else if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT) p = "fi"; else p = "f"; strcpy (buf, p); switch (GET_CODE (operands[3])) { case PLUS: p = "add"; break; case MINUS: p = "sub"; break; case MULT: p = "mul"; break; case DIV: p = "div"; break; default: gcc_unreachable (); } strcat (buf, p); if (is_sse) { p = (GET_MODE (operands[0]) == SFmode) ? "ss" : "sd"; strcat (buf, p); if (TARGET_AVX) p = "\t{%2, %1, %0|%0, %1, %2}"; else p = "\t{%2, %0|%0, %2}"; strcat (buf, p); return buf; } /* Even if we do not want to check the inputs, this documents input constraints. Which helps in understanding the following code. */ if (flag_checking) { if (STACK_REG_P (operands[0]) && ((REG_P (operands[1]) && REGNO (operands[0]) == REGNO (operands[1]) && (STACK_REG_P (operands[2]) || MEM_P (operands[2]))) || (REG_P (operands[2]) && REGNO (operands[0]) == REGNO (operands[2]) && (STACK_REG_P (operands[1]) || MEM_P (operands[1])))) && (STACK_TOP_P (operands[1]) || STACK_TOP_P (operands[2]))) ; /* ok */ else gcc_unreachable (); } switch (GET_CODE (operands[3])) { case MULT: case PLUS: if (REG_P (operands[2]) && REGNO (operands[0]) == REGNO (operands[2])) std::swap (operands[1], operands[2]); /* know operands[0] == operands[1]. */ if (MEM_P (operands[2])) { p = "%Z2\t%2"; break; } if (find_regno_note (insn, REG_DEAD, REGNO (operands[2]))) { if (STACK_TOP_P (operands[0])) /* How is it that we are storing to a dead operand[2]? Well, presumably operands[1] is dead too. We can't store the result to st(0) as st(0) gets popped on this instruction. Instead store to operands[2] (which I think has to be st(1)). st(1) will be popped later. gcc <= 2.8.1 didn't have this check and generated assembly code that the Unixware assembler rejected. */ p = "p\t{%0, %2|%2, %0}"; /* st(1) = st(0) op st(1); pop */ else p = "p\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0); pop */ break; } if (STACK_TOP_P (operands[0])) p = "\t{%y2, %0|%0, %y2}"; /* st(0) = st(0) op st(r2) */ else p = "\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0) */ break; case MINUS: case DIV: if (MEM_P (operands[1])) { p = "r%Z1\t%1"; break; } if (MEM_P (operands[2])) { p = "%Z2\t%2"; break; } if (find_regno_note (insn, REG_DEAD, REGNO (operands[2]))) { #if SYSV386_COMPAT /* The SystemV/386 SVR3.2 assembler, and probably all AT&T derived assemblers, confusingly reverse the direction of the operation for fsub{r} and fdiv{r} when the destination register is not st(0). The Intel assembler doesn't have this brain damage. Read !SYSV386_COMPAT to figure out what the hardware really does. */ if (STACK_TOP_P (operands[0])) p = "{p\t%0, %2|rp\t%2, %0}"; else p = "{rp\t%2, %0|p\t%0, %2}"; #else if (STACK_TOP_P (operands[0])) /* As above for fmul/fadd, we can't store to st(0). */ p = "rp\t{%0, %2|%2, %0}"; /* st(1) = st(0) op st(1); pop */ else p = "p\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0); pop */ #endif break; } if (find_regno_note (insn, REG_DEAD, REGNO (operands[1]))) { #if SYSV386_COMPAT if (STACK_TOP_P (operands[0])) p = "{rp\t%0, %1|p\t%1, %0}"; else p = "{p\t%1, %0|rp\t%0, %1}"; #else if (STACK_TOP_P (operands[0])) p = "p\t{%0, %1|%1, %0}"; /* st(1) = st(1) op st(0); pop */ else p = "rp\t{%1, %0|%0, %1}"; /* st(r2) = st(0) op st(r2); pop */ #endif break; } if (STACK_TOP_P (operands[0])) { if (STACK_TOP_P (operands[1])) p = "\t{%y2, %0|%0, %y2}"; /* st(0) = st(0) op st(r2) */ else p = "r\t{%y1, %0|%0, %y1}"; /* st(0) = st(r1) op st(0) */ break; } else if (STACK_TOP_P (operands[1])) { #if SYSV386_COMPAT p = "{\t%1, %0|r\t%0, %1}"; #else p = "r\t{%1, %0|%0, %1}"; /* st(r2) = st(0) op st(r2) */ #endif } else { #if SYSV386_COMPAT p = "{r\t%2, %0|\t%0, %2}"; #else p = "\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0) */ #endif } break; default: gcc_unreachable (); } strcat (buf, p); return buf; } /* Return needed mode for entity in optimize_mode_switching pass. */ static int ix86_dirflag_mode_needed (rtx_insn *insn) { if (CALL_P (insn)) { if (cfun->machine->func_type == TYPE_NORMAL) return X86_DIRFLAG_ANY; else /* No need to emit CLD in interrupt handler for TARGET_CLD. */ return TARGET_CLD ? X86_DIRFLAG_ANY : X86_DIRFLAG_RESET; } if (recog_memoized (insn) < 0) return X86_DIRFLAG_ANY; if (get_attr_type (insn) == TYPE_STR) { /* Emit cld instruction if stringops are used in the function. */ if (cfun->machine->func_type == TYPE_NORMAL) return TARGET_CLD ? X86_DIRFLAG_RESET : X86_DIRFLAG_ANY; else return X86_DIRFLAG_RESET; } return X86_DIRFLAG_ANY; } /* Check if a 256bit or 512 bit AVX register is referenced inside of EXP. */ static bool ix86_check_avx_upper_register (const_rtx exp) { return SSE_REG_P (exp) && GET_MODE_BITSIZE (GET_MODE (exp)) > 128; } /* Return needed mode for entity in optimize_mode_switching pass. */ static int ix86_avx_u128_mode_needed (rtx_insn *insn) { if (CALL_P (insn)) { rtx link; /* Needed mode is set to AVX_U128_CLEAN if there are no 256bit or 512bit modes used in function arguments. */ for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1)) { if (GET_CODE (XEXP (link, 0)) == USE) { rtx arg = XEXP (XEXP (link, 0), 0); if (ix86_check_avx_upper_register (arg)) return AVX_U128_DIRTY; } } /* If the function is known to preserve some SSE registers, RA and previous passes can legitimately rely on that for modes wider than 256 bits. It's only safe to issue a vzeroupper if all SSE registers are clobbered. */ const function_abi &abi = insn_callee_abi (insn); if (!hard_reg_set_subset_p (reg_class_contents[SSE_REGS], abi.mode_clobbers (V4DImode))) return AVX_U128_ANY; return AVX_U128_CLEAN; } /* Require DIRTY mode if a 256bit or 512bit AVX register is referenced. Hardware changes state only when a 256bit register is written to, but we need to prevent the compiler from moving optimal insertion point above eventual read from 256bit or 512 bit register. */ subrtx_iterator::array_type array; FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST) if (ix86_check_avx_upper_register (*iter)) return AVX_U128_DIRTY; return AVX_U128_ANY; } /* Return mode that i387 must be switched into prior to the execution of insn. */ static int ix86_i387_mode_needed (int entity, rtx_insn *insn) { enum attr_i387_cw mode; /* The mode UNINITIALIZED is used to store control word after a function call or ASM pattern. The mode ANY specify that function has no requirements on the control word and make no changes in the bits we are interested in. */ if (CALL_P (insn) || (NONJUMP_INSN_P (insn) && (asm_noperands (PATTERN (insn)) >= 0 || GET_CODE (PATTERN (insn)) == ASM_INPUT))) return I387_CW_UNINITIALIZED; if (recog_memoized (insn) < 0) return I387_CW_ANY; mode = get_attr_i387_cw (insn); switch (entity) { case I387_ROUNDEVEN: if (mode == I387_CW_ROUNDEVEN) return mode; break; case I387_TRUNC: if (mode == I387_CW_TRUNC) return mode; break; case I387_FLOOR: if (mode == I387_CW_FLOOR) return mode; break; case I387_CEIL: if (mode == I387_CW_CEIL) return mode; break; default: gcc_unreachable (); } return I387_CW_ANY; } /* Return mode that entity must be switched into prior to the execution of insn. */ static int ix86_mode_needed (int entity, rtx_insn *insn) { switch (entity) { case X86_DIRFLAG: return ix86_dirflag_mode_needed (insn); case AVX_U128: return ix86_avx_u128_mode_needed (insn); case I387_ROUNDEVEN: case I387_TRUNC: case I387_FLOOR: case I387_CEIL: return ix86_i387_mode_needed (entity, insn); default: gcc_unreachable (); } return 0; } /* Check if a 256bit or 512bit AVX register is referenced in stores. */ static void ix86_check_avx_upper_stores (rtx dest, const_rtx, void *data) { if (ix86_check_avx_upper_register (dest)) { bool *used = (bool *) data; *used = true; } } /* Calculate mode of upper 128bit AVX registers after the insn. */ static int ix86_avx_u128_mode_after (int mode, rtx_insn *insn) { rtx pat = PATTERN (insn); if (vzeroupper_pattern (pat, VOIDmode) || vzeroall_pattern (pat, VOIDmode)) return AVX_U128_CLEAN; /* We know that state is clean after CALL insn if there are no 256bit or 512bit registers used in the function return register. */ if (CALL_P (insn)) { bool avx_upper_reg_found = false; note_stores (insn, ix86_check_avx_upper_stores, &avx_upper_reg_found); return avx_upper_reg_found ? AVX_U128_DIRTY : AVX_U128_CLEAN; } /* Otherwise, return current mode. Remember that if insn references AVX 256bit or 512bit registers, the mode was already changed to DIRTY from MODE_NEEDED. */ return mode; } /* Return the mode that an insn results in. */ static int ix86_mode_after (int entity, int mode, rtx_insn *insn) { switch (entity) { case X86_DIRFLAG: return mode; case AVX_U128: return ix86_avx_u128_mode_after (mode, insn); case I387_ROUNDEVEN: case I387_TRUNC: case I387_FLOOR: case I387_CEIL: return mode; default: gcc_unreachable (); } } static int ix86_dirflag_mode_entry (void) { /* For TARGET_CLD or in the interrupt handler we can't assume direction flag state at function entry. */ if (TARGET_CLD || cfun->machine->func_type != TYPE_NORMAL) return X86_DIRFLAG_ANY; return X86_DIRFLAG_RESET; } static int ix86_avx_u128_mode_entry (void) { tree arg; /* Entry mode is set to AVX_U128_DIRTY if there are 256bit or 512bit modes used in function arguments. */ for (arg = DECL_ARGUMENTS (current_function_decl); arg; arg = TREE_CHAIN (arg)) { rtx incoming = DECL_INCOMING_RTL (arg); if (incoming && ix86_check_avx_upper_register (incoming)) return AVX_U128_DIRTY; } return AVX_U128_CLEAN; } /* Return a mode that ENTITY is assumed to be switched to at function entry. */ static int ix86_mode_entry (int entity) { switch (entity) { case X86_DIRFLAG: return ix86_dirflag_mode_entry (); case AVX_U128: return ix86_avx_u128_mode_entry (); case I387_ROUNDEVEN: case I387_TRUNC: case I387_FLOOR: case I387_CEIL: return I387_CW_ANY; default: gcc_unreachable (); } } static int ix86_avx_u128_mode_exit (void) { rtx reg = crtl->return_rtx; /* Exit mode is set to AVX_U128_DIRTY if there are 256bit or 512 bit modes used in the function return register. */ if (reg && ix86_check_avx_upper_register (reg)) return AVX_U128_DIRTY; /* Exit mode is set to AVX_U128_DIRTY if there are 256bit or 512bit modes used in function arguments, otherwise return AVX_U128_CLEAN. */ return ix86_avx_u128_mode_entry (); } /* Return a mode that ENTITY is assumed to be switched to at function exit. */ static int ix86_mode_exit (int entity) { switch (entity) { case X86_DIRFLAG: return X86_DIRFLAG_ANY; case AVX_U128: return ix86_avx_u128_mode_exit (); case I387_ROUNDEVEN: case I387_TRUNC: case I387_FLOOR: case I387_CEIL: return I387_CW_ANY; default: gcc_unreachable (); } } static int ix86_mode_priority (int, int n) { return n; } /* Output code to initialize control word copies used by trunc?f?i and rounding patterns. CURRENT_MODE is set to current control word, while NEW_MODE is set to new control word. */ static void emit_i387_cw_initialization (int mode) { rtx stored_mode = assign_386_stack_local (HImode, SLOT_CW_STORED); rtx new_mode; enum ix86_stack_slot slot; rtx reg = gen_reg_rtx (HImode); emit_insn (gen_x86_fnstcw_1 (stored_mode)); emit_move_insn (reg, copy_rtx (stored_mode)); switch (mode) { case I387_CW_ROUNDEVEN: /* round to nearest */ emit_insn (gen_andhi3 (reg, reg, GEN_INT (~0x0c00))); slot = SLOT_CW_ROUNDEVEN; break; case I387_CW_TRUNC: /* round toward zero (truncate) */ emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0c00))); slot = SLOT_CW_TRUNC; break; case I387_CW_FLOOR: /* round down toward -oo */ emit_insn (gen_andhi3 (reg, reg, GEN_INT (~0x0c00))); emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0400))); slot = SLOT_CW_FLOOR; break; case I387_CW_CEIL: /* round up toward +oo */ emit_insn (gen_andhi3 (reg, reg, GEN_INT (~0x0c00))); emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0800))); slot = SLOT_CW_CEIL; break; default: gcc_unreachable (); } gcc_assert (slot < MAX_386_STACK_LOCALS); new_mode = assign_386_stack_local (HImode, slot); emit_move_insn (new_mode, reg); } /* Generate one or more insns to set ENTITY to MODE. */ static void ix86_emit_mode_set (int entity, int mode, int prev_mode ATTRIBUTE_UNUSED, HARD_REG_SET regs_live ATTRIBUTE_UNUSED) { switch (entity) { case X86_DIRFLAG: if (mode == X86_DIRFLAG_RESET) emit_insn (gen_cld ()); break; case AVX_U128: if (mode == AVX_U128_CLEAN) emit_insn (gen_avx_vzeroupper ()); break; case I387_ROUNDEVEN: case I387_TRUNC: case I387_FLOOR: case I387_CEIL: if (mode != I387_CW_ANY && mode != I387_CW_UNINITIALIZED) emit_i387_cw_initialization (mode); break; default: gcc_unreachable (); } } /* Output code for INSN to convert a float to a signed int. OPERANDS are the insn operands. The output may be [HSD]Imode and the input operand may be [SDX]Fmode. */ const char * output_fix_trunc (rtx_insn *insn, rtx *operands, bool fisttp) { bool stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG); bool dimode_p = GET_MODE (operands[0]) == DImode; int round_mode = get_attr_i387_cw (insn); static char buf[40]; const char *p; /* Jump through a hoop or two for DImode, since the hardware has no non-popping instruction. We used to do this a different way, but that was somewhat fragile and broke with post-reload splitters. */ if ((dimode_p || fisttp) && !stack_top_dies) output_asm_insn ("fld\t%y1", operands); gcc_assert (STACK_TOP_P (operands[1])); gcc_assert (MEM_P (operands[0])); gcc_assert (GET_MODE (operands[1]) != TFmode); if (fisttp) return "fisttp%Z0\t%0"; strcpy (buf, "fist"); if (round_mode != I387_CW_ANY) output_asm_insn ("fldcw\t%3", operands); p = "p%Z0\t%0"; strcat (buf, p + !(stack_top_dies || dimode_p)); output_asm_insn (buf, operands); if (round_mode != I387_CW_ANY) output_asm_insn ("fldcw\t%2", operands); return ""; } /* Output code for x87 ffreep insn. The OPNO argument, which may only have the values zero or one, indicates the ffreep insn's operand from the OPERANDS array. */ static const char * output_387_ffreep (rtx *operands ATTRIBUTE_UNUSED, int opno) { if (TARGET_USE_FFREEP) #ifdef HAVE_AS_IX86_FFREEP return opno ? "ffreep\t%y1" : "ffreep\t%y0"; #else { static char retval[32]; int regno = REGNO (operands[opno]); gcc_assert (STACK_REGNO_P (regno)); regno -= FIRST_STACK_REG; snprintf (retval, sizeof (retval), ASM_SHORT "0xc%ddf", regno); return retval; } #endif return opno ? "fstp\t%y1" : "fstp\t%y0"; } /* Output code for INSN to compare OPERANDS. EFLAGS_P is 1 when fcomi should be used. UNORDERED_P is true when fucom should be used. */ const char * output_fp_compare (rtx_insn *insn, rtx *operands, bool eflags_p, bool unordered_p) { rtx *xops = eflags_p ? &operands[0] : &operands[1]; bool stack_top_dies; static char buf[40]; const char *p; gcc_assert (STACK_TOP_P (xops[0])); stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG); if (eflags_p) { p = unordered_p ? "fucomi" : "fcomi"; strcpy (buf, p); p = "p\t{%y1, %0|%0, %y1}"; strcat (buf, p + !stack_top_dies); return buf; } if (STACK_REG_P (xops[1]) && stack_top_dies && find_regno_note (insn, REG_DEAD, FIRST_STACK_REG + 1)) { gcc_assert (REGNO (xops[1]) == FIRST_STACK_REG + 1); /* If both the top of the 387 stack die, and the other operand is also a stack register that dies, then this must be a `fcompp' float compare. */ p = unordered_p ? "fucompp" : "fcompp"; strcpy (buf, p); } else if (const0_operand (xops[1], VOIDmode)) { gcc_assert (!unordered_p); strcpy (buf, "ftst"); } else { if (GET_MODE_CLASS (GET_MODE (xops[1])) == MODE_INT) { gcc_assert (!unordered_p); p = "ficom"; } else p = unordered_p ? "fucom" : "fcom"; strcpy (buf, p); p = "p%Z2\t%y2"; strcat (buf, p + !stack_top_dies); } output_asm_insn (buf, operands); return "fnstsw\t%0"; } void ix86_output_addr_vec_elt (FILE *file, int value) { const char *directive = ASM_LONG; #ifdef ASM_QUAD if (TARGET_LP64) directive = ASM_QUAD; #else gcc_assert (!TARGET_64BIT); #endif fprintf (file, "%s%s%d\n", directive, LPREFIX, value); } void ix86_output_addr_diff_elt (FILE *file, int value, int rel) { const char *directive = ASM_LONG; #ifdef ASM_QUAD if (TARGET_64BIT && CASE_VECTOR_MODE == DImode) directive = ASM_QUAD; #else gcc_assert (!TARGET_64BIT); #endif /* We can't use @GOTOFF for text labels on VxWorks; see gotoff_operand. */ if (TARGET_64BIT || TARGET_VXWORKS_RTP) fprintf (file, "%s%s%d-%s%d\n", directive, LPREFIX, value, LPREFIX, rel); #if TARGET_MACHO else if (TARGET_MACHO) { fprintf (file, ASM_LONG "%s%d-", LPREFIX, value); machopic_output_function_base_name (file); putc ('\n', file); } #endif else if (HAVE_AS_GOTOFF_IN_DATA) fprintf (file, ASM_LONG "%s%d@GOTOFF\n", LPREFIX, value); else asm_fprintf (file, ASM_LONG "%U%s+[.-%s%d]\n", GOT_SYMBOL_NAME, LPREFIX, value); } #define LEA_MAX_STALL (3) #define LEA_SEARCH_THRESHOLD (LEA_MAX_STALL << 1) /* Increase given DISTANCE in half-cycles according to dependencies between PREV and NEXT instructions. Add 1 half-cycle if there is no dependency and go to next cycle if there is some dependecy. */ static unsigned int increase_distance (rtx_insn *prev, rtx_insn *next, unsigned int distance) { df_ref def, use; if (!prev || !next) return distance + (distance & 1) + 2; if (!DF_INSN_USES (next) || !DF_INSN_DEFS (prev)) return distance + 1; FOR_EACH_INSN_USE (use, next) FOR_EACH_INSN_DEF (def, prev) if (!DF_REF_IS_ARTIFICIAL (def) && DF_REF_REGNO (use) == DF_REF_REGNO (def)) return distance + (distance & 1) + 2; return distance + 1; } /* Function checks if instruction INSN defines register number REGNO1 or REGNO2. */ bool insn_defines_reg (unsigned int regno1, unsigned int regno2, rtx_insn *insn) { df_ref def; FOR_EACH_INSN_DEF (def, insn) if (DF_REF_REG_DEF_P (def) && !DF_REF_IS_ARTIFICIAL (def) && (regno1 == DF_REF_REGNO (def) || regno2 == DF_REF_REGNO (def))) return true; return false; } /* Function checks if instruction INSN uses register number REGNO as a part of address expression. */ static bool insn_uses_reg_mem (unsigned int regno, rtx insn) { df_ref use; FOR_EACH_INSN_USE (use, insn) if (DF_REF_REG_MEM_P (use) && regno == DF_REF_REGNO (use)) return true; return false; } /* Search backward for non-agu definition of register number REGNO1 or register number REGNO2 in basic block starting from instruction START up to head of basic block or instruction INSN. Function puts true value into *FOUND var if definition was found and false otherwise. Distance in half-cycles between START and found instruction or head of BB is added to DISTANCE and returned. */ static int distance_non_agu_define_in_bb (unsigned int regno1, unsigned int regno2, rtx_insn *insn, int distance, rtx_insn *start, bool *found) { basic_block bb = start ? BLOCK_FOR_INSN (start) : NULL; rtx_insn *prev = start; rtx_insn *next = NULL; *found = false; while (prev && prev != insn && distance < LEA_SEARCH_THRESHOLD) { if (NONDEBUG_INSN_P (prev) && NONJUMP_INSN_P (prev)) { distance = increase_distance (prev, next, distance); if (insn_defines_reg (regno1, regno2, prev)) { if (recog_memoized (prev) < 0 || get_attr_type (prev) != TYPE_LEA) { *found = true; return distance; } } next = prev; } if (prev == BB_HEAD (bb)) break; prev = PREV_INSN (prev); } return distance; } /* Search backward for non-agu definition of register number REGNO1 or register number REGNO2 in INSN's basic block until 1. Pass LEA_SEARCH_THRESHOLD instructions, or 2. Reach neighbor BBs boundary, or 3. Reach agu definition. Returns the distance between the non-agu definition point and INSN. If no definition point, returns -1. */ static int distance_non_agu_define (unsigned int regno1, unsigned int regno2, rtx_insn *insn) { basic_block bb = BLOCK_FOR_INSN (insn); int distance = 0; bool found = false; if (insn != BB_HEAD (bb)) distance = distance_non_agu_define_in_bb (regno1, regno2, insn, distance, PREV_INSN (insn), &found); if (!found && distance < LEA_SEARCH_THRESHOLD) { edge e; edge_iterator ei; bool simple_loop = false; FOR_EACH_EDGE (e, ei, bb->preds) if (e->src == bb) { simple_loop = true; break; } if (simple_loop) distance = distance_non_agu_define_in_bb (regno1, regno2, insn, distance, BB_END (bb), &found); else { int shortest_dist = -1; bool found_in_bb = false; FOR_EACH_EDGE (e, ei, bb->preds) { int bb_dist = distance_non_agu_define_in_bb (regno1, regno2, insn, distance, BB_END (e->src), &found_in_bb); if (found_in_bb) { if (shortest_dist < 0) shortest_dist = bb_dist; else if (bb_dist > 0) shortest_dist = MIN (bb_dist, shortest_dist); found = true; } } distance = shortest_dist; } } /* get_attr_type may modify recog data. We want to make sure that recog data is valid for instruction INSN, on which distance_non_agu_define is called. INSN is unchanged here. */ extract_insn_cached (insn); if (!found) return -1; return distance >> 1; } /* Return the distance in half-cycles between INSN and the next insn that uses register number REGNO in memory address added to DISTANCE. Return -1 if REGNO0 is set. Put true value into *FOUND if register usage was found and false otherwise. Put true value into *REDEFINED if register redefinition was found and false otherwise. */ static int distance_agu_use_in_bb (unsigned int regno, rtx_insn *insn, int distance, rtx_insn *start, bool *found, bool *redefined) { basic_block bb = NULL; rtx_insn *next = start; rtx_insn *prev = NULL; *found = false; *redefined = false; if (start != NULL_RTX) { bb = BLOCK_FOR_INSN (start); if (start != BB_HEAD (bb)) /* If insn and start belong to the same bb, set prev to insn, so the call to increase_distance will increase the distance between insns by 1. */ prev = insn; } while (next && next != insn && distance < LEA_SEARCH_THRESHOLD) { if (NONDEBUG_INSN_P (next) && NONJUMP_INSN_P (next)) { distance = increase_distance(prev, next, distance); if (insn_uses_reg_mem (regno, next)) { /* Return DISTANCE if OP0 is used in memory address in NEXT. */ *found = true; return distance; } if (insn_defines_reg (regno, INVALID_REGNUM, next)) { /* Return -1 if OP0 is set in NEXT. */ *redefined = true; return -1; } prev = next; } if (next == BB_END (bb)) break; next = NEXT_INSN (next); } return distance; } /* Return the distance between INSN and the next insn that uses register number REGNO0 in memory address. Return -1 if no such a use is found within LEA_SEARCH_THRESHOLD or REGNO0 is set. */ static int distance_agu_use (unsigned int regno0, rtx_insn *insn) { basic_block bb = BLOCK_FOR_INSN (insn); int distance = 0; bool found = false; bool redefined = false; if (insn != BB_END (bb)) distance = distance_agu_use_in_bb (regno0, insn, distance, NEXT_INSN (insn), &found, &redefined); if (!found && !redefined && distance < LEA_SEARCH_THRESHOLD) { edge e; edge_iterator ei; bool simple_loop = false; FOR_EACH_EDGE (e, ei, bb->succs) if (e->dest == bb) { simple_loop = true; break; } if (simple_loop) distance = distance_agu_use_in_bb (regno0, insn, distance, BB_HEAD (bb), &found, &redefined); else { int shortest_dist = -1; bool found_in_bb = false; bool redefined_in_bb = false; FOR_EACH_EDGE (e, ei, bb->succs) { int bb_dist = distance_agu_use_in_bb (regno0, insn, distance, BB_HEAD (e->dest), &found_in_bb, &redefined_in_bb); if (found_in_bb) { if (shortest_dist < 0) shortest_dist = bb_dist; else if (bb_dist > 0) shortest_dist = MIN (bb_dist, shortest_dist); found = true; } } distance = shortest_dist; } } if (!found || redefined) return -1; return distance >> 1; } /* Define this macro to tune LEA priority vs ADD, it take effect when there is a dilemma of choosing LEA or ADD Negative value: ADD is more preferred than LEA Zero: Neutral Positive value: LEA is more preferred than ADD. */ #define IX86_LEA_PRIORITY 0 /* Return true if usage of lea INSN has performance advantage over a sequence of instructions. Instructions sequence has SPLIT_COST cycles higher latency than lea latency. */ static bool ix86_lea_outperforms (rtx_insn *insn, unsigned int regno0, unsigned int regno1, unsigned int regno2, int split_cost, bool has_scale) { int dist_define, dist_use; /* For Atom processors newer than Bonnell, if using a 2-source or 3-source LEA for non-destructive destination purposes, or due to wanting ability to use SCALE, the use of LEA is justified. */ if (!TARGET_BONNELL) { if (has_scale) return true; if (split_cost < 1) return false; if (regno0 == regno1 || regno0 == regno2) return false; return true; } rtx_insn *rinsn = recog_data.insn; dist_define = distance_non_agu_define (regno1, regno2, insn); dist_use = distance_agu_use (regno0, insn); /* distance_non_agu_define can call extract_insn_cached. If this function is called from define_split conditions, that can break insn splitting, because split_insns works by clearing recog_data.insn and then modifying recog_data.operand array and match the various split conditions. */ if (recog_data.insn != rinsn) recog_data.insn = NULL; if (dist_define < 0 || dist_define >= LEA_MAX_STALL) { /* If there is no non AGU operand definition, no AGU operand usage and split cost is 0 then both lea and non lea variants have same priority. Currently we prefer lea for 64 bit code and non lea on 32 bit code. */ if (dist_use < 0 && split_cost == 0) return TARGET_64BIT || IX86_LEA_PRIORITY; else return true; } /* With longer definitions distance lea is more preferable. Here we change it to take into account splitting cost and lea priority. */ dist_define += split_cost + IX86_LEA_PRIORITY; /* If there is no use in memory addess then we just check that split cost exceeds AGU stall. */ if (dist_use < 0) return dist_define > LEA_MAX_STALL; /* If this insn has both backward non-agu dependence and forward agu dependence, the one with short distance takes effect. */ return dist_define >= dist_use; } /* Return true if it is legal to clobber flags by INSN and false otherwise. */ static bool ix86_ok_to_clobber_flags (rtx_insn *insn) { basic_block bb = BLOCK_FOR_INSN (insn); df_ref use; bitmap live; while (insn) { if (NONDEBUG_INSN_P (insn)) { FOR_EACH_INSN_USE (use, insn) if (DF_REF_REG_USE_P (use) && DF_REF_REGNO (use) == FLAGS_REG) return false; if (insn_defines_reg (FLAGS_REG, INVALID_REGNUM, insn)) return true; } if (insn == BB_END (bb)) break; insn = NEXT_INSN (insn); } live = df_get_live_out(bb); return !REGNO_REG_SET_P (live, FLAGS_REG); } /* Return true if we need to split op0 = op1 + op2 into a sequence of move and add to avoid AGU stalls. */ bool ix86_avoid_lea_for_add (rtx_insn *insn, rtx operands[]) { unsigned int regno0, regno1, regno2; /* Check if we need to optimize. */ if (!TARGET_OPT_AGU || optimize_function_for_size_p (cfun)) return false; /* Check it is correct to split here. */ if (!ix86_ok_to_clobber_flags(insn)) return false; regno0 = true_regnum (operands[0]); regno1 = true_regnum (operands[1]); regno2 = true_regnum (operands[2]); /* We need to split only adds with non destructive destination operand. */ if (regno0 == regno1 || regno0 == regno2) return false; else return !ix86_lea_outperforms (insn, regno0, regno1, regno2, 1, false); } /* Return true if we should emit lea instruction instead of mov instruction. */ bool ix86_use_lea_for_mov (rtx_insn *insn, rtx operands[]) { unsigned int regno0, regno1; /* Check if we need to optimize. */ if (!TARGET_OPT_AGU || optimize_function_for_size_p (cfun)) return false; /* Use lea for reg to reg moves only. */ if (!REG_P (operands[0]) || !REG_P (operands[1])) return false; regno0 = true_regnum (operands[0]); regno1 = true_regnum (operands[1]); return ix86_lea_outperforms (insn, regno0, regno1, INVALID_REGNUM, 0, false); } /* Return true if we need to split lea into a sequence of instructions to avoid AGU stalls. */ bool ix86_avoid_lea_for_addr (rtx_insn *insn, rtx operands[]) { unsigned int regno0, regno1, regno2; int split_cost; struct ix86_address parts; int ok; /* The "at least two components" test below might not catch simple move or zero extension insns if parts.base is non-NULL and parts.disp is const0_rtx as the only components in the address, e.g. if the register is %rbp or %r13. As this test is much cheaper and moves or zero extensions are the common case, do this check first. */ if (REG_P (operands[1]) || (SImode_address_operand (operands[1], VOIDmode) && REG_P (XEXP (operands[1], 0)))) return false; /* Check if it is OK to split here. */ if (!ix86_ok_to_clobber_flags (insn)) return false; ok = ix86_decompose_address (operands[1], &parts); gcc_assert (ok); /* There should be at least two components in the address. */ if ((parts.base != NULL_RTX) + (parts.index != NULL_RTX) + (parts.disp != NULL_RTX) + (parts.scale > 1) < 2) return false; /* We should not split into add if non legitimate pic operand is used as displacement. */ if (parts.disp && flag_pic && !LEGITIMATE_PIC_OPERAND_P (parts.disp)) return false; regno0 = true_regnum (operands[0]) ; regno1 = INVALID_REGNUM; regno2 = INVALID_REGNUM; if (parts.base) regno1 = true_regnum (parts.base); if (parts.index) regno2 = true_regnum (parts.index); /* Use add for a = a + b and a = b + a since it is faster and shorter than lea for most processors. For the processors like BONNELL, if the destination register of LEA holds an actual address which will be used soon, LEA is better and otherwise ADD is better. */ if (!TARGET_BONNELL && parts.scale == 1 && (!parts.disp || parts.disp == const0_rtx) && (regno0 == regno1 || regno0 == regno2)) return true; /* Check we need to optimize. */ if (!TARGET_AVOID_LEA_FOR_ADDR || optimize_function_for_size_p (cfun)) return false; split_cost = 0; /* Compute how many cycles we will add to execution time if split lea into a sequence of instructions. */ if (parts.base || parts.index) { /* Have to use mov instruction if non desctructive destination form is used. */ if (regno1 != regno0 && regno2 != regno0) split_cost += 1; /* Have to add index to base if both exist. */ if (parts.base && parts.index) split_cost += 1; /* Have to use shift and adds if scale is 2 or greater. */ if (parts.scale > 1) { if (regno0 != regno1) split_cost += 1; else if (regno2 == regno0) split_cost += 4; else split_cost += parts.scale; } /* Have to use add instruction with immediate if disp is non zero. */ if (parts.disp && parts.disp != const0_rtx) split_cost += 1; /* Subtract the price of lea. */ split_cost -= 1; } return !ix86_lea_outperforms (insn, regno0, regno1, regno2, split_cost, parts.scale > 1); } /* Return true if it is ok to optimize an ADD operation to LEA operation to avoid flag register consumation. For most processors, ADD is faster than LEA. For the processors like BONNELL, if the destination register of LEA holds an actual address which will be used soon, LEA is better and otherwise ADD is better. */ bool ix86_lea_for_add_ok (rtx_insn *insn, rtx operands[]) { unsigned int regno0 = true_regnum (operands[0]); unsigned int regno1 = true_regnum (operands[1]); unsigned int regno2 = true_regnum (operands[2]); /* If a = b + c, (a!=b && a!=c), must use lea form. */ if (regno0 != regno1 && regno0 != regno2) return true; if (!TARGET_OPT_AGU || optimize_function_for_size_p (cfun)) return false; return ix86_lea_outperforms (insn, regno0, regno1, regno2, 0, false); } /* Return true if destination reg of SET_BODY is shift count of USE_BODY. */ static bool ix86_dep_by_shift_count_body (const_rtx set_body, const_rtx use_body) { rtx set_dest; rtx shift_rtx; int i; /* Retrieve destination of SET_BODY. */ switch (GET_CODE (set_body)) { case SET: set_dest = SET_DEST (set_body); if (!set_dest || !REG_P (set_dest)) return false; break; case PARALLEL: for (i = XVECLEN (set_body, 0) - 1; i >= 0; i--) if (ix86_dep_by_shift_count_body (XVECEXP (set_body, 0, i), use_body)) return true; /* FALLTHROUGH */ default: return false; } /* Retrieve shift count of USE_BODY. */ switch (GET_CODE (use_body)) { case SET: shift_rtx = XEXP (use_body, 1); break; case PARALLEL: for (i = XVECLEN (use_body, 0) - 1; i >= 0; i--) if (ix86_dep_by_shift_count_body (set_body, XVECEXP (use_body, 0, i))) return true; /* FALLTHROUGH */ default: return false; } if (shift_rtx && (GET_CODE (shift_rtx) == ASHIFT || GET_CODE (shift_rtx) == LSHIFTRT || GET_CODE (shift_rtx) == ASHIFTRT || GET_CODE (shift_rtx) == ROTATE || GET_CODE (shift_rtx) == ROTATERT)) { rtx shift_count = XEXP (shift_rtx, 1); /* Return true if shift count is dest of SET_BODY. */ if (REG_P (shift_count)) { /* Add check since it can be invoked before register allocation in pre-reload schedule. */ if (reload_completed && true_regnum (set_dest) == true_regnum (shift_count)) return true; else if (REGNO(set_dest) == REGNO(shift_count)) return true; } } return false; } /* Return true if destination reg of SET_INSN is shift count of USE_INSN. */ bool ix86_dep_by_shift_count (const_rtx set_insn, const_rtx use_insn) { return ix86_dep_by_shift_count_body (PATTERN (set_insn), PATTERN (use_insn)); } /* Return TRUE or FALSE depending on whether the unary operator meets the appropriate constraints. */ bool ix86_unary_operator_ok (enum rtx_code, machine_mode, rtx operands[2]) { /* If one of operands is memory, source and destination must match. */ if ((MEM_P (operands[0]) || MEM_P (operands[1])) && ! rtx_equal_p (operands[0], operands[1])) return false; return true; } /* Return TRUE if the operands to a vec_interleave_{high,low}v2df are ok, keeping in mind the possible movddup alternative. */ bool ix86_vec_interleave_v2df_operator_ok (rtx operands[3], bool high) { if (MEM_P (operands[0])) return rtx_equal_p (operands[0], operands[1 + high]); if (MEM_P (operands[1]) && MEM_P (operands[2])) return TARGET_SSE3 && rtx_equal_p (operands[1], operands[2]); return true; } /* A subroutine of ix86_build_signbit_mask. If VECT is true, then replicate the value for all elements of the vector register. */ rtx ix86_build_const_vector (machine_mode mode, bool vect, rtx value) { int i, n_elt; rtvec v; machine_mode scalar_mode; switch (mode) { case E_V64QImode: case E_V32QImode: case E_V16QImode: case E_V32HImode: case E_V16HImode: case E_V8HImode: case E_V16SImode: case E_V8SImode: case E_V4SImode: case E_V8DImode: case E_V4DImode: case E_V2DImode: gcc_assert (vect); /* FALLTHRU */ case E_V16SFmode: case E_V8SFmode: case E_V4SFmode: case E_V8DFmode: case E_V4DFmode: case E_V2DFmode: n_elt = GET_MODE_NUNITS (mode); v = rtvec_alloc (n_elt); scalar_mode = GET_MODE_INNER (mode); RTVEC_ELT (v, 0) = value; for (i = 1; i < n_elt; ++i) RTVEC_ELT (v, i) = vect ? value : CONST0_RTX (scalar_mode); return gen_rtx_CONST_VECTOR (mode, v); default: gcc_unreachable (); } } /* A subroutine of ix86_expand_fp_absneg_operator, copysign expanders and ix86_expand_int_vcond. Create a mask for the sign bit in MODE for an SSE register. If VECT is true, then replicate the mask for all elements of the vector register. If INVERT is true, then create a mask excluding the sign bit. */ rtx ix86_build_signbit_mask (machine_mode mode, bool vect, bool invert) { machine_mode vec_mode, imode; wide_int w; rtx mask, v; switch (mode) { case E_V16SImode: case E_V16SFmode: case E_V8SImode: case E_V4SImode: case E_V8SFmode: case E_V4SFmode: vec_mode = mode; imode = SImode; break; case E_V8DImode: case E_V4DImode: case E_V2DImode: case E_V8DFmode: case E_V4DFmode: case E_V2DFmode: vec_mode = mode; imode = DImode; break; case E_TImode: case E_TFmode: vec_mode = VOIDmode; imode = TImode; break; default: gcc_unreachable (); } machine_mode inner_mode = GET_MODE_INNER (mode); w = wi::set_bit_in_zero (GET_MODE_BITSIZE (inner_mode) - 1, GET_MODE_BITSIZE (inner_mode)); if (invert) w = wi::bit_not (w); /* Force this value into the low part of a fp vector constant. */ mask = immed_wide_int_const (w, imode); mask = gen_lowpart (inner_mode, mask); if (vec_mode == VOIDmode) return force_reg (inner_mode, mask); v = ix86_build_const_vector (vec_mode, vect, mask); return force_reg (vec_mode, v); } /* Return TRUE or FALSE depending on whether the first SET in INSN has source and destination with matching CC modes, and that the CC mode is at least as constrained as REQ_MODE. */ bool ix86_match_ccmode (rtx insn, machine_mode req_mode) { rtx set; machine_mode set_mode; set = PATTERN (insn); if (GET_CODE (set) == PARALLEL) set = XVECEXP (set, 0, 0); gcc_assert (GET_CODE (set) == SET); gcc_assert (GET_CODE (SET_SRC (set)) == COMPARE); set_mode = GET_MODE (SET_DEST (set)); switch (set_mode) { case E_CCNOmode: if (req_mode != CCNOmode && (req_mode != CCmode || XEXP (SET_SRC (set), 1) != const0_rtx)) return false; break; case E_CCmode: if (req_mode == CCGCmode) return false; /* FALLTHRU */ case E_CCGCmode: if (req_mode == CCGOCmode || req_mode == CCNOmode) return false; /* FALLTHRU */ case E_CCGOCmode: if (req_mode == CCZmode) return false; /* FALLTHRU */ case E_CCZmode: break; case E_CCGZmode: case E_CCAmode: case E_CCCmode: case E_CCOmode: case E_CCPmode: case E_CCSmode: if (set_mode != req_mode) return false; break; default: gcc_unreachable (); } return GET_MODE (SET_SRC (set)) == set_mode; } machine_mode ix86_cc_mode (enum rtx_code code, rtx op0, rtx op1) { machine_mode mode = GET_MODE (op0); if (SCALAR_FLOAT_MODE_P (mode)) { gcc_assert (!DECIMAL_FLOAT_MODE_P (mode)); return CCFPmode; } switch (code) { /* Only zero flag is needed. */ case EQ: /* ZF=0 */ case NE: /* ZF!=0 */ return CCZmode; /* Codes needing carry flag. */ case GEU: /* CF=0 */ case LTU: /* CF=1 */ /* Detect overflow checks. They need just the carry flag. */ if (GET_CODE (op0) == PLUS && (rtx_equal_p (op1, XEXP (op0, 0)) || rtx_equal_p (op1, XEXP (op0, 1)))) return CCCmode; else return CCmode; case GTU: /* CF=0 & ZF=0 */ case LEU: /* CF=1 | ZF=1 */ return CCmode; /* Codes possibly doable only with sign flag when comparing against zero. */ case GE: /* SF=OF or SF=0 */ case LT: /* SF<>OF or SF=1 */ if (op1 == const0_rtx) return CCGOCmode; else /* For other cases Carry flag is not required. */ return CCGCmode; /* Codes doable only with sign flag when comparing against zero, but we miss jump instruction for it so we need to use relational tests against overflow that thus needs to be zero. */ case GT: /* ZF=0 & SF=OF */ case LE: /* ZF=1 | SF<>OF */ if (op1 == const0_rtx) return CCNOmode; else return CCGCmode; /* strcmp pattern do (use flags) and combine may ask us for proper mode. */ case USE: return CCmode; default: gcc_unreachable (); } } /* Return the fixed registers used for condition codes. */ static bool ix86_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2) { *p1 = FLAGS_REG; *p2 = INVALID_REGNUM; return true; } /* If two condition code modes are compatible, return a condition code mode which is compatible with both. Otherwise, return VOIDmode. */ static machine_mode ix86_cc_modes_compatible (machine_mode m1, machine_mode m2) { if (m1 == m2) return m1; if (GET_MODE_CLASS (m1) != MODE_CC || GET_MODE_CLASS (m2) != MODE_CC) return VOIDmode; if ((m1 == CCGCmode && m2 == CCGOCmode) || (m1 == CCGOCmode && m2 == CCGCmode)) return CCGCmode; if ((m1 == CCNOmode && m2 == CCGOCmode) || (m1 == CCGOCmode && m2 == CCNOmode)) return CCNOmode; if (m1 == CCZmode && (m2 == CCGCmode || m2 == CCGOCmode || m2 == CCNOmode)) return m2; else if (m2 == CCZmode && (m1 == CCGCmode || m1 == CCGOCmode || m1 == CCNOmode)) return m1; switch (m1) { default: gcc_unreachable (); case E_CCmode: case E_CCGCmode: case E_CCGOCmode: case E_CCNOmode: case E_CCAmode: case E_CCCmode: case E_CCOmode: case E_CCPmode: case E_CCSmode: case E_CCZmode: switch (m2) { default: return VOIDmode; case E_CCmode: case E_CCGCmode: case E_CCGOCmode: case E_CCNOmode: case E_CCAmode: case E_CCCmode: case E_CCOmode: case E_CCPmode: case E_CCSmode: case E_CCZmode: return CCmode; } case E_CCFPmode: /* These are only compatible with themselves, which we already checked above. */ return VOIDmode; } } /* Return strategy to use for floating-point. We assume that fcomi is always preferrable where available, since that is also true when looking at size (2 bytes, vs. 3 for fnstsw+sahf and at least 5 for fnstsw+test). */ enum ix86_fpcmp_strategy ix86_fp_comparison_strategy (enum rtx_code) { /* Do fcomi/sahf based test when profitable. */ if (TARGET_CMOVE) return IX86_FPCMP_COMI; if (TARGET_SAHF && (TARGET_USE_SAHF || optimize_insn_for_size_p ())) return IX86_FPCMP_SAHF; return IX86_FPCMP_ARITH; } /* Convert comparison codes we use to represent FP comparison to integer code that will result in proper branch. Return UNKNOWN if no such code is available. */ enum rtx_code ix86_fp_compare_code_to_integer (enum rtx_code code) { switch (code) { case GT: return GTU; case GE: return GEU; case ORDERED: case UNORDERED: return code; case UNEQ: return EQ; case UNLT: return LTU; case UNLE: return LEU; case LTGT: return NE; default: return UNKNOWN; } } /* Zero extend possibly SImode EXP to Pmode register. */ rtx ix86_zero_extend_to_Pmode (rtx exp) { return force_reg (Pmode, convert_to_mode (Pmode, exp, 1)); } /* Return true if the function being called was marked with attribute "noplt" or using -fno-plt and we are compiling for non-PIC. We need to handle the non-PIC case in the backend because there is no easy interface for the front-end to force non-PLT calls to use the GOT. This is currently used only with 64-bit or 32-bit GOT32X ELF targets to call the function marked "noplt" indirectly. */ static bool ix86_nopic_noplt_attribute_p (rtx call_op) { if (flag_pic || ix86_cmodel == CM_LARGE || !(TARGET_64BIT || HAVE_AS_IX86_GOT32X) || TARGET_MACHO || TARGET_SEH || TARGET_PECOFF || SYMBOL_REF_LOCAL_P (call_op)) return false; tree symbol_decl = SYMBOL_REF_DECL (call_op); if (!flag_plt || (symbol_decl != NULL_TREE && lookup_attribute ("noplt", DECL_ATTRIBUTES (symbol_decl)))) return true; return false; } /* Helper to output the jmp/call. */ static void ix86_output_jmp_thunk_or_indirect (const char *thunk_name, const int regno) { if (thunk_name != NULL) { fprintf (asm_out_file, "\tjmp\t"); assemble_name (asm_out_file, thunk_name); putc ('\n', asm_out_file); } else output_indirect_thunk (regno); } /* Output indirect branch via a call and return thunk. CALL_OP is a register which contains the branch target. XASM is the assembly template for CALL_OP. Branch is a tail call if SIBCALL_P is true. A normal call is converted to: call __x86_indirect_thunk_reg and a tail call is converted to: jmp __x86_indirect_thunk_reg */ static void ix86_output_indirect_branch_via_reg (rtx call_op, bool sibcall_p) { char thunk_name_buf[32]; char *thunk_name; enum indirect_thunk_prefix need_prefix = indirect_thunk_need_prefix (current_output_insn); int regno = REGNO (call_op); if (cfun->machine->indirect_branch_type != indirect_branch_thunk_inline) { if (cfun->machine->indirect_branch_type == indirect_branch_thunk) { int i = regno; if (i >= FIRST_REX_INT_REG) i -= (FIRST_REX_INT_REG - LAST_INT_REG - 1); indirect_thunks_used |= 1 << i; } indirect_thunk_name (thunk_name_buf, regno, need_prefix, false); thunk_name = thunk_name_buf; } else thunk_name = NULL; if (sibcall_p) ix86_output_jmp_thunk_or_indirect (thunk_name, regno); else { if (thunk_name != NULL) { fprintf (asm_out_file, "\tcall\t"); assemble_name (asm_out_file, thunk_name); putc ('\n', asm_out_file); return; } char indirectlabel1[32]; char indirectlabel2[32]; ASM_GENERATE_INTERNAL_LABEL (indirectlabel1, INDIRECT_LABEL, indirectlabelno++); ASM_GENERATE_INTERNAL_LABEL (indirectlabel2, INDIRECT_LABEL, indirectlabelno++); /* Jump. */ fputs ("\tjmp\t", asm_out_file); assemble_name_raw (asm_out_file, indirectlabel2); fputc ('\n', asm_out_file); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, indirectlabel1); ix86_output_jmp_thunk_or_indirect (thunk_name, regno); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, indirectlabel2); /* Call. */ fputs ("\tcall\t", asm_out_file); assemble_name_raw (asm_out_file, indirectlabel1); fputc ('\n', asm_out_file); } } /* Output indirect branch via a call and return thunk. CALL_OP is the branch target. XASM is the assembly template for CALL_OP. Branch is a tail call if SIBCALL_P is true. A normal call is converted to: jmp L2 L1: push CALL_OP jmp __x86_indirect_thunk L2: call L1 and a tail call is converted to: push CALL_OP jmp __x86_indirect_thunk */ static void ix86_output_indirect_branch_via_push (rtx call_op, const char *xasm, bool sibcall_p) { char thunk_name_buf[32]; char *thunk_name; char push_buf[64]; enum indirect_thunk_prefix need_prefix = indirect_thunk_need_prefix (current_output_insn); int regno = -1; if (cfun->machine->indirect_branch_type != indirect_branch_thunk_inline) { if (cfun->machine->indirect_branch_type == indirect_branch_thunk) indirect_thunk_needed = true; indirect_thunk_name (thunk_name_buf, regno, need_prefix, false); thunk_name = thunk_name_buf; } else thunk_name = NULL; snprintf (push_buf, sizeof (push_buf), "push{%c}\t%s", TARGET_64BIT ? 'q' : 'l', xasm); if (sibcall_p) { output_asm_insn (push_buf, &call_op); ix86_output_jmp_thunk_or_indirect (thunk_name, regno); } else { char indirectlabel1[32]; char indirectlabel2[32]; ASM_GENERATE_INTERNAL_LABEL (indirectlabel1, INDIRECT_LABEL, indirectlabelno++); ASM_GENERATE_INTERNAL_LABEL (indirectlabel2, INDIRECT_LABEL, indirectlabelno++); /* Jump. */ fputs ("\tjmp\t", asm_out_file); assemble_name_raw (asm_out_file, indirectlabel2); fputc ('\n', asm_out_file); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, indirectlabel1); /* An external function may be called via GOT, instead of PLT. */ if (MEM_P (call_op)) { struct ix86_address parts; rtx addr = XEXP (call_op, 0); if (ix86_decompose_address (addr, &parts) && parts.base == stack_pointer_rtx) { /* Since call will adjust stack by -UNITS_PER_WORD, we must convert "disp(stack, index, scale)" to "disp+UNITS_PER_WORD(stack, index, scale)". */ if (parts.index) { addr = gen_rtx_MULT (Pmode, parts.index, GEN_INT (parts.scale)); addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, addr); } else addr = stack_pointer_rtx; rtx disp; if (parts.disp != NULL_RTX) disp = plus_constant (Pmode, parts.disp, UNITS_PER_WORD); else disp = GEN_INT (UNITS_PER_WORD); addr = gen_rtx_PLUS (Pmode, addr, disp); call_op = gen_rtx_MEM (GET_MODE (call_op), addr); } } output_asm_insn (push_buf, &call_op); ix86_output_jmp_thunk_or_indirect (thunk_name, regno); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, indirectlabel2); /* Call. */ fputs ("\tcall\t", asm_out_file); assemble_name_raw (asm_out_file, indirectlabel1); fputc ('\n', asm_out_file); } } /* Output indirect branch via a call and return thunk. CALL_OP is the branch target. XASM is the assembly template for CALL_OP. Branch is a tail call if SIBCALL_P is true. */ static void ix86_output_indirect_branch (rtx call_op, const char *xasm, bool sibcall_p) { if (REG_P (call_op)) ix86_output_indirect_branch_via_reg (call_op, sibcall_p); else ix86_output_indirect_branch_via_push (call_op, xasm, sibcall_p); } /* Output indirect jump. CALL_OP is the jump target. */ const char * ix86_output_indirect_jmp (rtx call_op) { if (cfun->machine->indirect_branch_type != indirect_branch_keep) { /* We can't have red-zone since "call" in the indirect thunk pushes the return address onto stack, destroying red-zone. */ if (ix86_red_zone_size != 0) gcc_unreachable (); ix86_output_indirect_branch (call_op, "%0", true); return ""; } else return "%!jmp\t%A0"; } /* Output return instrumentation for current function if needed. */ static void output_return_instrumentation (void) { if (ix86_instrument_return != instrument_return_none && flag_fentry && !DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (cfun->decl)) { if (ix86_flag_record_return) fprintf (asm_out_file, "1:\n"); switch (ix86_instrument_return) { case instrument_return_call: fprintf (asm_out_file, "\tcall\t__return__\n"); break; case instrument_return_nop5: /* 5 byte nop: nopl 0(%[re]ax,%[re]ax,1) */ fprintf (asm_out_file, ASM_BYTE "0x0f, 0x1f, 0x44, 0x00, 0x00\n"); break; case instrument_return_none: break; } if (ix86_flag_record_return) { fprintf (asm_out_file, "\t.section __return_loc, \"a\",@progbits\n"); fprintf (asm_out_file, "\t.%s 1b\n", TARGET_64BIT ? "quad" : "long"); fprintf (asm_out_file, "\t.previous\n"); } } } /* Output function return. CALL_OP is the jump target. Add a REP prefix to RET if LONG_P is true and function return is kept. */ const char * ix86_output_function_return (bool long_p) { output_return_instrumentation (); if (cfun->machine->function_return_type != indirect_branch_keep) { char thunk_name[32]; enum indirect_thunk_prefix need_prefix = indirect_thunk_need_prefix (current_output_insn); if (cfun->machine->function_return_type != indirect_branch_thunk_inline) { bool need_thunk = (cfun->machine->function_return_type == indirect_branch_thunk); indirect_thunk_name (thunk_name, INVALID_REGNUM, need_prefix, true); indirect_return_needed |= need_thunk; fprintf (asm_out_file, "\tjmp\t"); assemble_name (asm_out_file, thunk_name); putc ('\n', asm_out_file); } else output_indirect_thunk (INVALID_REGNUM); return ""; } if (!long_p) return "%!ret"; return "rep%; ret"; } /* Output indirect function return. RET_OP is the function return target. */ const char * ix86_output_indirect_function_return (rtx ret_op) { if (cfun->machine->function_return_type != indirect_branch_keep) { char thunk_name[32]; enum indirect_thunk_prefix need_prefix = indirect_thunk_need_prefix (current_output_insn); unsigned int regno = REGNO (ret_op); gcc_assert (regno == CX_REG); if (cfun->machine->function_return_type != indirect_branch_thunk_inline) { bool need_thunk = (cfun->machine->function_return_type == indirect_branch_thunk); indirect_thunk_name (thunk_name, regno, need_prefix, true); if (need_thunk) { indirect_return_via_cx = true; indirect_thunks_used |= 1 << CX_REG; } fprintf (asm_out_file, "\tjmp\t"); assemble_name (asm_out_file, thunk_name); putc ('\n', asm_out_file); } else output_indirect_thunk (regno); return ""; } else return "%!jmp\t%A0"; } /* Output the assembly for a call instruction. */ const char * ix86_output_call_insn (rtx_insn *insn, rtx call_op) { bool direct_p = constant_call_address_operand (call_op, VOIDmode); bool output_indirect_p = (!TARGET_SEH && cfun->machine->indirect_branch_type != indirect_branch_keep); bool seh_nop_p = false; const char *xasm; if (SIBLING_CALL_P (insn)) { output_return_instrumentation (); if (direct_p) { if (ix86_nopic_noplt_attribute_p (call_op)) { direct_p = false; if (TARGET_64BIT) { if (output_indirect_p) xasm = "{%p0@GOTPCREL(%%rip)|[QWORD PTR %p0@GOTPCREL[rip]]}"; else xasm = "%!jmp\t{*%p0@GOTPCREL(%%rip)|[QWORD PTR %p0@GOTPCREL[rip]]}"; } else { if (output_indirect_p) xasm = "{%p0@GOT|[DWORD PTR %p0@GOT]}"; else xasm = "%!jmp\t{*%p0@GOT|[DWORD PTR %p0@GOT]}"; } } else xasm = "%!jmp\t%P0"; } /* SEH epilogue detection requires the indirect branch case to include REX.W. */ else if (TARGET_SEH) xasm = "%!rex.W jmp\t%A0"; else { if (output_indirect_p) xasm = "%0"; else xasm = "%!jmp\t%A0"; } if (output_indirect_p && !direct_p) ix86_output_indirect_branch (call_op, xasm, true); else output_asm_insn (xasm, &call_op); return ""; } /* SEH unwinding can require an extra nop to be emitted in several circumstances. Determine if we have one of those. */ if (TARGET_SEH) { rtx_insn *i; for (i = NEXT_INSN (insn); i ; i = NEXT_INSN (i)) { /* Prevent a catch region from being adjacent to a jump that would be interpreted as an epilogue sequence by the unwinder. */ if (JUMP_P(i) && CROSSING_JUMP_P (i)) { seh_nop_p = true; break; } /* If we get to another real insn, we don't need the nop. */ if (INSN_P (i)) break; /* If we get to the epilogue note, prevent a catch region from being adjacent to the standard epilogue sequence. Note that, if non-call exceptions are enabled, we already did it during epilogue expansion, or else, if the insn can throw internally, we already did it during the reorg pass. */ if (NOTE_P (i) && NOTE_KIND (i) == NOTE_INSN_EPILOGUE_BEG && !flag_non_call_exceptions && !can_throw_internal (insn)) { seh_nop_p = true; break; } } /* If we didn't find a real insn following the call, prevent the unwinder from looking into the next function. */ if (i == NULL) seh_nop_p = true; } if (direct_p) { if (ix86_nopic_noplt_attribute_p (call_op)) { direct_p = false; if (TARGET_64BIT) { if (output_indirect_p) xasm = "{%p0@GOTPCREL(%%rip)|[QWORD PTR %p0@GOTPCREL[rip]]}"; else xasm = "%!call\t{*%p0@GOTPCREL(%%rip)|[QWORD PTR %p0@GOTPCREL[rip]]}"; } else { if (output_indirect_p) xasm = "{%p0@GOT|[DWORD PTR %p0@GOT]}"; else xasm = "%!call\t{*%p0@GOT|[DWORD PTR %p0@GOT]}"; } } else xasm = "%!call\t%P0"; } else { if (output_indirect_p) xasm = "%0"; else xasm = "%!call\t%A0"; } if (output_indirect_p && !direct_p) ix86_output_indirect_branch (call_op, xasm, false); else output_asm_insn (xasm, &call_op); if (seh_nop_p) return "nop"; return ""; } /* Return a MEM corresponding to a stack slot with mode MODE. Allocate a new slot if necessary. The RTL for a function can have several slots available: N is which slot to use. */ rtx assign_386_stack_local (machine_mode mode, enum ix86_stack_slot n) { struct stack_local_entry *s; gcc_assert (n < MAX_386_STACK_LOCALS); for (s = ix86_stack_locals; s; s = s->next) if (s->mode == mode && s->n == n) return validize_mem (copy_rtx (s->rtl)); s = ggc_alloc (); s->n = n; s->mode = mode; s->rtl = assign_stack_local (mode, GET_MODE_SIZE (mode), 0); s->next = ix86_stack_locals; ix86_stack_locals = s; return validize_mem (copy_rtx (s->rtl)); } static void ix86_instantiate_decls (void) { struct stack_local_entry *s; for (s = ix86_stack_locals; s; s = s->next) if (s->rtl != NULL_RTX) instantiate_decl_rtl (s->rtl); } /* Check whether x86 address PARTS is a pc-relative address. */ bool ix86_rip_relative_addr_p (struct ix86_address *parts) { rtx base, index, disp; base = parts->base; index = parts->index; disp = parts->disp; if (disp && !base && !index) { if (TARGET_64BIT) { rtx symbol = disp; if (GET_CODE (disp) == CONST) symbol = XEXP (disp, 0); if (GET_CODE (symbol) == PLUS && CONST_INT_P (XEXP (symbol, 1))) symbol = XEXP (symbol, 0); if (GET_CODE (symbol) == LABEL_REF || (GET_CODE (symbol) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (symbol) == 0) || (GET_CODE (symbol) == UNSPEC && (XINT (symbol, 1) == UNSPEC_GOTPCREL || XINT (symbol, 1) == UNSPEC_PCREL || XINT (symbol, 1) == UNSPEC_GOTNTPOFF))) return true; } } return false; } /* Calculate the length of the memory address in the instruction encoding. Includes addr32 prefix, does not include the one-byte modrm, opcode, or other prefixes. We never generate addr32 prefix for LEA insn. */ int memory_address_length (rtx addr, bool lea) { struct ix86_address parts; rtx base, index, disp; int len; int ok; if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == POST_INC || GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY) return 0; ok = ix86_decompose_address (addr, &parts); gcc_assert (ok); len = (parts.seg == ADDR_SPACE_GENERIC) ? 0 : 1; /* If this is not LEA instruction, add the length of addr32 prefix. */ if (TARGET_64BIT && !lea && (SImode_address_operand (addr, VOIDmode) || (parts.base && GET_MODE (parts.base) == SImode) || (parts.index && GET_MODE (parts.index) == SImode))) len++; base = parts.base; index = parts.index; disp = parts.disp; if (base && SUBREG_P (base)) base = SUBREG_REG (base); if (index && SUBREG_P (index)) index = SUBREG_REG (index); gcc_assert (base == NULL_RTX || REG_P (base)); gcc_assert (index == NULL_RTX || REG_P (index)); /* Rule of thumb: - esp as the base always wants an index, - ebp as the base always wants a displacement, - r12 as the base always wants an index, - r13 as the base always wants a displacement. */ /* Register Indirect. */ if (base && !index && !disp) { /* esp (for its index) and ebp (for its displacement) need the two-byte modrm form. Similarly for r12 and r13 in 64-bit code. */ if (base == arg_pointer_rtx || base == frame_pointer_rtx || REGNO (base) == SP_REG || REGNO (base) == BP_REG || REGNO (base) == R12_REG || REGNO (base) == R13_REG) len++; } /* Direct Addressing. In 64-bit mode mod 00 r/m 5 is not disp32, but disp32(%rip), so for disp32 SIB byte is needed, unless print_operand_address optimizes it into disp32(%rip) or (%rip) is implied by UNSPEC. */ else if (disp && !base && !index) { len += 4; if (!ix86_rip_relative_addr_p (&parts)) len++; } else { /* Find the length of the displacement constant. */ if (disp) { if (base && satisfies_constraint_K (disp)) len += 1; else len += 4; } /* ebp always wants a displacement. Similarly r13. */ else if (base && (REGNO (base) == BP_REG || REGNO (base) == R13_REG)) len++; /* An index requires the two-byte modrm form.... */ if (index /* ...like esp (or r12), which always wants an index. */ || base == arg_pointer_rtx || base == frame_pointer_rtx || (base && (REGNO (base) == SP_REG || REGNO (base) == R12_REG))) len++; } return len; } /* Compute default value for "length_immediate" attribute. When SHORTFORM is set, expect that insn have 8bit immediate alternative. */ int ix86_attr_length_immediate_default (rtx_insn *insn, bool shortform) { int len = 0; int i; extract_insn_cached (insn); for (i = recog_data.n_operands - 1; i >= 0; --i) if (CONSTANT_P (recog_data.operand[i])) { enum attr_mode mode = get_attr_mode (insn); gcc_assert (!len); if (shortform && CONST_INT_P (recog_data.operand[i])) { HOST_WIDE_INT ival = INTVAL (recog_data.operand[i]); switch (mode) { case MODE_QI: len = 1; continue; case MODE_HI: ival = trunc_int_for_mode (ival, HImode); break; case MODE_SI: ival = trunc_int_for_mode (ival, SImode); break; default: break; } if (IN_RANGE (ival, -128, 127)) { len = 1; continue; } } switch (mode) { case MODE_QI: len = 1; break; case MODE_HI: len = 2; break; case MODE_SI: len = 4; break; /* Immediates for DImode instructions are encoded as 32bit sign extended values. */ case MODE_DI: len = 4; break; default: fatal_insn ("unknown insn mode", insn); } } return len; } /* Compute default value for "length_address" attribute. */ int ix86_attr_length_address_default (rtx_insn *insn) { int i; if (get_attr_type (insn) == TYPE_LEA) { rtx set = PATTERN (insn), addr; if (GET_CODE (set) == PARALLEL) set = XVECEXP (set, 0, 0); gcc_assert (GET_CODE (set) == SET); addr = SET_SRC (set); return memory_address_length (addr, true); } extract_insn_cached (insn); for (i = recog_data.n_operands - 1; i >= 0; --i) { rtx op = recog_data.operand[i]; if (MEM_P (op)) { constrain_operands_cached (insn, reload_completed); if (which_alternative != -1) { const char *constraints = recog_data.constraints[i]; int alt = which_alternative; while (*constraints == '=' || *constraints == '+') constraints++; while (alt-- > 0) while (*constraints++ != ',') ; /* Skip ignored operands. */ if (*constraints == 'X') continue; } int len = memory_address_length (XEXP (op, 0), false); /* Account for segment prefix for non-default addr spaces. */ if (!ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (op))) len++; return len; } } return 0; } /* Compute default value for "length_vex" attribute. It includes 2 or 3 byte VEX prefix and 1 opcode byte. */ int ix86_attr_length_vex_default (rtx_insn *insn, bool has_0f_opcode, bool has_vex_w) { int i; /* Only 0f opcode can use 2 byte VEX prefix and VEX W bit uses 3 byte VEX prefix. */ if (!has_0f_opcode || has_vex_w) return 3 + 1; /* We can always use 2 byte VEX prefix in 32bit. */ if (!TARGET_64BIT) return 2 + 1; extract_insn_cached (insn); for (i = recog_data.n_operands - 1; i >= 0; --i) if (REG_P (recog_data.operand[i])) { /* REX.W bit uses 3 byte VEX prefix. */ if (GET_MODE (recog_data.operand[i]) == DImode && GENERAL_REG_P (recog_data.operand[i])) return 3 + 1; } else { /* REX.X or REX.B bits use 3 byte VEX prefix. */ if (MEM_P (recog_data.operand[i]) && x86_extended_reg_mentioned_p (recog_data.operand[i])) return 3 + 1; } return 2 + 1; } static bool ix86_class_likely_spilled_p (reg_class_t); /* Returns true if lhs of insn is HW function argument register and set up is_spilled to true if it is likely spilled HW register. */ static bool insn_is_function_arg (rtx insn, bool* is_spilled) { rtx dst; if (!NONDEBUG_INSN_P (insn)) return false; /* Call instructions are not movable, ignore it. */ if (CALL_P (insn)) return false; insn = PATTERN (insn); if (GET_CODE (insn) == PARALLEL) insn = XVECEXP (insn, 0, 0); if (GET_CODE (insn) != SET) return false; dst = SET_DEST (insn); if (REG_P (dst) && HARD_REGISTER_P (dst) && ix86_function_arg_regno_p (REGNO (dst))) { /* Is it likely spilled HW register? */ if (!TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dst)) && ix86_class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dst)))) *is_spilled = true; return true; } return false; } /* Add output dependencies for chain of function adjacent arguments if only there is a move to likely spilled HW register. Return first argument if at least one dependence was added or NULL otherwise. */ static rtx_insn * add_parameter_dependencies (rtx_insn *call, rtx_insn *head) { rtx_insn *insn; rtx_insn *last = call; rtx_insn *first_arg = NULL; bool is_spilled = false; head = PREV_INSN (head); /* Find nearest to call argument passing instruction. */ while (true) { last = PREV_INSN (last); if (last == head) return NULL; if (!NONDEBUG_INSN_P (last)) continue; if (insn_is_function_arg (last, &is_spilled)) break; return NULL; } first_arg = last; while (true) { insn = PREV_INSN (last); if (!INSN_P (insn)) break; if (insn == head) break; if (!NONDEBUG_INSN_P (insn)) { last = insn; continue; } if (insn_is_function_arg (insn, &is_spilled)) { /* Add output depdendence between two function arguments if chain of output arguments contains likely spilled HW registers. */ if (is_spilled) add_dependence (first_arg, insn, REG_DEP_OUTPUT); first_arg = last = insn; } else break; } if (!is_spilled) return NULL; return first_arg; } /* Add output or anti dependency from insn to first_arg to restrict its code motion. */ static void avoid_func_arg_motion (rtx_insn *first_arg, rtx_insn *insn) { rtx set; rtx tmp; set = single_set (insn); if (!set) return; tmp = SET_DEST (set); if (REG_P (tmp)) { /* Add output dependency to the first function argument. */ add_dependence (first_arg, insn, REG_DEP_OUTPUT); return; } /* Add anti dependency. */ add_dependence (first_arg, insn, REG_DEP_ANTI); } /* Avoid cross block motion of function argument through adding dependency from the first non-jump instruction in bb. */ static void add_dependee_for_func_arg (rtx_insn *arg, basic_block bb) { rtx_insn *insn = BB_END (bb); while (insn) { if (NONDEBUG_INSN_P (insn) && NONJUMP_INSN_P (insn)) { rtx set = single_set (insn); if (set) { avoid_func_arg_motion (arg, insn); return; } } if (insn == BB_HEAD (bb)) return; insn = PREV_INSN (insn); } } /* Hook for pre-reload schedule - avoid motion of function arguments passed in likely spilled HW registers. */ static void ix86_dependencies_evaluation_hook (rtx_insn *head, rtx_insn *tail) { rtx_insn *insn; rtx_insn *first_arg = NULL; if (reload_completed) return; while (head != tail && DEBUG_INSN_P (head)) head = NEXT_INSN (head); for (insn = tail; insn != head; insn = PREV_INSN (insn)) if (INSN_P (insn) && CALL_P (insn)) { first_arg = add_parameter_dependencies (insn, head); if (first_arg) { /* Add dependee for first argument to predecessors if only region contains more than one block. */ basic_block bb = BLOCK_FOR_INSN (insn); int rgn = CONTAINING_RGN (bb->index); int nr_blks = RGN_NR_BLOCKS (rgn); /* Skip trivial regions and region head blocks that can have predecessors outside of region. */ if (nr_blks > 1 && BLOCK_TO_BB (bb->index) != 0) { edge e; edge_iterator ei; /* Regions are SCCs with the exception of selective scheduling with pipelining of outer blocks enabled. So also check that immediate predecessors of a non-head block are in the same region. */ FOR_EACH_EDGE (e, ei, bb->preds) { /* Avoid creating of loop-carried dependencies through using topological ordering in the region. */ if (rgn == CONTAINING_RGN (e->src->index) && BLOCK_TO_BB (bb->index) > BLOCK_TO_BB (e->src->index)) add_dependee_for_func_arg (first_arg, e->src); } } insn = first_arg; if (insn == head) break; } } else if (first_arg) avoid_func_arg_motion (first_arg, insn); } /* Hook for pre-reload schedule - set priority of moves from likely spilled HW registers to maximum, to schedule them at soon as possible. These are moves from function argument registers at the top of the function entry and moves from function return value registers after call. */ static int ix86_adjust_priority (rtx_insn *insn, int priority) { rtx set; if (reload_completed) return priority; if (!NONDEBUG_INSN_P (insn)) return priority; set = single_set (insn); if (set) { rtx tmp = SET_SRC (set); if (REG_P (tmp) && HARD_REGISTER_P (tmp) && !TEST_HARD_REG_BIT (fixed_reg_set, REGNO (tmp)) && ix86_class_likely_spilled_p (REGNO_REG_CLASS (REGNO (tmp)))) return current_sched_info->sched_max_insns_priority; } return priority; } /* Prepare for scheduling pass. */ static void ix86_sched_init_global (FILE *, int, int) { /* Install scheduling hooks for current CPU. Some of these hooks are used in time-critical parts of the scheduler, so we only set them up when they are actually used. */ switch (ix86_tune) { case PROCESSOR_CORE2: case PROCESSOR_NEHALEM: case PROCESSOR_SANDYBRIDGE: case PROCESSOR_HASWELL: case PROCESSOR_GENERIC: /* Do not perform multipass scheduling for pre-reload schedule to save compile time. */ if (reload_completed) { ix86_core2i7_init_hooks (); break; } /* Fall through. */ default: targetm.sched.dfa_post_advance_cycle = NULL; targetm.sched.first_cycle_multipass_init = NULL; targetm.sched.first_cycle_multipass_begin = NULL; targetm.sched.first_cycle_multipass_issue = NULL; targetm.sched.first_cycle_multipass_backtrack = NULL; targetm.sched.first_cycle_multipass_end = NULL; targetm.sched.first_cycle_multipass_fini = NULL; break; } } /* Implement TARGET_STATIC_RTX_ALIGNMENT. */ static HOST_WIDE_INT ix86_static_rtx_alignment (machine_mode mode) { if (mode == DFmode) return 64; if (ALIGN_MODE_128 (mode)) return MAX (128, GET_MODE_ALIGNMENT (mode)); return GET_MODE_ALIGNMENT (mode); } /* Implement TARGET_CONSTANT_ALIGNMENT. */ static HOST_WIDE_INT ix86_constant_alignment (const_tree exp, HOST_WIDE_INT align) { if (TREE_CODE (exp) == REAL_CST || TREE_CODE (exp) == VECTOR_CST || TREE_CODE (exp) == INTEGER_CST) { machine_mode mode = TYPE_MODE (TREE_TYPE (exp)); HOST_WIDE_INT mode_align = ix86_static_rtx_alignment (mode); return MAX (mode_align, align); } else if (!optimize_size && TREE_CODE (exp) == STRING_CST && TREE_STRING_LENGTH (exp) >= 31 && align < BITS_PER_WORD) return BITS_PER_WORD; return align; } /* Implement TARGET_EMPTY_RECORD_P. */ static bool ix86_is_empty_record (const_tree type) { if (!TARGET_64BIT) return false; return default_is_empty_record (type); } /* Implement TARGET_WARN_PARAMETER_PASSING_ABI. */ static void ix86_warn_parameter_passing_abi (cumulative_args_t cum_v, tree type) { CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); if (!cum->warn_empty) return; if (!TYPE_EMPTY_P (type)) return; /* Don't warn if the function isn't visible outside of the TU. */ if (cum->decl && !TREE_PUBLIC (cum->decl)) return; const_tree ctx = get_ultimate_context (cum->decl); if (ctx != NULL_TREE && !TRANSLATION_UNIT_WARN_EMPTY_P (ctx)) return; /* If the actual size of the type is zero, then there is no change in how objects of this size are passed. */ if (int_size_in_bytes (type) == 0) return; warning (OPT_Wabi, "empty class %qT parameter passing ABI " "changes in %<-fabi-version=12%> (GCC 8)", type); /* Only warn once. */ cum->warn_empty = false; } /* This hook returns name of multilib ABI. */ static const char * ix86_get_multilib_abi_name (void) { if (!(TARGET_64BIT_P (ix86_isa_flags))) return "i386"; else if (TARGET_X32_P (ix86_isa_flags)) return "x32"; else return "x86_64"; } /* Compute the alignment for a variable for Intel MCU psABI. TYPE is the data type, and ALIGN is the alignment that the object would ordinarily have. */ static int iamcu_alignment (tree type, int align) { machine_mode mode; if (align < 32 || TYPE_USER_ALIGN (type)) return align; /* Intel MCU psABI specifies scalar types > 4 bytes aligned to 4 bytes. */ mode = TYPE_MODE (strip_array_types (type)); switch (GET_MODE_CLASS (mode)) { case MODE_INT: case MODE_COMPLEX_INT: case MODE_COMPLEX_FLOAT: case MODE_FLOAT: case MODE_DECIMAL_FLOAT: return 32; default: return align; } } /* Compute the alignment for a static variable. TYPE is the data type, and ALIGN is the alignment that the object would ordinarily have. The value of this function is used instead of that alignment to align the object. */ int ix86_data_alignment (tree type, unsigned int align, bool opt) { /* GCC 4.8 and earlier used to incorrectly assume this alignment even for symbols from other compilation units or symbols that don't need to bind locally. In order to preserve some ABI compatibility with those compilers, ensure we don't decrease alignment from what we used to assume. */ unsigned int max_align_compat = MIN (256, MAX_OFILE_ALIGNMENT); /* A data structure, equal or greater than the size of a cache line (64 bytes in the Pentium 4 and other recent Intel processors, including processors based on Intel Core microarchitecture) should be aligned so that its base address is a multiple of a cache line size. */ unsigned int max_align = MIN ((unsigned) ix86_tune_cost->prefetch_block * 8, MAX_OFILE_ALIGNMENT); if (max_align < BITS_PER_WORD) max_align = BITS_PER_WORD; switch (ix86_align_data_type) { case ix86_align_data_type_abi: opt = false; break; case ix86_align_data_type_compat: max_align = BITS_PER_WORD; break; case ix86_align_data_type_cacheline: break; } if (TARGET_IAMCU) align = iamcu_alignment (type, align); if (opt && AGGREGATE_TYPE_P (type) && TYPE_SIZE (type) && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST) { if (wi::geu_p (wi::to_wide (TYPE_SIZE (type)), max_align_compat) && align < max_align_compat) align = max_align_compat; if (wi::geu_p (wi::to_wide (TYPE_SIZE (type)), max_align) && align < max_align) align = max_align; } /* x86-64 ABI requires arrays greater than 16 bytes to be aligned to 16byte boundary. */ if (TARGET_64BIT) { if ((opt ? AGGREGATE_TYPE_P (type) : TREE_CODE (type) == ARRAY_TYPE) && TYPE_SIZE (type) && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST && wi::geu_p (wi::to_wide (TYPE_SIZE (type)), 128) && align < 128) return 128; } if (!opt) return align; if (TREE_CODE (type) == ARRAY_TYPE) { if (TYPE_MODE (TREE_TYPE (type)) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (TYPE_MODE (TREE_TYPE (type))) && align < 128) return 128; } else if (TREE_CODE (type) == COMPLEX_TYPE) { if (TYPE_MODE (type) == DCmode && align < 64) return 64; if ((TYPE_MODE (type) == XCmode || TYPE_MODE (type) == TCmode) && align < 128) return 128; } else if ((TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == QUAL_UNION_TYPE) && TYPE_FIELDS (type)) { if (DECL_MODE (TYPE_FIELDS (type)) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (DECL_MODE (TYPE_FIELDS (type))) && align < 128) return 128; } else if (TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == VECTOR_TYPE || TREE_CODE (type) == INTEGER_TYPE) { if (TYPE_MODE (type) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (TYPE_MODE (type)) && align < 128) return 128; } return align; } /* Compute the alignment for a local variable or a stack slot. EXP is the data type or decl itself, MODE is the widest mode available and ALIGN is the alignment that the object would ordinarily have. The value of this macro is used instead of that alignment to align the object. */ unsigned int ix86_local_alignment (tree exp, machine_mode mode, unsigned int align) { tree type, decl; if (exp && DECL_P (exp)) { type = TREE_TYPE (exp); decl = exp; } else { type = exp; decl = NULL; } /* Don't do dynamic stack realignment for long long objects with -mpreferred-stack-boundary=2. */ if (!TARGET_64BIT && align == 64 && ix86_preferred_stack_boundary < 64 && (mode == DImode || (type && TYPE_MODE (type) == DImode)) && (!type || !TYPE_USER_ALIGN (type)) && (!decl || !DECL_USER_ALIGN (decl))) align = 32; /* If TYPE is NULL, we are allocating a stack slot for caller-save register in MODE. We will return the largest alignment of XF and DF. */ if (!type) { if (mode == XFmode && align < GET_MODE_ALIGNMENT (DFmode)) align = GET_MODE_ALIGNMENT (DFmode); return align; } /* Don't increase alignment for Intel MCU psABI. */ if (TARGET_IAMCU) return align; /* x86-64 ABI requires arrays greater than 16 bytes to be aligned to 16byte boundary. Exact wording is: An array uses the same alignment as its elements, except that a local or global array variable of length at least 16 bytes or a C99 variable-length array variable always has alignment of at least 16 bytes. This was added to allow use of aligned SSE instructions at arrays. This rule is meant for static storage (where compiler cannot do the analysis by itself). We follow it for automatic variables only when convenient. We fully control everything in the function compiled and functions from other unit cannot rely on the alignment. Exclude va_list type. It is the common case of local array where we cannot benefit from the alignment. TODO: Probably one should optimize for size only when var is not escaping. */ if (TARGET_64BIT && optimize_function_for_speed_p (cfun) && TARGET_SSE) { if (AGGREGATE_TYPE_P (type) && (va_list_type_node == NULL_TREE || (TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (va_list_type_node))) && TYPE_SIZE (type) && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST && wi::geu_p (wi::to_wide (TYPE_SIZE (type)), 128) && align < 128) return 128; } if (TREE_CODE (type) == ARRAY_TYPE) { if (TYPE_MODE (TREE_TYPE (type)) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (TYPE_MODE (TREE_TYPE (type))) && align < 128) return 128; } else if (TREE_CODE (type) == COMPLEX_TYPE) { if (TYPE_MODE (type) == DCmode && align < 64) return 64; if ((TYPE_MODE (type) == XCmode || TYPE_MODE (type) == TCmode) && align < 128) return 128; } else if ((TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == QUAL_UNION_TYPE) && TYPE_FIELDS (type)) { if (DECL_MODE (TYPE_FIELDS (type)) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (DECL_MODE (TYPE_FIELDS (type))) && align < 128) return 128; } else if (TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == VECTOR_TYPE || TREE_CODE (type) == INTEGER_TYPE) { if (TYPE_MODE (type) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (TYPE_MODE (type)) && align < 128) return 128; } return align; } /* Compute the minimum required alignment for dynamic stack realignment purposes for a local variable, parameter or a stack slot. EXP is the data type or decl itself, MODE is its mode and ALIGN is the alignment that the object would ordinarily have. */ unsigned int ix86_minimum_alignment (tree exp, machine_mode mode, unsigned int align) { tree type, decl; if (exp && DECL_P (exp)) { type = TREE_TYPE (exp); decl = exp; } else { type = exp; decl = NULL; } if (TARGET_64BIT || align != 64 || ix86_preferred_stack_boundary >= 64) return align; /* Don't do dynamic stack realignment for long long objects with -mpreferred-stack-boundary=2. */ if ((mode == DImode || (type && TYPE_MODE (type) == DImode)) && (!type || !TYPE_USER_ALIGN (type)) && (!decl || !DECL_USER_ALIGN (decl))) { gcc_checking_assert (!TARGET_STV); return 32; } return align; } /* Find a location for the static chain incoming to a nested function. This is a register, unless all free registers are used by arguments. */ static rtx ix86_static_chain (const_tree fndecl_or_type, bool incoming_p) { unsigned regno; if (TARGET_64BIT) { /* We always use R10 in 64-bit mode. */ regno = R10_REG; } else { const_tree fntype, fndecl; unsigned int ccvt; /* By default in 32-bit mode we use ECX to pass the static chain. */ regno = CX_REG; if (TREE_CODE (fndecl_or_type) == FUNCTION_DECL) { fntype = TREE_TYPE (fndecl_or_type); fndecl = fndecl_or_type; } else { fntype = fndecl_or_type; fndecl = NULL; } ccvt = ix86_get_callcvt (fntype); if ((ccvt & IX86_CALLCVT_FASTCALL) != 0) { /* Fastcall functions use ecx/edx for arguments, which leaves us with EAX for the static chain. Thiscall functions use ecx for arguments, which also leaves us with EAX for the static chain. */ regno = AX_REG; } else if ((ccvt & IX86_CALLCVT_THISCALL) != 0) { /* Thiscall functions use ecx for arguments, which leaves us with EAX and EDX for the static chain. We are using for abi-compatibility EAX. */ regno = AX_REG; } else if (ix86_function_regparm (fntype, fndecl) == 3) { /* For regparm 3, we have no free call-clobbered registers in which to store the static chain. In order to implement this, we have the trampoline push the static chain to the stack. However, we can't push a value below the return address when we call the nested function directly, so we have to use an alternate entry point. For this we use ESI, and have the alternate entry point push ESI, so that things appear the same once we're executing the nested function. */ if (incoming_p) { if (fndecl == current_function_decl && !ix86_static_chain_on_stack) { gcc_assert (!reload_completed); ix86_static_chain_on_stack = true; } return gen_frame_mem (SImode, plus_constant (Pmode, arg_pointer_rtx, -8)); } regno = SI_REG; } } return gen_rtx_REG (Pmode, regno); } /* Emit RTL insns to initialize the variable parts of a trampoline. FNDECL is the decl of the target address; M_TRAMP is a MEM for the trampoline, and CHAIN_VALUE is an RTX for the static chain to be passed to the target function. */ static void ix86_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value) { rtx mem, fnaddr; int opcode; int offset = 0; bool need_endbr = (flag_cf_protection & CF_BRANCH); fnaddr = XEXP (DECL_RTL (fndecl), 0); if (TARGET_64BIT) { int size; if (need_endbr) { /* Insert ENDBR64. */ mem = adjust_address (m_tramp, SImode, offset); emit_move_insn (mem, gen_int_mode (0xfa1e0ff3, SImode)); offset += 4; } /* Load the function address to r11. Try to load address using the shorter movl instead of movabs. We may want to support movq for kernel mode, but kernel does not use trampolines at the moment. FNADDR is a 32bit address and may not be in DImode when ptr_mode == SImode. Always use movl in this case. */ if (ptr_mode == SImode || x86_64_zext_immediate_operand (fnaddr, VOIDmode)) { fnaddr = copy_addr_to_reg (fnaddr); mem = adjust_address (m_tramp, HImode, offset); emit_move_insn (mem, gen_int_mode (0xbb41, HImode)); mem = adjust_address (m_tramp, SImode, offset + 2); emit_move_insn (mem, gen_lowpart (SImode, fnaddr)); offset += 6; } else { mem = adjust_address (m_tramp, HImode, offset); emit_move_insn (mem, gen_int_mode (0xbb49, HImode)); mem = adjust_address (m_tramp, DImode, offset + 2); emit_move_insn (mem, fnaddr); offset += 10; } /* Load static chain using movabs to r10. Use the shorter movl instead of movabs when ptr_mode == SImode. */ if (ptr_mode == SImode) { opcode = 0xba41; size = 6; } else { opcode = 0xba49; size = 10; } mem = adjust_address (m_tramp, HImode, offset); emit_move_insn (mem, gen_int_mode (opcode, HImode)); mem = adjust_address (m_tramp, ptr_mode, offset + 2); emit_move_insn (mem, chain_value); offset += size; /* Jump to r11; the last (unused) byte is a nop, only there to pad the write out to a single 32-bit store. */ mem = adjust_address (m_tramp, SImode, offset); emit_move_insn (mem, gen_int_mode (0x90e3ff49, SImode)); offset += 4; } else { rtx disp, chain; /* Depending on the static chain location, either load a register with a constant, or push the constant to the stack. All of the instructions are the same size. */ chain = ix86_static_chain (fndecl, true); if (REG_P (chain)) { switch (REGNO (chain)) { case AX_REG: opcode = 0xb8; break; case CX_REG: opcode = 0xb9; break; default: gcc_unreachable (); } } else opcode = 0x68; if (need_endbr) { /* Insert ENDBR32. */ mem = adjust_address (m_tramp, SImode, offset); emit_move_insn (mem, gen_int_mode (0xfb1e0ff3, SImode)); offset += 4; } mem = adjust_address (m_tramp, QImode, offset); emit_move_insn (mem, gen_int_mode (opcode, QImode)); mem = adjust_address (m_tramp, SImode, offset + 1); emit_move_insn (mem, chain_value); offset += 5; mem = adjust_address (m_tramp, QImode, offset); emit_move_insn (mem, gen_int_mode (0xe9, QImode)); mem = adjust_address (m_tramp, SImode, offset + 1); /* Compute offset from the end of the jmp to the target function. In the case in which the trampoline stores the static chain on the stack, we need to skip the first insn which pushes the (call-saved) register static chain; this push is 1 byte. */ offset += 5; int skip = MEM_P (chain) ? 1 : 0; /* Skip ENDBR32 at the entry of the target function. */ if (need_endbr && !cgraph_node::get (fndecl)->only_called_directly_p ()) skip += 4; disp = expand_binop (SImode, sub_optab, fnaddr, plus_constant (Pmode, XEXP (m_tramp, 0), offset - skip), NULL_RTX, 1, OPTAB_DIRECT); emit_move_insn (mem, disp); } gcc_assert (offset <= TRAMPOLINE_SIZE); #ifdef HAVE_ENABLE_EXECUTE_STACK #ifdef CHECK_EXECUTE_STACK_ENABLED if (CHECK_EXECUTE_STACK_ENABLED) #endif emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__enable_execute_stack"), LCT_NORMAL, VOIDmode, XEXP (m_tramp, 0), Pmode); #endif } static bool ix86_allocate_stack_slots_for_args (void) { /* Naked functions should not allocate stack slots for arguments. */ return !ix86_function_naked (current_function_decl); } static bool ix86_warn_func_return (tree decl) { /* Naked functions are implemented entirely in assembly, including the return sequence, so suppress warnings about this. */ return !ix86_function_naked (decl); } /* Return the shift count of a vector by scalar shift builtin second argument ARG1. */ static tree ix86_vector_shift_count (tree arg1) { if (tree_fits_uhwi_p (arg1)) return arg1; else if (TREE_CODE (arg1) == VECTOR_CST && CHAR_BIT == 8) { /* The count argument is weird, passed in as various 128-bit (or 64-bit) vectors, the low 64 bits from it are the count. */ unsigned char buf[16]; int len = native_encode_expr (arg1, buf, 16); if (len == 0) return NULL_TREE; tree t = native_interpret_expr (uint64_type_node, buf, len); if (t && tree_fits_uhwi_p (t)) return t; } return NULL_TREE; } static tree ix86_fold_builtin (tree fndecl, int n_args, tree *args, bool ignore ATTRIBUTE_UNUSED) { if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD) { enum ix86_builtins fn_code = (enum ix86_builtins) DECL_MD_FUNCTION_CODE (fndecl); enum rtx_code rcode; bool is_vshift; unsigned HOST_WIDE_INT mask; switch (fn_code) { case IX86_BUILTIN_CPU_IS: case IX86_BUILTIN_CPU_SUPPORTS: gcc_assert (n_args == 1); return fold_builtin_cpu (fndecl, args); case IX86_BUILTIN_NANQ: case IX86_BUILTIN_NANSQ: { tree type = TREE_TYPE (TREE_TYPE (fndecl)); const char *str = c_getstr (*args); int quiet = fn_code == IX86_BUILTIN_NANQ; REAL_VALUE_TYPE real; if (str && real_nan (&real, str, quiet, TYPE_MODE (type))) return build_real (type, real); return NULL_TREE; } case IX86_BUILTIN_INFQ: case IX86_BUILTIN_HUGE_VALQ: { tree type = TREE_TYPE (TREE_TYPE (fndecl)); REAL_VALUE_TYPE inf; real_inf (&inf); return build_real (type, inf); } case IX86_BUILTIN_TZCNT16: case IX86_BUILTIN_CTZS: case IX86_BUILTIN_TZCNT32: case IX86_BUILTIN_TZCNT64: gcc_assert (n_args == 1); if (TREE_CODE (args[0]) == INTEGER_CST) { tree type = TREE_TYPE (TREE_TYPE (fndecl)); tree arg = args[0]; if (fn_code == IX86_BUILTIN_TZCNT16 || fn_code == IX86_BUILTIN_CTZS) arg = fold_convert (short_unsigned_type_node, arg); if (integer_zerop (arg)) return build_int_cst (type, TYPE_PRECISION (TREE_TYPE (arg))); else return fold_const_call (CFN_CTZ, type, arg); } break; case IX86_BUILTIN_LZCNT16: case IX86_BUILTIN_CLZS: case IX86_BUILTIN_LZCNT32: case IX86_BUILTIN_LZCNT64: gcc_assert (n_args == 1); if (TREE_CODE (args[0]) == INTEGER_CST) { tree type = TREE_TYPE (TREE_TYPE (fndecl)); tree arg = args[0]; if (fn_code == IX86_BUILTIN_LZCNT16 || fn_code == IX86_BUILTIN_CLZS) arg = fold_convert (short_unsigned_type_node, arg); if (integer_zerop (arg)) return build_int_cst (type, TYPE_PRECISION (TREE_TYPE (arg))); else return fold_const_call (CFN_CLZ, type, arg); } break; case IX86_BUILTIN_BEXTR32: case IX86_BUILTIN_BEXTR64: case IX86_BUILTIN_BEXTRI32: case IX86_BUILTIN_BEXTRI64: gcc_assert (n_args == 2); if (tree_fits_uhwi_p (args[1])) { unsigned HOST_WIDE_INT res = 0; unsigned int prec = TYPE_PRECISION (TREE_TYPE (args[0])); unsigned int start = tree_to_uhwi (args[1]); unsigned int len = (start & 0xff00) >> 8; start &= 0xff; if (start >= prec || len == 0) res = 0; else if (!tree_fits_uhwi_p (args[0])) break; else res = tree_to_uhwi (args[0]) >> start; if (len > prec) len = prec; if (len < HOST_BITS_PER_WIDE_INT) res &= (HOST_WIDE_INT_1U << len) - 1; return build_int_cstu (TREE_TYPE (TREE_TYPE (fndecl)), res); } break; case IX86_BUILTIN_BZHI32: case IX86_BUILTIN_BZHI64: gcc_assert (n_args == 2); if (tree_fits_uhwi_p (args[1])) { unsigned int idx = tree_to_uhwi (args[1]) & 0xff; if (idx >= TYPE_PRECISION (TREE_TYPE (args[0]))) return args[0]; if (idx == 0) return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0); if (!tree_fits_uhwi_p (args[0])) break; unsigned HOST_WIDE_INT res = tree_to_uhwi (args[0]); res &= ~(HOST_WIDE_INT_M1U << idx); return build_int_cstu (TREE_TYPE (TREE_TYPE (fndecl)), res); } break; case IX86_BUILTIN_PDEP32: case IX86_BUILTIN_PDEP64: gcc_assert (n_args == 2); if (tree_fits_uhwi_p (args[0]) && tree_fits_uhwi_p (args[1])) { unsigned HOST_WIDE_INT src = tree_to_uhwi (args[0]); unsigned HOST_WIDE_INT mask = tree_to_uhwi (args[1]); unsigned HOST_WIDE_INT res = 0; unsigned HOST_WIDE_INT m, k = 1; for (m = 1; m; m <<= 1) if ((mask & m) != 0) { if ((src & k) != 0) res |= m; k <<= 1; } return build_int_cstu (TREE_TYPE (TREE_TYPE (fndecl)), res); } break; case IX86_BUILTIN_PEXT32: case IX86_BUILTIN_PEXT64: gcc_assert (n_args == 2); if (tree_fits_uhwi_p (args[0]) && tree_fits_uhwi_p (args[1])) { unsigned HOST_WIDE_INT src = tree_to_uhwi (args[0]); unsigned HOST_WIDE_INT mask = tree_to_uhwi (args[1]); unsigned HOST_WIDE_INT res = 0; unsigned HOST_WIDE_INT m, k = 1; for (m = 1; m; m <<= 1) if ((mask & m) != 0) { if ((src & m) != 0) res |= k; k <<= 1; } return build_int_cstu (TREE_TYPE (TREE_TYPE (fndecl)), res); } break; case IX86_BUILTIN_MOVMSKPS: case IX86_BUILTIN_PMOVMSKB: case IX86_BUILTIN_MOVMSKPD: case IX86_BUILTIN_PMOVMSKB128: case IX86_BUILTIN_MOVMSKPD256: case IX86_BUILTIN_MOVMSKPS256: case IX86_BUILTIN_PMOVMSKB256: gcc_assert (n_args == 1); if (TREE_CODE (args[0]) == VECTOR_CST) { HOST_WIDE_INT res = 0; for (unsigned i = 0; i < VECTOR_CST_NELTS (args[0]); ++i) { tree e = VECTOR_CST_ELT (args[0], i); if (TREE_CODE (e) == INTEGER_CST && !TREE_OVERFLOW (e)) { if (wi::neg_p (wi::to_wide (e))) res |= HOST_WIDE_INT_1 << i; } else if (TREE_CODE (e) == REAL_CST && !TREE_OVERFLOW (e)) { if (TREE_REAL_CST (e).sign) res |= HOST_WIDE_INT_1 << i; } else return NULL_TREE; } return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), res); } break; case IX86_BUILTIN_PSLLD: case IX86_BUILTIN_PSLLD128: case IX86_BUILTIN_PSLLD128_MASK: case IX86_BUILTIN_PSLLD256: case IX86_BUILTIN_PSLLD256_MASK: case IX86_BUILTIN_PSLLD512: case IX86_BUILTIN_PSLLDI: case IX86_BUILTIN_PSLLDI128: case IX86_BUILTIN_PSLLDI128_MASK: case IX86_BUILTIN_PSLLDI256: case IX86_BUILTIN_PSLLDI256_MASK: case IX86_BUILTIN_PSLLDI512: case IX86_BUILTIN_PSLLQ: case IX86_BUILTIN_PSLLQ128: case IX86_BUILTIN_PSLLQ128_MASK: case IX86_BUILTIN_PSLLQ256: case IX86_BUILTIN_PSLLQ256_MASK: case IX86_BUILTIN_PSLLQ512: case IX86_BUILTIN_PSLLQI: case IX86_BUILTIN_PSLLQI128: case IX86_BUILTIN_PSLLQI128_MASK: case IX86_BUILTIN_PSLLQI256: case IX86_BUILTIN_PSLLQI256_MASK: case IX86_BUILTIN_PSLLQI512: case IX86_BUILTIN_PSLLW: case IX86_BUILTIN_PSLLW128: case IX86_BUILTIN_PSLLW128_MASK: case IX86_BUILTIN_PSLLW256: case IX86_BUILTIN_PSLLW256_MASK: case IX86_BUILTIN_PSLLW512_MASK: case IX86_BUILTIN_PSLLWI: case IX86_BUILTIN_PSLLWI128: case IX86_BUILTIN_PSLLWI128_MASK: case IX86_BUILTIN_PSLLWI256: case IX86_BUILTIN_PSLLWI256_MASK: case IX86_BUILTIN_PSLLWI512_MASK: rcode = ASHIFT; is_vshift = false; goto do_shift; case IX86_BUILTIN_PSRAD: case IX86_BUILTIN_PSRAD128: case IX86_BUILTIN_PSRAD128_MASK: case IX86_BUILTIN_PSRAD256: case IX86_BUILTIN_PSRAD256_MASK: case IX86_BUILTIN_PSRAD512: case IX86_BUILTIN_PSRADI: case IX86_BUILTIN_PSRADI128: case IX86_BUILTIN_PSRADI128_MASK: case IX86_BUILTIN_PSRADI256: case IX86_BUILTIN_PSRADI256_MASK: case IX86_BUILTIN_PSRADI512: case IX86_BUILTIN_PSRAQ128_MASK: case IX86_BUILTIN_PSRAQ256_MASK: case IX86_BUILTIN_PSRAQ512: case IX86_BUILTIN_PSRAQI128_MASK: case IX86_BUILTIN_PSRAQI256_MASK: case IX86_BUILTIN_PSRAQI512: case IX86_BUILTIN_PSRAW: case IX86_BUILTIN_PSRAW128: case IX86_BUILTIN_PSRAW128_MASK: case IX86_BUILTIN_PSRAW256: case IX86_BUILTIN_PSRAW256_MASK: case IX86_BUILTIN_PSRAW512: case IX86_BUILTIN_PSRAWI: case IX86_BUILTIN_PSRAWI128: case IX86_BUILTIN_PSRAWI128_MASK: case IX86_BUILTIN_PSRAWI256: case IX86_BUILTIN_PSRAWI256_MASK: case IX86_BUILTIN_PSRAWI512: rcode = ASHIFTRT; is_vshift = false; goto do_shift; case IX86_BUILTIN_PSRLD: case IX86_BUILTIN_PSRLD128: case IX86_BUILTIN_PSRLD128_MASK: case IX86_BUILTIN_PSRLD256: case IX86_BUILTIN_PSRLD256_MASK: case IX86_BUILTIN_PSRLD512: case IX86_BUILTIN_PSRLDI: case IX86_BUILTIN_PSRLDI128: case IX86_BUILTIN_PSRLDI128_MASK: case IX86_BUILTIN_PSRLDI256: case IX86_BUILTIN_PSRLDI256_MASK: case IX86_BUILTIN_PSRLDI512: case IX86_BUILTIN_PSRLQ: case IX86_BUILTIN_PSRLQ128: case IX86_BUILTIN_PSRLQ128_MASK: case IX86_BUILTIN_PSRLQ256: case IX86_BUILTIN_PSRLQ256_MASK: case IX86_BUILTIN_PSRLQ512: case IX86_BUILTIN_PSRLQI: case IX86_BUILTIN_PSRLQI128: case IX86_BUILTIN_PSRLQI128_MASK: case IX86_BUILTIN_PSRLQI256: case IX86_BUILTIN_PSRLQI256_MASK: case IX86_BUILTIN_PSRLQI512: case IX86_BUILTIN_PSRLW: case IX86_BUILTIN_PSRLW128: case IX86_BUILTIN_PSRLW128_MASK: case IX86_BUILTIN_PSRLW256: case IX86_BUILTIN_PSRLW256_MASK: case IX86_BUILTIN_PSRLW512: case IX86_BUILTIN_PSRLWI: case IX86_BUILTIN_PSRLWI128: case IX86_BUILTIN_PSRLWI128_MASK: case IX86_BUILTIN_PSRLWI256: case IX86_BUILTIN_PSRLWI256_MASK: case IX86_BUILTIN_PSRLWI512: rcode = LSHIFTRT; is_vshift = false; goto do_shift; case IX86_BUILTIN_PSLLVV16HI: case IX86_BUILTIN_PSLLVV16SI: case IX86_BUILTIN_PSLLVV2DI: case IX86_BUILTIN_PSLLVV2DI_MASK: case IX86_BUILTIN_PSLLVV32HI: case IX86_BUILTIN_PSLLVV4DI: case IX86_BUILTIN_PSLLVV4DI_MASK: case IX86_BUILTIN_PSLLVV4SI: case IX86_BUILTIN_PSLLVV4SI_MASK: case IX86_BUILTIN_PSLLVV8DI: case IX86_BUILTIN_PSLLVV8HI: case IX86_BUILTIN_PSLLVV8SI: case IX86_BUILTIN_PSLLVV8SI_MASK: rcode = ASHIFT; is_vshift = true; goto do_shift; case IX86_BUILTIN_PSRAVQ128: case IX86_BUILTIN_PSRAVQ256: case IX86_BUILTIN_PSRAVV16HI: case IX86_BUILTIN_PSRAVV16SI: case IX86_BUILTIN_PSRAVV32HI: case IX86_BUILTIN_PSRAVV4SI: case IX86_BUILTIN_PSRAVV4SI_MASK: case IX86_BUILTIN_PSRAVV8DI: case IX86_BUILTIN_PSRAVV8HI: case IX86_BUILTIN_PSRAVV8SI: case IX86_BUILTIN_PSRAVV8SI_MASK: rcode = ASHIFTRT; is_vshift = true; goto do_shift; case IX86_BUILTIN_PSRLVV16HI: case IX86_BUILTIN_PSRLVV16SI: case IX86_BUILTIN_PSRLVV2DI: case IX86_BUILTIN_PSRLVV2DI_MASK: case IX86_BUILTIN_PSRLVV32HI: case IX86_BUILTIN_PSRLVV4DI: case IX86_BUILTIN_PSRLVV4DI_MASK: case IX86_BUILTIN_PSRLVV4SI: case IX86_BUILTIN_PSRLVV4SI_MASK: case IX86_BUILTIN_PSRLVV8DI: case IX86_BUILTIN_PSRLVV8HI: case IX86_BUILTIN_PSRLVV8SI: case IX86_BUILTIN_PSRLVV8SI_MASK: rcode = LSHIFTRT; is_vshift = true; goto do_shift; do_shift: gcc_assert (n_args >= 2); if (TREE_CODE (args[0]) != VECTOR_CST) break; mask = HOST_WIDE_INT_M1U; if (n_args > 2) { /* This is masked shift. */ if (!tree_fits_uhwi_p (args[n_args - 1]) || TREE_SIDE_EFFECTS (args[n_args - 2])) break; mask = tree_to_uhwi (args[n_args - 1]); unsigned elems = TYPE_VECTOR_SUBPARTS (TREE_TYPE (args[0])); mask |= HOST_WIDE_INT_M1U << elems; if (mask != HOST_WIDE_INT_M1U && TREE_CODE (args[n_args - 2]) != VECTOR_CST) break; if (mask == (HOST_WIDE_INT_M1U << elems)) return args[n_args - 2]; } if (is_vshift && TREE_CODE (args[1]) != VECTOR_CST) break; if (tree tem = (is_vshift ? integer_one_node : ix86_vector_shift_count (args[1]))) { unsigned HOST_WIDE_INT count = tree_to_uhwi (tem); unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (TREE_TYPE (args[0]))); if (count == 0 && mask == HOST_WIDE_INT_M1U) return args[0]; if (count >= prec) { if (rcode == ASHIFTRT) count = prec - 1; else if (mask == HOST_WIDE_INT_M1U) return build_zero_cst (TREE_TYPE (args[0])); } tree countt = NULL_TREE; if (!is_vshift) { if (count >= prec) countt = integer_zero_node; else countt = build_int_cst (integer_type_node, count); } tree_vector_builder builder; if (mask != HOST_WIDE_INT_M1U || is_vshift) builder.new_vector (TREE_TYPE (args[0]), TYPE_VECTOR_SUBPARTS (TREE_TYPE (args[0])), 1); else builder.new_unary_operation (TREE_TYPE (args[0]), args[0], false); unsigned int cnt = builder.encoded_nelts (); for (unsigned int i = 0; i < cnt; ++i) { tree elt = VECTOR_CST_ELT (args[0], i); if (TREE_CODE (elt) != INTEGER_CST || TREE_OVERFLOW (elt)) return NULL_TREE; tree type = TREE_TYPE (elt); if (rcode == LSHIFTRT) elt = fold_convert (unsigned_type_for (type), elt); if (is_vshift) { countt = VECTOR_CST_ELT (args[1], i); if (TREE_CODE (countt) != INTEGER_CST || TREE_OVERFLOW (countt)) return NULL_TREE; if (wi::neg_p (wi::to_wide (countt)) || wi::to_widest (countt) >= prec) { if (rcode == ASHIFTRT) countt = build_int_cst (TREE_TYPE (countt), prec - 1); else { elt = build_zero_cst (TREE_TYPE (elt)); countt = build_zero_cst (TREE_TYPE (countt)); } } } else if (count >= prec) elt = build_zero_cst (TREE_TYPE (elt)); elt = const_binop (rcode == ASHIFT ? LSHIFT_EXPR : RSHIFT_EXPR, TREE_TYPE (elt), elt, countt); if (!elt || TREE_CODE (elt) != INTEGER_CST) return NULL_TREE; if (rcode == LSHIFTRT) elt = fold_convert (type, elt); if ((mask & (HOST_WIDE_INT_1U << i)) == 0) { elt = VECTOR_CST_ELT (args[n_args - 2], i); if (TREE_CODE (elt) != INTEGER_CST || TREE_OVERFLOW (elt)) return NULL_TREE; } builder.quick_push (elt); } return builder.build (); } break; default: break; } } #ifdef SUBTARGET_FOLD_BUILTIN return SUBTARGET_FOLD_BUILTIN (fndecl, n_args, args, ignore); #endif return NULL_TREE; } /* Fold a MD builtin (use ix86_fold_builtin for folding into constant) in GIMPLE. */ bool ix86_gimple_fold_builtin (gimple_stmt_iterator *gsi) { gimple *stmt = gsi_stmt (*gsi); tree fndecl = gimple_call_fndecl (stmt); gcc_checking_assert (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_MD)); int n_args = gimple_call_num_args (stmt); enum ix86_builtins fn_code = (enum ix86_builtins) DECL_MD_FUNCTION_CODE (fndecl); tree decl = NULL_TREE; tree arg0, arg1, arg2; enum rtx_code rcode; unsigned HOST_WIDE_INT count; bool is_vshift; switch (fn_code) { case IX86_BUILTIN_TZCNT32: decl = builtin_decl_implicit (BUILT_IN_CTZ); goto fold_tzcnt_lzcnt; case IX86_BUILTIN_TZCNT64: decl = builtin_decl_implicit (BUILT_IN_CTZLL); goto fold_tzcnt_lzcnt; case IX86_BUILTIN_LZCNT32: decl = builtin_decl_implicit (BUILT_IN_CLZ); goto fold_tzcnt_lzcnt; case IX86_BUILTIN_LZCNT64: decl = builtin_decl_implicit (BUILT_IN_CLZLL); goto fold_tzcnt_lzcnt; fold_tzcnt_lzcnt: gcc_assert (n_args == 1); arg0 = gimple_call_arg (stmt, 0); if (TREE_CODE (arg0) == SSA_NAME && decl && gimple_call_lhs (stmt)) { int prec = TYPE_PRECISION (TREE_TYPE (arg0)); /* If arg0 is provably non-zero, optimize into generic __builtin_c[tl]z{,ll} function the middle-end handles better. */ if (!expr_not_equal_to (arg0, wi::zero (prec))) return false; location_t loc = gimple_location (stmt); gimple *g = gimple_build_call (decl, 1, arg0); gimple_set_location (g, loc); tree lhs = make_ssa_name (integer_type_node); gimple_call_set_lhs (g, lhs); gsi_insert_before (gsi, g, GSI_SAME_STMT); g = gimple_build_assign (gimple_call_lhs (stmt), NOP_EXPR, lhs); gimple_set_location (g, loc); gsi_replace (gsi, g, false); return true; } break; case IX86_BUILTIN_BZHI32: case IX86_BUILTIN_BZHI64: gcc_assert (n_args == 2); arg1 = gimple_call_arg (stmt, 1); if (tree_fits_uhwi_p (arg1) && gimple_call_lhs (stmt)) { unsigned int idx = tree_to_uhwi (arg1) & 0xff; arg0 = gimple_call_arg (stmt, 0); if (idx < TYPE_PRECISION (TREE_TYPE (arg0))) break; location_t loc = gimple_location (stmt); gimple *g = gimple_build_assign (gimple_call_lhs (stmt), arg0); gimple_set_location (g, loc); gsi_replace (gsi, g, false); return true; } break; case IX86_BUILTIN_PDEP32: case IX86_BUILTIN_PDEP64: case IX86_BUILTIN_PEXT32: case IX86_BUILTIN_PEXT64: gcc_assert (n_args == 2); arg1 = gimple_call_arg (stmt, 1); if (integer_all_onesp (arg1) && gimple_call_lhs (stmt)) { location_t loc = gimple_location (stmt); arg0 = gimple_call_arg (stmt, 0); gimple *g = gimple_build_assign (gimple_call_lhs (stmt), arg0); gimple_set_location (g, loc); gsi_replace (gsi, g, false); return true; } break; case IX86_BUILTIN_PSLLD: case IX86_BUILTIN_PSLLD128: case IX86_BUILTIN_PSLLD128_MASK: case IX86_BUILTIN_PSLLD256: case IX86_BUILTIN_PSLLD256_MASK: case IX86_BUILTIN_PSLLD512: case IX86_BUILTIN_PSLLDI: case IX86_BUILTIN_PSLLDI128: case IX86_BUILTIN_PSLLDI128_MASK: case IX86_BUILTIN_PSLLDI256: case IX86_BUILTIN_PSLLDI256_MASK: case IX86_BUILTIN_PSLLDI512: case IX86_BUILTIN_PSLLQ: case IX86_BUILTIN_PSLLQ128: case IX86_BUILTIN_PSLLQ128_MASK: case IX86_BUILTIN_PSLLQ256: case IX86_BUILTIN_PSLLQ256_MASK: case IX86_BUILTIN_PSLLQ512: case IX86_BUILTIN_PSLLQI: case IX86_BUILTIN_PSLLQI128: case IX86_BUILTIN_PSLLQI128_MASK: case IX86_BUILTIN_PSLLQI256: case IX86_BUILTIN_PSLLQI256_MASK: case IX86_BUILTIN_PSLLQI512: case IX86_BUILTIN_PSLLW: case IX86_BUILTIN_PSLLW128: case IX86_BUILTIN_PSLLW128_MASK: case IX86_BUILTIN_PSLLW256: case IX86_BUILTIN_PSLLW256_MASK: case IX86_BUILTIN_PSLLW512_MASK: case IX86_BUILTIN_PSLLWI: case IX86_BUILTIN_PSLLWI128: case IX86_BUILTIN_PSLLWI128_MASK: case IX86_BUILTIN_PSLLWI256: case IX86_BUILTIN_PSLLWI256_MASK: case IX86_BUILTIN_PSLLWI512_MASK: rcode = ASHIFT; is_vshift = false; goto do_shift; case IX86_BUILTIN_PSRAD: case IX86_BUILTIN_PSRAD128: case IX86_BUILTIN_PSRAD128_MASK: case IX86_BUILTIN_PSRAD256: case IX86_BUILTIN_PSRAD256_MASK: case IX86_BUILTIN_PSRAD512: case IX86_BUILTIN_PSRADI: case IX86_BUILTIN_PSRADI128: case IX86_BUILTIN_PSRADI128_MASK: case IX86_BUILTIN_PSRADI256: case IX86_BUILTIN_PSRADI256_MASK: case IX86_BUILTIN_PSRADI512: case IX86_BUILTIN_PSRAQ128_MASK: case IX86_BUILTIN_PSRAQ256_MASK: case IX86_BUILTIN_PSRAQ512: case IX86_BUILTIN_PSRAQI128_MASK: case IX86_BUILTIN_PSRAQI256_MASK: case IX86_BUILTIN_PSRAQI512: case IX86_BUILTIN_PSRAW: case IX86_BUILTIN_PSRAW128: case IX86_BUILTIN_PSRAW128_MASK: case IX86_BUILTIN_PSRAW256: case IX86_BUILTIN_PSRAW256_MASK: case IX86_BUILTIN_PSRAW512: case IX86_BUILTIN_PSRAWI: case IX86_BUILTIN_PSRAWI128: case IX86_BUILTIN_PSRAWI128_MASK: case IX86_BUILTIN_PSRAWI256: case IX86_BUILTIN_PSRAWI256_MASK: case IX86_BUILTIN_PSRAWI512: rcode = ASHIFTRT; is_vshift = false; goto do_shift; case IX86_BUILTIN_PSRLD: case IX86_BUILTIN_PSRLD128: case IX86_BUILTIN_PSRLD128_MASK: case IX86_BUILTIN_PSRLD256: case IX86_BUILTIN_PSRLD256_MASK: case IX86_BUILTIN_PSRLD512: case IX86_BUILTIN_PSRLDI: case IX86_BUILTIN_PSRLDI128: case IX86_BUILTIN_PSRLDI128_MASK: case IX86_BUILTIN_PSRLDI256: case IX86_BUILTIN_PSRLDI256_MASK: case IX86_BUILTIN_PSRLDI512: case IX86_BUILTIN_PSRLQ: case IX86_BUILTIN_PSRLQ128: case IX86_BUILTIN_PSRLQ128_MASK: case IX86_BUILTIN_PSRLQ256: case IX86_BUILTIN_PSRLQ256_MASK: case IX86_BUILTIN_PSRLQ512: case IX86_BUILTIN_PSRLQI: case IX86_BUILTIN_PSRLQI128: case IX86_BUILTIN_PSRLQI128_MASK: case IX86_BUILTIN_PSRLQI256: case IX86_BUILTIN_PSRLQI256_MASK: case IX86_BUILTIN_PSRLQI512: case IX86_BUILTIN_PSRLW: case IX86_BUILTIN_PSRLW128: case IX86_BUILTIN_PSRLW128_MASK: case IX86_BUILTIN_PSRLW256: case IX86_BUILTIN_PSRLW256_MASK: case IX86_BUILTIN_PSRLW512: case IX86_BUILTIN_PSRLWI: case IX86_BUILTIN_PSRLWI128: case IX86_BUILTIN_PSRLWI128_MASK: case IX86_BUILTIN_PSRLWI256: case IX86_BUILTIN_PSRLWI256_MASK: case IX86_BUILTIN_PSRLWI512: rcode = LSHIFTRT; is_vshift = false; goto do_shift; case IX86_BUILTIN_PSLLVV16HI: case IX86_BUILTIN_PSLLVV16SI: case IX86_BUILTIN_PSLLVV2DI: case IX86_BUILTIN_PSLLVV2DI_MASK: case IX86_BUILTIN_PSLLVV32HI: case IX86_BUILTIN_PSLLVV4DI: case IX86_BUILTIN_PSLLVV4DI_MASK: case IX86_BUILTIN_PSLLVV4SI: case IX86_BUILTIN_PSLLVV4SI_MASK: case IX86_BUILTIN_PSLLVV8DI: case IX86_BUILTIN_PSLLVV8HI: case IX86_BUILTIN_PSLLVV8SI: case IX86_BUILTIN_PSLLVV8SI_MASK: rcode = ASHIFT; is_vshift = true; goto do_shift; case IX86_BUILTIN_PSRAVQ128: case IX86_BUILTIN_PSRAVQ256: case IX86_BUILTIN_PSRAVV16HI: case IX86_BUILTIN_PSRAVV16SI: case IX86_BUILTIN_PSRAVV32HI: case IX86_BUILTIN_PSRAVV4SI: case IX86_BUILTIN_PSRAVV4SI_MASK: case IX86_BUILTIN_PSRAVV8DI: case IX86_BUILTIN_PSRAVV8HI: case IX86_BUILTIN_PSRAVV8SI: case IX86_BUILTIN_PSRAVV8SI_MASK: rcode = ASHIFTRT; is_vshift = true; goto do_shift; case IX86_BUILTIN_PSRLVV16HI: case IX86_BUILTIN_PSRLVV16SI: case IX86_BUILTIN_PSRLVV2DI: case IX86_BUILTIN_PSRLVV2DI_MASK: case IX86_BUILTIN_PSRLVV32HI: case IX86_BUILTIN_PSRLVV4DI: case IX86_BUILTIN_PSRLVV4DI_MASK: case IX86_BUILTIN_PSRLVV4SI: case IX86_BUILTIN_PSRLVV4SI_MASK: case IX86_BUILTIN_PSRLVV8DI: case IX86_BUILTIN_PSRLVV8HI: case IX86_BUILTIN_PSRLVV8SI: case IX86_BUILTIN_PSRLVV8SI_MASK: rcode = LSHIFTRT; is_vshift = true; goto do_shift; do_shift: gcc_assert (n_args >= 2); if (!gimple_call_lhs (stmt)) break; arg0 = gimple_call_arg (stmt, 0); arg1 = gimple_call_arg (stmt, 1); if (n_args > 2) { /* This is masked shift. Only optimize if the mask is all ones. */ tree argl = gimple_call_arg (stmt, n_args - 1); if (!tree_fits_uhwi_p (argl)) break; unsigned HOST_WIDE_INT mask = tree_to_uhwi (argl); unsigned elems = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)); if ((mask | (HOST_WIDE_INT_M1U << elems)) != HOST_WIDE_INT_M1U) break; } if (is_vshift) { if (TREE_CODE (arg1) != VECTOR_CST) break; count = TYPE_PRECISION (TREE_TYPE (TREE_TYPE (arg0))); if (integer_zerop (arg1)) count = 0; else if (rcode == ASHIFTRT) break; else for (unsigned int i = 0; i < VECTOR_CST_NELTS (arg1); ++i) { tree elt = VECTOR_CST_ELT (arg1, i); if (!wi::neg_p (wi::to_wide (elt)) && wi::to_widest (elt) < count) return false; } } else { arg1 = ix86_vector_shift_count (arg1); if (!arg1) break; count = tree_to_uhwi (arg1); } if (count == 0) { /* Just return the first argument for shift by 0. */ location_t loc = gimple_location (stmt); gimple *g = gimple_build_assign (gimple_call_lhs (stmt), arg0); gimple_set_location (g, loc); gsi_replace (gsi, g, false); return true; } if (rcode != ASHIFTRT && count >= TYPE_PRECISION (TREE_TYPE (TREE_TYPE (arg0)))) { /* For shift counts equal or greater than precision, except for arithmetic right shift the result is zero. */ location_t loc = gimple_location (stmt); gimple *g = gimple_build_assign (gimple_call_lhs (stmt), build_zero_cst (TREE_TYPE (arg0))); gimple_set_location (g, loc); gsi_replace (gsi, g, false); return true; } break; case IX86_BUILTIN_SHUFPD: arg2 = gimple_call_arg (stmt, 2); if (TREE_CODE (arg2) == INTEGER_CST && gimple_call_lhs (stmt)) { location_t loc = gimple_location (stmt); unsigned HOST_WIDE_INT imask = TREE_INT_CST_LOW (arg2); arg0 = gimple_call_arg (stmt, 0); arg1 = gimple_call_arg (stmt, 1); tree itype = long_long_integer_type_node; tree vtype = build_vector_type (itype, 2); /* V2DI */ tree_vector_builder elts (vtype, 2, 1); /* Ignore bits other than the lowest 2. */ elts.quick_push (build_int_cst (itype, imask & 1)); imask >>= 1; elts.quick_push (build_int_cst (itype, 2 + (imask & 1))); tree omask = elts.build (); gimple *g = gimple_build_assign (gimple_call_lhs (stmt), VEC_PERM_EXPR, arg0, arg1, omask); gimple_set_location (g, loc); gsi_replace (gsi, g, false); return true; } // Do not error yet, the constant could be propagated later? break; default: break; } return false; } /* Handler for an SVML-style interface to a library with vectorized intrinsics. */ tree ix86_veclibabi_svml (combined_fn fn, tree type_out, tree type_in) { char name[20]; tree fntype, new_fndecl, args; unsigned arity; const char *bname; machine_mode el_mode, in_mode; int n, in_n; /* The SVML is suitable for unsafe math only. */ if (!flag_unsafe_math_optimizations) return NULL_TREE; el_mode = TYPE_MODE (TREE_TYPE (type_out)); n = TYPE_VECTOR_SUBPARTS (type_out); in_mode = TYPE_MODE (TREE_TYPE (type_in)); in_n = TYPE_VECTOR_SUBPARTS (type_in); if (el_mode != in_mode || n != in_n) return NULL_TREE; switch (fn) { CASE_CFN_EXP: CASE_CFN_LOG: CASE_CFN_LOG10: CASE_CFN_POW: CASE_CFN_TANH: CASE_CFN_TAN: CASE_CFN_ATAN: CASE_CFN_ATAN2: CASE_CFN_ATANH: CASE_CFN_CBRT: CASE_CFN_SINH: CASE_CFN_SIN: CASE_CFN_ASINH: CASE_CFN_ASIN: CASE_CFN_COSH: CASE_CFN_COS: CASE_CFN_ACOSH: CASE_CFN_ACOS: if ((el_mode != DFmode || n != 2) && (el_mode != SFmode || n != 4)) return NULL_TREE; break; default: return NULL_TREE; } tree fndecl = mathfn_built_in (TREE_TYPE (type_in), fn); bname = IDENTIFIER_POINTER (DECL_NAME (fndecl)); if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_LOGF) strcpy (name, "vmlsLn4"); else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_LOG) strcpy (name, "vmldLn2"); else if (n == 4) { sprintf (name, "vmls%s", bname+10); name[strlen (name)-1] = '4'; } else sprintf (name, "vmld%s2", bname+10); /* Convert to uppercase. */ name[4] &= ~0x20; arity = 0; for (args = DECL_ARGUMENTS (fndecl); args; args = TREE_CHAIN (args)) arity++; if (arity == 1) fntype = build_function_type_list (type_out, type_in, NULL); else fntype = build_function_type_list (type_out, type_in, type_in, NULL); /* Build a function declaration for the vectorized function. */ new_fndecl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL, get_identifier (name), fntype); TREE_PUBLIC (new_fndecl) = 1; DECL_EXTERNAL (new_fndecl) = 1; DECL_IS_NOVOPS (new_fndecl) = 1; TREE_READONLY (new_fndecl) = 1; return new_fndecl; } /* Handler for an ACML-style interface to a library with vectorized intrinsics. */ tree ix86_veclibabi_acml (combined_fn fn, tree type_out, tree type_in) { char name[20] = "__vr.._"; tree fntype, new_fndecl, args; unsigned arity; const char *bname; machine_mode el_mode, in_mode; int n, in_n; /* The ACML is 64bits only and suitable for unsafe math only as it does not correctly support parts of IEEE with the required precision such as denormals. */ if (!TARGET_64BIT || !flag_unsafe_math_optimizations) return NULL_TREE; el_mode = TYPE_MODE (TREE_TYPE (type_out)); n = TYPE_VECTOR_SUBPARTS (type_out); in_mode = TYPE_MODE (TREE_TYPE (type_in)); in_n = TYPE_VECTOR_SUBPARTS (type_in); if (el_mode != in_mode || n != in_n) return NULL_TREE; switch (fn) { CASE_CFN_SIN: CASE_CFN_COS: CASE_CFN_EXP: CASE_CFN_LOG: CASE_CFN_LOG2: CASE_CFN_LOG10: if (el_mode == DFmode && n == 2) { name[4] = 'd'; name[5] = '2'; } else if (el_mode == SFmode && n == 4) { name[4] = 's'; name[5] = '4'; } else return NULL_TREE; break; default: return NULL_TREE; } tree fndecl = mathfn_built_in (TREE_TYPE (type_in), fn); bname = IDENTIFIER_POINTER (DECL_NAME (fndecl)); sprintf (name + 7, "%s", bname+10); arity = 0; for (args = DECL_ARGUMENTS (fndecl); args; args = TREE_CHAIN (args)) arity++; if (arity == 1) fntype = build_function_type_list (type_out, type_in, NULL); else fntype = build_function_type_list (type_out, type_in, type_in, NULL); /* Build a function declaration for the vectorized function. */ new_fndecl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL, get_identifier (name), fntype); TREE_PUBLIC (new_fndecl) = 1; DECL_EXTERNAL (new_fndecl) = 1; DECL_IS_NOVOPS (new_fndecl) = 1; TREE_READONLY (new_fndecl) = 1; return new_fndecl; } /* Returns a decl of a function that implements scatter store with register type VECTYPE and index type INDEX_TYPE and SCALE. Return NULL_TREE if it is not available. */ static tree ix86_vectorize_builtin_scatter (const_tree vectype, const_tree index_type, int scale) { bool si; enum ix86_builtins code; if (!TARGET_AVX512F) return NULL_TREE; if ((TREE_CODE (index_type) != INTEGER_TYPE && !POINTER_TYPE_P (index_type)) || (TYPE_MODE (index_type) != SImode && TYPE_MODE (index_type) != DImode)) return NULL_TREE; if (TYPE_PRECISION (index_type) > POINTER_SIZE) return NULL_TREE; /* v*scatter* insn sign extends index to pointer mode. */ if (TYPE_PRECISION (index_type) < POINTER_SIZE && TYPE_UNSIGNED (index_type)) return NULL_TREE; /* Scale can be 1, 2, 4 or 8. */ if (scale <= 0 || scale > 8 || (scale & (scale - 1)) != 0) return NULL_TREE; si = TYPE_MODE (index_type) == SImode; switch (TYPE_MODE (vectype)) { case E_V8DFmode: code = si ? IX86_BUILTIN_SCATTERALTSIV8DF : IX86_BUILTIN_SCATTERDIV8DF; break; case E_V8DImode: code = si ? IX86_BUILTIN_SCATTERALTSIV8DI : IX86_BUILTIN_SCATTERDIV8DI; break; case E_V16SFmode: code = si ? IX86_BUILTIN_SCATTERSIV16SF : IX86_BUILTIN_SCATTERALTDIV16SF; break; case E_V16SImode: code = si ? IX86_BUILTIN_SCATTERSIV16SI : IX86_BUILTIN_SCATTERALTDIV16SI; break; case E_V4DFmode: if (TARGET_AVX512VL) code = si ? IX86_BUILTIN_SCATTERALTSIV4DF : IX86_BUILTIN_SCATTERDIV4DF; else return NULL_TREE; break; case E_V4DImode: if (TARGET_AVX512VL) code = si ? IX86_BUILTIN_SCATTERALTSIV4DI : IX86_BUILTIN_SCATTERDIV4DI; else return NULL_TREE; break; case E_V8SFmode: if (TARGET_AVX512VL) code = si ? IX86_BUILTIN_SCATTERSIV8SF : IX86_BUILTIN_SCATTERALTDIV8SF; else return NULL_TREE; break; case E_V8SImode: if (TARGET_AVX512VL) code = si ? IX86_BUILTIN_SCATTERSIV8SI : IX86_BUILTIN_SCATTERALTDIV8SI; else return NULL_TREE; break; case E_V2DFmode: if (TARGET_AVX512VL) code = si ? IX86_BUILTIN_SCATTERALTSIV2DF : IX86_BUILTIN_SCATTERDIV2DF; else return NULL_TREE; break; case E_V2DImode: if (TARGET_AVX512VL) code = si ? IX86_BUILTIN_SCATTERALTSIV2DI : IX86_BUILTIN_SCATTERDIV2DI; else return NULL_TREE; break; case E_V4SFmode: if (TARGET_AVX512VL) code = si ? IX86_BUILTIN_SCATTERSIV4SF : IX86_BUILTIN_SCATTERALTDIV4SF; else return NULL_TREE; break; case E_V4SImode: if (TARGET_AVX512VL) code = si ? IX86_BUILTIN_SCATTERSIV4SI : IX86_BUILTIN_SCATTERALTDIV4SI; else return NULL_TREE; break; default: return NULL_TREE; } return get_ix86_builtin (code); } /* Return true if it is safe to use the rsqrt optabs to optimize 1.0/sqrt. */ static bool use_rsqrt_p () { return (TARGET_SSE && TARGET_SSE_MATH && flag_finite_math_only && !flag_trapping_math && flag_unsafe_math_optimizations); } /* Helper for avx_vpermilps256_operand et al. This is also used by the expansion functions to turn the parallel back into a mask. The return value is 0 for no match and the imm8+1 for a match. */ int avx_vpermilp_parallel (rtx par, machine_mode mode) { unsigned i, nelt = GET_MODE_NUNITS (mode); unsigned mask = 0; unsigned char ipar[16] = {}; /* Silence -Wuninitialized warning. */ if (XVECLEN (par, 0) != (int) nelt) return 0; /* Validate that all of the elements are constants, and not totally out of range. Copy the data into an integral array to make the subsequent checks easier. */ for (i = 0; i < nelt; ++i) { rtx er = XVECEXP (par, 0, i); unsigned HOST_WIDE_INT ei; if (!CONST_INT_P (er)) return 0; ei = INTVAL (er); if (ei >= nelt) return 0; ipar[i] = ei; } switch (mode) { case E_V8DFmode: /* In the 512-bit DFmode case, we can only move elements within a 128-bit lane. First fill the second part of the mask, then fallthru. */ for (i = 4; i < 6; ++i) { if (ipar[i] < 4 || ipar[i] >= 6) return 0; mask |= (ipar[i] - 4) << i; } for (i = 6; i < 8; ++i) { if (ipar[i] < 6) return 0; mask |= (ipar[i] - 6) << i; } /* FALLTHRU */ case E_V4DFmode: /* In the 256-bit DFmode case, we can only move elements within a 128-bit lane. */ for (i = 0; i < 2; ++i) { if (ipar[i] >= 2) return 0; mask |= ipar[i] << i; } for (i = 2; i < 4; ++i) { if (ipar[i] < 2) return 0; mask |= (ipar[i] - 2) << i; } break; case E_V16SFmode: /* In 512 bit SFmode case, permutation in the upper 256 bits must mirror the permutation in the lower 256-bits. */ for (i = 0; i < 8; ++i) if (ipar[i] + 8 != ipar[i + 8]) return 0; /* FALLTHRU */ case E_V8SFmode: /* In 256 bit SFmode case, we have full freedom of movement within the low 128-bit lane, but the high 128-bit lane must mirror the exact same pattern. */ for (i = 0; i < 4; ++i) if (ipar[i] + 4 != ipar[i + 4]) return 0; nelt = 4; /* FALLTHRU */ case E_V2DFmode: case E_V4SFmode: /* In the 128-bit case, we've full freedom in the placement of the elements from the source operand. */ for (i = 0; i < nelt; ++i) mask |= ipar[i] << (i * (nelt / 2)); break; default: gcc_unreachable (); } /* Make sure success has a non-zero value by adding one. */ return mask + 1; } /* Helper for avx_vperm2f128_v4df_operand et al. This is also used by the expansion functions to turn the parallel back into a mask. The return value is 0 for no match and the imm8+1 for a match. */ int avx_vperm2f128_parallel (rtx par, machine_mode mode) { unsigned i, nelt = GET_MODE_NUNITS (mode), nelt2 = nelt / 2; unsigned mask = 0; unsigned char ipar[8] = {}; /* Silence -Wuninitialized warning. */ if (XVECLEN (par, 0) != (int) nelt) return 0; /* Validate that all of the elements are constants, and not totally out of range. Copy the data into an integral array to make the subsequent checks easier. */ for (i = 0; i < nelt; ++i) { rtx er = XVECEXP (par, 0, i); unsigned HOST_WIDE_INT ei; if (!CONST_INT_P (er)) return 0; ei = INTVAL (er); if (ei >= 2 * nelt) return 0; ipar[i] = ei; } /* Validate that the halves of the permute are halves. */ for (i = 0; i < nelt2 - 1; ++i) if (ipar[i] + 1 != ipar[i + 1]) return 0; for (i = nelt2; i < nelt - 1; ++i) if (ipar[i] + 1 != ipar[i + 1]) return 0; /* Reconstruct the mask. */ for (i = 0; i < 2; ++i) { unsigned e = ipar[i * nelt2]; if (e % nelt2) return 0; e /= nelt2; mask |= e << (i * 4); } /* Make sure success has a non-zero value by adding one. */ return mask + 1; } /* Return a register priority for hard reg REGNO. */ static int ix86_register_priority (int hard_regno) { /* ebp and r13 as the base always wants a displacement, r12 as the base always wants an index. So discourage their usage in an address. */ if (hard_regno == R12_REG || hard_regno == R13_REG) return 0; if (hard_regno == BP_REG) return 1; /* New x86-64 int registers result in bigger code size. Discourage them. */ if (IN_RANGE (hard_regno, FIRST_REX_INT_REG, LAST_REX_INT_REG)) return 2; /* New x86-64 SSE registers result in bigger code size. Discourage them. */ if (IN_RANGE (hard_regno, FIRST_REX_SSE_REG, LAST_REX_SSE_REG)) return 2; if (IN_RANGE (hard_regno, FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)) return 1; /* Usage of AX register results in smaller code. Prefer it. */ if (hard_regno == AX_REG) return 4; return 3; } /* Implement TARGET_PREFERRED_RELOAD_CLASS. Put float CONST_DOUBLE in the constant pool instead of fp regs. QImode must go into class Q_REGS. Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and movdf to do mem-to-mem moves through integer regs. */ static reg_class_t ix86_preferred_reload_class (rtx x, reg_class_t regclass) { machine_mode mode = GET_MODE (x); /* We're only allowed to return a subclass of CLASS. Many of the following checks fail for NO_REGS, so eliminate that early. */ if (regclass == NO_REGS) return NO_REGS; /* All classes can load zeros. */ if (x == CONST0_RTX (mode)) return regclass; /* Force constants into memory if we are loading a (nonzero) constant into an MMX, SSE or MASK register. This is because there are no MMX/SSE/MASK instructions to load from a constant. */ if (CONSTANT_P (x) && (MAYBE_MMX_CLASS_P (regclass) || MAYBE_SSE_CLASS_P (regclass) || MAYBE_MASK_CLASS_P (regclass))) return NO_REGS; /* Floating-point constants need more complex checks. */ if (CONST_DOUBLE_P (x)) { /* General regs can load everything. */ if (INTEGER_CLASS_P (regclass)) return regclass; /* Floats can load 0 and 1 plus some others. Note that we eliminated zero above. We only want to wind up preferring 80387 registers if we plan on doing computation with them. */ if (IS_STACK_MODE (mode) && standard_80387_constant_p (x) > 0) { /* Limit class to FP regs. */ if (FLOAT_CLASS_P (regclass)) return FLOAT_REGS; } return NO_REGS; } /* Prefer SSE regs only, if we can use them for math. */ if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) return SSE_CLASS_P (regclass) ? regclass : NO_REGS; /* Generally when we see PLUS here, it's the function invariant (plus soft-fp const_int). Which can only be computed into general regs. */ if (GET_CODE (x) == PLUS) return INTEGER_CLASS_P (regclass) ? regclass : NO_REGS; /* QImode constants are easy to load, but non-constant QImode data must go into Q_REGS. */ if (GET_MODE (x) == QImode && !CONSTANT_P (x)) { if (Q_CLASS_P (regclass)) return regclass; else if (reg_class_subset_p (Q_REGS, regclass)) return Q_REGS; else return NO_REGS; } return regclass; } /* Discourage putting floating-point values in SSE registers unless SSE math is being used, and likewise for the 387 registers. */ static reg_class_t ix86_preferred_output_reload_class (rtx x, reg_class_t regclass) { /* Restrict the output reload class to the register bank that we are doing math on. If we would like not to return a subset of CLASS, reject this alternative: if reload cannot do this, it will still use its choice. */ machine_mode mode = GET_MODE (x); if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) return MAYBE_SSE_CLASS_P (regclass) ? ALL_SSE_REGS : NO_REGS; if (IS_STACK_MODE (mode)) return FLOAT_CLASS_P (regclass) ? regclass : NO_REGS; return regclass; } static reg_class_t ix86_secondary_reload (bool in_p, rtx x, reg_class_t rclass, machine_mode mode, secondary_reload_info *sri) { /* Double-word spills from general registers to non-offsettable memory references (zero-extended addresses) require special handling. */ if (TARGET_64BIT && MEM_P (x) && GET_MODE_SIZE (mode) > UNITS_PER_WORD && INTEGER_CLASS_P (rclass) && !offsettable_memref_p (x)) { sri->icode = (in_p ? CODE_FOR_reload_noff_load : CODE_FOR_reload_noff_store); /* Add the cost of moving address to a temporary. */ sri->extra_cost = 1; return NO_REGS; } /* QImode spills from non-QI registers require intermediate register on 32bit targets. */ if (mode == QImode && ((!TARGET_64BIT && !in_p && INTEGER_CLASS_P (rclass) && MAYBE_NON_Q_CLASS_P (rclass)) || (!TARGET_AVX512DQ && MAYBE_MASK_CLASS_P (rclass)))) { int regno = true_regnum (x); /* Return Q_REGS if the operand is in memory. */ if (regno == -1) return Q_REGS; return NO_REGS; } /* This condition handles corner case where an expression involving pointers gets vectorized. We're trying to use the address of a stack slot as a vector initializer. (set (reg:V2DI 74 [ vect_cst_.2 ]) (vec_duplicate:V2DI (reg/f:DI 20 frame))) Eventually frame gets turned into sp+offset like this: (set (reg:V2DI 21 xmm0 [orig:74 vect_cst_.2 ] [74]) (vec_duplicate:V2DI (plus:DI (reg/f:DI 7 sp) (const_int 392 [0x188])))) That later gets turned into: (set (reg:V2DI 21 xmm0 [orig:74 vect_cst_.2 ] [74]) (vec_duplicate:V2DI (plus:DI (reg/f:DI 7 sp) (mem/u/c/i:DI (symbol_ref/u:DI ("*.LC0") [flags 0x2]) [0 S8 A64])))) We'll have the following reload recorded: Reload 0: reload_in (DI) = (plus:DI (reg/f:DI 7 sp) (mem/u/c/i:DI (symbol_ref/u:DI ("*.LC0") [flags 0x2]) [0 S8 A64])) reload_out (V2DI) = (reg:V2DI 21 xmm0 [orig:74 vect_cst_.2 ] [74]) SSE_REGS, RELOAD_OTHER (opnum = 0), can't combine reload_in_reg: (plus:DI (reg/f:DI 7 sp) (const_int 392 [0x188])) reload_out_reg: (reg:V2DI 21 xmm0 [orig:74 vect_cst_.2 ] [74]) reload_reg_rtx: (reg:V2DI 22 xmm1) Which isn't going to work since SSE instructions can't handle scalar additions. Returning GENERAL_REGS forces the addition into integer register and reload can handle subsequent reloads without problems. */ if (in_p && GET_CODE (x) == PLUS && SSE_CLASS_P (rclass) && SCALAR_INT_MODE_P (mode)) return GENERAL_REGS; return NO_REGS; } /* Implement TARGET_CLASS_LIKELY_SPILLED_P. */ static bool ix86_class_likely_spilled_p (reg_class_t rclass) { switch (rclass) { case AREG: case DREG: case CREG: case BREG: case AD_REGS: case SIREG: case DIREG: case SSE_FIRST_REG: case FP_TOP_REG: case FP_SECOND_REG: return true; default: break; } return false; } /* If we are copying between registers from different register sets (e.g. FP and integer), we may need a memory location. The function can't work reliably when one of the CLASSES is a class containing registers from multiple sets. We avoid this by never combining different sets in a single alternative in the machine description. Ensure that this constraint holds to avoid unexpected surprises. When STRICT is false, we are being called from REGISTER_MOVE_COST, so do not enforce these sanity checks. To optimize register_move_cost performance, define inline variant. */ static inline bool inline_secondary_memory_needed (machine_mode mode, reg_class_t class1, reg_class_t class2, int strict) { if (lra_in_progress && (class1 == NO_REGS || class2 == NO_REGS)) return false; if (MAYBE_FLOAT_CLASS_P (class1) != FLOAT_CLASS_P (class1) || MAYBE_FLOAT_CLASS_P (class2) != FLOAT_CLASS_P (class2) || MAYBE_SSE_CLASS_P (class1) != SSE_CLASS_P (class1) || MAYBE_SSE_CLASS_P (class2) != SSE_CLASS_P (class2) || MAYBE_MMX_CLASS_P (class1) != MMX_CLASS_P (class1) || MAYBE_MMX_CLASS_P (class2) != MMX_CLASS_P (class2) || MAYBE_MASK_CLASS_P (class1) != MASK_CLASS_P (class1) || MAYBE_MASK_CLASS_P (class2) != MASK_CLASS_P (class2)) { gcc_assert (!strict || lra_in_progress); return true; } if (FLOAT_CLASS_P (class1) != FLOAT_CLASS_P (class2)) return true; /* ??? This is a lie. We do have moves between mmx/general, and for mmx/sse2. But by saying we need secondary memory we discourage the register allocator from using the mmx registers unless needed. */ if (MMX_CLASS_P (class1) != MMX_CLASS_P (class2)) return true; /* Between mask and general, we have moves no larger than word size. */ if (MASK_CLASS_P (class1) != MASK_CLASS_P (class2)) { if (!(INTEGER_CLASS_P (class1) || INTEGER_CLASS_P (class2)) || GET_MODE_SIZE (mode) > UNITS_PER_WORD) return true; } if (SSE_CLASS_P (class1) != SSE_CLASS_P (class2)) { /* SSE1 doesn't have any direct moves from other classes. */ if (!TARGET_SSE2) return true; /* Between SSE and general, we have moves no larger than word size. */ if (!(INTEGER_CLASS_P (class1) || INTEGER_CLASS_P (class2)) || GET_MODE_SIZE (mode) < GET_MODE_SIZE (SImode) || GET_MODE_SIZE (mode) > UNITS_PER_WORD) return true; /* If the target says that inter-unit moves are more expensive than moving through memory, then don't generate them. */ if ((SSE_CLASS_P (class1) && !TARGET_INTER_UNIT_MOVES_FROM_VEC) || (SSE_CLASS_P (class2) && !TARGET_INTER_UNIT_MOVES_TO_VEC)) return true; } return false; } /* Implement TARGET_SECONDARY_MEMORY_NEEDED. */ static bool ix86_secondary_memory_needed (machine_mode mode, reg_class_t class1, reg_class_t class2) { return inline_secondary_memory_needed (mode, class1, class2, true); } /* Implement TARGET_SECONDARY_MEMORY_NEEDED_MODE. get_secondary_mem widens integral modes to BITS_PER_WORD. There is no need to emit full 64 bit move on 64 bit targets for integral modes that can be moved using 32 bit move. */ static machine_mode ix86_secondary_memory_needed_mode (machine_mode mode) { if (GET_MODE_BITSIZE (mode) < 32 && INTEGRAL_MODE_P (mode)) return mode_for_size (32, GET_MODE_CLASS (mode), 0).require (); return mode; } /* Implement the TARGET_CLASS_MAX_NREGS hook. On the 80386, this is the size of MODE in words, except in the FP regs, where a single reg is always enough. */ static unsigned char ix86_class_max_nregs (reg_class_t rclass, machine_mode mode) { if (MAYBE_INTEGER_CLASS_P (rclass)) { if (mode == XFmode) return (TARGET_64BIT ? 2 : 3); else if (mode == XCmode) return (TARGET_64BIT ? 4 : 6); else return CEIL (GET_MODE_SIZE (mode), UNITS_PER_WORD); } else { if (COMPLEX_MODE_P (mode)) return 2; else return 1; } } /* Implement TARGET_CAN_CHANGE_MODE_CLASS. */ static bool ix86_can_change_mode_class (machine_mode from, machine_mode to, reg_class_t regclass) { if (from == to) return true; /* x87 registers can't do subreg at all, as all values are reformatted to extended precision. */ if (MAYBE_FLOAT_CLASS_P (regclass)) return false; if (MAYBE_SSE_CLASS_P (regclass) || MAYBE_MMX_CLASS_P (regclass)) { /* Vector registers do not support QI or HImode loads. If we don't disallow a change to these modes, reload will assume it's ok to drop the subreg from (subreg:SI (reg:HI 100) 0). This affects the vec_dupv4hi pattern. */ if (GET_MODE_SIZE (from) < 4) return false; } return true; } /* Return index of MODE in the sse load/store tables. */ static inline int sse_store_index (machine_mode mode) { switch (GET_MODE_SIZE (mode)) { case 4: return 0; case 8: return 1; case 16: return 2; case 32: return 3; case 64: return 4; default: return -1; } } /* Return the cost of moving data of mode M between a register and memory. A value of 2 is the default; this cost is relative to those in `REGISTER_MOVE_COST'. This function is used extensively by register_move_cost that is used to build tables at startup. Make it inline in this case. When IN is 2, return maximum of in and out move cost. If moving between registers and memory is more expensive than between two registers, you should define this macro to express the relative cost. Model also increased moving costs of QImode registers in non Q_REGS classes. */ static inline int inline_memory_move_cost (machine_mode mode, enum reg_class regclass, int in) { int cost; if (FLOAT_CLASS_P (regclass)) { int index; switch (mode) { case E_SFmode: index = 0; break; case E_DFmode: index = 1; break; case E_XFmode: index = 2; break; default: return 100; } if (in == 2) return MAX (ix86_cost->hard_register.fp_load [index], ix86_cost->hard_register.fp_store [index]); return in ? ix86_cost->hard_register.fp_load [index] : ix86_cost->hard_register.fp_store [index]; } if (SSE_CLASS_P (regclass)) { int index = sse_store_index (mode); if (index == -1) return 100; if (in == 2) return MAX (ix86_cost->hard_register.sse_load [index], ix86_cost->hard_register.sse_store [index]); return in ? ix86_cost->hard_register.sse_load [index] : ix86_cost->hard_register.sse_store [index]; } if (MMX_CLASS_P (regclass)) { int index; switch (GET_MODE_SIZE (mode)) { case 4: index = 0; break; case 8: index = 1; break; default: return 100; } if (in == 2) return MAX (ix86_cost->hard_register.mmx_load [index], ix86_cost->hard_register.mmx_store [index]); return in ? ix86_cost->hard_register.mmx_load [index] : ix86_cost->hard_register.mmx_store [index]; } switch (GET_MODE_SIZE (mode)) { case 1: if (Q_CLASS_P (regclass) || TARGET_64BIT) { if (!in) return ix86_cost->hard_register.int_store[0]; if (TARGET_PARTIAL_REG_DEPENDENCY && optimize_function_for_speed_p (cfun)) cost = ix86_cost->hard_register.movzbl_load; else cost = ix86_cost->hard_register.int_load[0]; if (in == 2) return MAX (cost, ix86_cost->hard_register.int_store[0]); return cost; } else { if (in == 2) return MAX (ix86_cost->hard_register.movzbl_load, ix86_cost->hard_register.int_store[0] + 4); if (in) return ix86_cost->hard_register.movzbl_load; else return ix86_cost->hard_register.int_store[0] + 4; } break; case 2: if (in == 2) return MAX (ix86_cost->hard_register.int_load[1], ix86_cost->hard_register.int_store[1]); return in ? ix86_cost->hard_register.int_load[1] : ix86_cost->hard_register.int_store[1]; default: if (in == 2) cost = MAX (ix86_cost->hard_register.int_load[2], ix86_cost->hard_register.int_store[2]); else if (in) cost = ix86_cost->hard_register.int_load[2]; else cost = ix86_cost->hard_register.int_store[2]; /* Multiply with the number of GPR moves needed. */ return cost * CEIL ((int) GET_MODE_SIZE (mode), UNITS_PER_WORD); } } static int ix86_memory_move_cost (machine_mode mode, reg_class_t regclass, bool in) { return inline_memory_move_cost (mode, (enum reg_class) regclass, in ? 1 : 0); } /* Return the cost of moving data from a register in class CLASS1 to one in class CLASS2. It is not required that the cost always equal 2 when FROM is the same as TO; on some machines it is expensive to move between registers if they are not general registers. */ static int ix86_register_move_cost (machine_mode mode, reg_class_t class1_i, reg_class_t class2_i) { enum reg_class class1 = (enum reg_class) class1_i; enum reg_class class2 = (enum reg_class) class2_i; /* In case we require secondary memory, compute cost of the store followed by load. In order to avoid bad register allocation choices, we need for this to be *at least* as high as the symmetric MEMORY_MOVE_COST. */ if (inline_secondary_memory_needed (mode, class1, class2, false)) { int cost = 1; cost += inline_memory_move_cost (mode, class1, 2); cost += inline_memory_move_cost (mode, class2, 2); /* In case of copying from general_purpose_register we may emit multiple stores followed by single load causing memory size mismatch stall. Count this as arbitrarily high cost of 20. */ if (GET_MODE_BITSIZE (mode) > BITS_PER_WORD && TARGET_MEMORY_MISMATCH_STALL && targetm.class_max_nregs (class1, mode) > targetm.class_max_nregs (class2, mode)) cost += 20; /* In the case of FP/MMX moves, the registers actually overlap, and we have to switch modes in order to treat them differently. */ if ((MMX_CLASS_P (class1) && MAYBE_FLOAT_CLASS_P (class2)) || (MMX_CLASS_P (class2) && MAYBE_FLOAT_CLASS_P (class1))) cost += 20; return cost; } /* Moves between MMX and non-MMX units require secondary memory. */ if (MMX_CLASS_P (class1) != MMX_CLASS_P (class2)) gcc_unreachable (); if (SSE_CLASS_P (class1) != SSE_CLASS_P (class2)) return (SSE_CLASS_P (class1) ? ix86_cost->hard_register.sse_to_integer : ix86_cost->hard_register.integer_to_sse); if (MAYBE_FLOAT_CLASS_P (class1)) return ix86_cost->hard_register.fp_move; if (MAYBE_SSE_CLASS_P (class1)) { if (GET_MODE_BITSIZE (mode) <= 128) return ix86_cost->hard_register.xmm_move; if (GET_MODE_BITSIZE (mode) <= 256) return ix86_cost->hard_register.ymm_move; return ix86_cost->hard_register.zmm_move; } if (MAYBE_MMX_CLASS_P (class1)) return ix86_cost->hard_register.mmx_move; return 2; } /* Implement TARGET_HARD_REGNO_NREGS. This is ordinarily the length in words of a value of mode MODE but can be less for certain modes in special long registers. Actually there are no two word move instructions for consecutive registers. And only registers 0-3 may have mov byte instructions applied to them. */ static unsigned int ix86_hard_regno_nregs (unsigned int regno, machine_mode mode) { if (GENERAL_REGNO_P (regno)) { if (mode == XFmode) return TARGET_64BIT ? 2 : 3; if (mode == XCmode) return TARGET_64BIT ? 4 : 6; return CEIL (GET_MODE_SIZE (mode), UNITS_PER_WORD); } if (COMPLEX_MODE_P (mode)) return 2; /* Register pair for mask registers. */ if (mode == P2QImode || mode == P2HImode) return 2; if (mode == V64SFmode || mode == V64SImode) return 4; return 1; } /* Implement REGMODE_NATURAL_SIZE(MODE). */ unsigned int ix86_regmode_natural_size (machine_mode mode) { if (mode == P2HImode || mode == P2QImode) return GET_MODE_SIZE (mode) / 2; return UNITS_PER_WORD; } /* Implement TARGET_HARD_REGNO_MODE_OK. */ static bool ix86_hard_regno_mode_ok (unsigned int regno, machine_mode mode) { /* Flags and only flags can only hold CCmode values. */ if (CC_REGNO_P (regno)) return GET_MODE_CLASS (mode) == MODE_CC; if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (mode) == MODE_RANDOM) return false; if (STACK_REGNO_P (regno)) return VALID_FP_MODE_P (mode); if (MASK_REGNO_P (regno)) { /* Register pair only starts at even register number. */ if ((mode == P2QImode || mode == P2HImode)) return MASK_PAIR_REGNO_P(regno); return (VALID_MASK_REG_MODE (mode) || (TARGET_AVX512BW && VALID_MASK_AVX512BW_MODE (mode))); } if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT) return false; if (SSE_REGNO_P (regno)) { /* We implement the move patterns for all vector modes into and out of SSE registers, even when no operation instructions are available. */ /* For AVX-512 we allow, regardless of regno: - XI mode - any of 512-bit wide vector mode - any scalar mode. */ if (TARGET_AVX512F && (mode == XImode || VALID_AVX512F_REG_MODE (mode) || VALID_AVX512F_SCALAR_MODE (mode))) return true; /* For AVX-5124FMAPS or AVX-5124VNNIW allow V64SF and V64SI modes for special regnos. */ if ((TARGET_AVX5124FMAPS || TARGET_AVX5124VNNIW) && (mode == V64SFmode || mode == V64SImode) && MOD4_SSE_REGNO_P (regno)) return true; /* TODO check for QI/HI scalars. */ /* AVX512VL allows sse regs16+ for 128/256 bit modes. */ if (TARGET_AVX512VL && (mode == OImode || mode == TImode || VALID_AVX256_REG_MODE (mode) || VALID_AVX512VL_128_REG_MODE (mode))) return true; /* xmm16-xmm31 are only available for AVX-512. */ if (EXT_REX_SSE_REGNO_P (regno)) return false; /* OImode and AVX modes are available only when AVX is enabled. */ return ((TARGET_AVX && VALID_AVX256_REG_OR_OI_MODE (mode)) || VALID_SSE_REG_MODE (mode) || VALID_SSE2_REG_MODE (mode) || VALID_MMX_REG_MODE (mode) || VALID_MMX_REG_MODE_3DNOW (mode)); } if (MMX_REGNO_P (regno)) { /* We implement the move patterns for 3DNOW modes even in MMX mode, so if the register is available at all, then we can move data of the given mode into or out of it. */ return (VALID_MMX_REG_MODE (mode) || VALID_MMX_REG_MODE_3DNOW (mode)); } if (mode == QImode) { /* Take care for QImode values - they can be in non-QI regs, but then they do cause partial register stalls. */ if (ANY_QI_REGNO_P (regno)) return true; if (!TARGET_PARTIAL_REG_STALL) return true; /* LRA checks if the hard register is OK for the given mode. QImode values can live in non-QI regs, so we allow all registers here. */ if (lra_in_progress) return true; return !can_create_pseudo_p (); } /* We handle both integer and floats in the general purpose registers. */ else if (VALID_INT_MODE_P (mode)) return true; else if (VALID_FP_MODE_P (mode)) return true; else if (VALID_DFP_MODE_P (mode)) return true; /* Lots of MMX code casts 8 byte vector modes to DImode. If we then go on to use that value in smaller contexts, this can easily force a pseudo to be allocated to GENERAL_REGS. Since this is no worse than supporting DImode, allow it. */ else if (VALID_MMX_REG_MODE_3DNOW (mode) || VALID_MMX_REG_MODE (mode)) return true; return false; } /* Implement TARGET_HARD_REGNO_CALL_PART_CLOBBERED. The only ABI that saves SSE registers across calls is Win64 (thus no need to check the current ABI here), and with AVX enabled Win64 only guarantees that the low 16 bytes are saved. */ static bool ix86_hard_regno_call_part_clobbered (unsigned int, unsigned int regno, machine_mode mode) { return SSE_REGNO_P (regno) && GET_MODE_SIZE (mode) > 16; } /* A subroutine of ix86_modes_tieable_p. Return true if MODE is a tieable integer mode. */ static bool ix86_tieable_integer_mode_p (machine_mode mode) { switch (mode) { case E_HImode: case E_SImode: return true; case E_QImode: return TARGET_64BIT || !TARGET_PARTIAL_REG_STALL; case E_DImode: return TARGET_64BIT; default: return false; } } /* Implement TARGET_MODES_TIEABLE_P. Return true if MODE1 is accessible in a register that can hold MODE2 without copying. That is, all register classes that can hold MODE2 can also hold MODE1. */ static bool ix86_modes_tieable_p (machine_mode mode1, machine_mode mode2) { if (mode1 == mode2) return true; if (ix86_tieable_integer_mode_p (mode1) && ix86_tieable_integer_mode_p (mode2)) return true; /* MODE2 being XFmode implies fp stack or general regs, which means we can tie any smaller floating point modes to it. Note that we do not tie this with TFmode. */ if (mode2 == XFmode) return mode1 == SFmode || mode1 == DFmode; /* MODE2 being DFmode implies fp stack, general or sse regs, which means that we can tie it with SFmode. */ if (mode2 == DFmode) return mode1 == SFmode; /* If MODE2 is only appropriate for an SSE register, then tie with any other mode acceptable to SSE registers. */ if (GET_MODE_SIZE (mode2) == 64 && ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode2)) return (GET_MODE_SIZE (mode1) == 64 && ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode1)); if (GET_MODE_SIZE (mode2) == 32 && ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode2)) return (GET_MODE_SIZE (mode1) == 32 && ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode1)); if (GET_MODE_SIZE (mode2) == 16 && ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode2)) return (GET_MODE_SIZE (mode1) == 16 && ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode1)); /* If MODE2 is appropriate for an MMX register, then tie with any other mode acceptable to MMX registers. */ if (GET_MODE_SIZE (mode2) == 8 && ix86_hard_regno_mode_ok (FIRST_MMX_REG, mode2)) return (GET_MODE_SIZE (mode1) == 8 && ix86_hard_regno_mode_ok (FIRST_MMX_REG, mode1)); return false; } /* Return the cost of moving between two registers of mode MODE. */ static int ix86_set_reg_reg_cost (machine_mode mode) { unsigned int units = UNITS_PER_WORD; switch (GET_MODE_CLASS (mode)) { default: break; case MODE_CC: units = GET_MODE_SIZE (CCmode); break; case MODE_FLOAT: if ((TARGET_SSE && mode == TFmode) || (TARGET_80387 && mode == XFmode) || ((TARGET_80387 || TARGET_SSE2) && mode == DFmode) || ((TARGET_80387 || TARGET_SSE) && mode == SFmode)) units = GET_MODE_SIZE (mode); break; case MODE_COMPLEX_FLOAT: if ((TARGET_SSE && mode == TCmode) || (TARGET_80387 && mode == XCmode) || ((TARGET_80387 || TARGET_SSE2) && mode == DCmode) || ((TARGET_80387 || TARGET_SSE) && mode == SCmode)) units = GET_MODE_SIZE (mode); break; case MODE_VECTOR_INT: case MODE_VECTOR_FLOAT: if ((TARGET_AVX512F && VALID_AVX512F_REG_MODE (mode)) || (TARGET_AVX && VALID_AVX256_REG_MODE (mode)) || (TARGET_SSE2 && VALID_SSE2_REG_MODE (mode)) || (TARGET_SSE && VALID_SSE_REG_MODE (mode)) || ((TARGET_MMX || TARGET_MMX_WITH_SSE) && VALID_MMX_REG_MODE (mode))) units = GET_MODE_SIZE (mode); } /* Return the cost of moving between two registers of mode MODE, assuming that the move will be in pieces of at most UNITS bytes. */ return COSTS_N_INSNS (CEIL (GET_MODE_SIZE (mode), units)); } /* Return cost of vector operation in MODE given that scalar version has COST. */ static int ix86_vec_cost (machine_mode mode, int cost) { if (!VECTOR_MODE_P (mode)) return cost; if (GET_MODE_BITSIZE (mode) == 128 && TARGET_SSE_SPLIT_REGS) return cost * 2; if (GET_MODE_BITSIZE (mode) > 128 && TARGET_AVX256_SPLIT_REGS) return cost * GET_MODE_BITSIZE (mode) / 128; return cost; } /* Return cost of multiplication in MODE. */ static int ix86_multiplication_cost (const struct processor_costs *cost, enum machine_mode mode) { machine_mode inner_mode = mode; if (VECTOR_MODE_P (mode)) inner_mode = GET_MODE_INNER (mode); if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) return inner_mode == DFmode ? cost->mulsd : cost->mulss; else if (X87_FLOAT_MODE_P (mode)) return cost->fmul; else if (FLOAT_MODE_P (mode)) return ix86_vec_cost (mode, inner_mode == DFmode ? cost->mulsd : cost->mulss); else if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT) { /* vpmullq is used in this case. No emulation is needed. */ if (TARGET_AVX512DQ) return ix86_vec_cost (mode, cost->mulss); /* V*QImode is emulated with 7-13 insns. */ if (mode == V16QImode || mode == V32QImode) { int extra = 11; if (TARGET_XOP && mode == V16QImode) extra = 5; else if (TARGET_SSSE3) extra = 6; return ix86_vec_cost (mode, cost->mulss * 2 + cost->sse_op * extra); } /* V*DImode is emulated with 5-8 insns. */ else if (mode == V2DImode || mode == V4DImode) { if (TARGET_XOP && mode == V2DImode) return ix86_vec_cost (mode, cost->mulss * 2 + cost->sse_op * 3); else return ix86_vec_cost (mode, cost->mulss * 3 + cost->sse_op * 5); } /* Without sse4.1, we don't have PMULLD; it's emulated with 7 insns, including two PMULUDQ. */ else if (mode == V4SImode && !(TARGET_SSE4_1 || TARGET_AVX)) return ix86_vec_cost (mode, cost->mulss * 2 + cost->sse_op * 5); else return ix86_vec_cost (mode, cost->mulss); } else return (cost->mult_init[MODE_INDEX (mode)] + cost->mult_bit * 7); } /* Return cost of multiplication in MODE. */ static int ix86_division_cost (const struct processor_costs *cost, enum machine_mode mode) { machine_mode inner_mode = mode; if (VECTOR_MODE_P (mode)) inner_mode = GET_MODE_INNER (mode); if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) return inner_mode == DFmode ? cost->divsd : cost->divss; else if (X87_FLOAT_MODE_P (mode)) return cost->fdiv; else if (FLOAT_MODE_P (mode)) return ix86_vec_cost (mode, inner_mode == DFmode ? cost->divsd : cost->divss); else return cost->divide[MODE_INDEX (mode)]; } #define COSTS_N_BYTES(N) ((N) * 2) /* Return cost of shift in MODE. If CONSTANT_OP1 is true, the op1 value is known and set in OP1_VAL. AND_IN_OP1 specify in op1 is result of and and SHIFT_AND_TRUNCATE if op1 is a result of subreg. SKIP_OP0/1 is set to true if cost of OP0/1 should be ignored. */ static int ix86_shift_rotate_cost (const struct processor_costs *cost, enum machine_mode mode, bool constant_op1, HOST_WIDE_INT op1_val, bool speed, bool and_in_op1, bool shift_and_truncate, bool *skip_op0, bool *skip_op1) { if (skip_op0) *skip_op0 = *skip_op1 = false; if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT) { /* V*QImode is emulated with 1-11 insns. */ if (mode == V16QImode || mode == V32QImode) { int count = 11; if (TARGET_XOP && mode == V16QImode) { /* For XOP we use vpshab, which requires a broadcast of the value to the variable shift insn. For constants this means a V16Q const in mem; even when we can perform the shift with one insn set the cost to prefer paddb. */ if (constant_op1) { if (skip_op1) *skip_op1 = true; return ix86_vec_cost (mode, cost->sse_op + (speed ? 2 : COSTS_N_BYTES (GET_MODE_UNIT_SIZE (mode)))); } count = 3; } else if (TARGET_SSSE3) count = 7; return ix86_vec_cost (mode, cost->sse_op * count); } else return ix86_vec_cost (mode, cost->sse_op); } if (GET_MODE_SIZE (mode) > UNITS_PER_WORD) { if (constant_op1) { if (op1_val > 32) return cost->shift_const + COSTS_N_INSNS (2); else return cost->shift_const * 2; } else { if (and_in_op1) return cost->shift_var * 2; else return cost->shift_var * 6 + COSTS_N_INSNS (2); } } else { if (constant_op1) return cost->shift_const; else if (shift_and_truncate) { if (skip_op0) *skip_op0 = *skip_op1 = true; /* Return the cost after shift-and truncation. */ return cost->shift_var; } else return cost->shift_var; } return cost->shift_const; } /* Compute a (partial) cost for rtx X. Return true if the complete cost has been computed, and false if subexpressions should be scanned. In either case, *TOTAL contains the cost result. */ static bool ix86_rtx_costs (rtx x, machine_mode mode, int outer_code_i, int opno, int *total, bool speed) { rtx mask; enum rtx_code code = GET_CODE (x); enum rtx_code outer_code = (enum rtx_code) outer_code_i; const struct processor_costs *cost = speed ? ix86_tune_cost : &ix86_size_cost; int src_cost; switch (code) { case SET: if (register_operand (SET_DEST (x), VOIDmode) && register_operand (SET_SRC (x), VOIDmode)) { *total = ix86_set_reg_reg_cost (GET_MODE (SET_DEST (x))); return true; } if (register_operand (SET_SRC (x), VOIDmode)) /* Avoid potentially incorrect high cost from rtx_costs for non-tieable SUBREGs. */ src_cost = 0; else { src_cost = rtx_cost (SET_SRC (x), mode, SET, 1, speed); if (CONSTANT_P (SET_SRC (x))) /* Constant costs assume a base value of COSTS_N_INSNS (1) and add a small value, possibly zero for cheap constants. */ src_cost += COSTS_N_INSNS (1); } *total = src_cost + rtx_cost (SET_DEST (x), mode, SET, 0, speed); return true; case CONST_INT: case CONST: case LABEL_REF: case SYMBOL_REF: if (x86_64_immediate_operand (x, VOIDmode)) *total = 0; else *total = 1; return true; case CONST_DOUBLE: if (IS_STACK_MODE (mode)) switch (standard_80387_constant_p (x)) { case -1: case 0: break; case 1: /* 0.0 */ *total = 1; return true; default: /* Other constants */ *total = 2; return true; } /* FALLTHRU */ case CONST_VECTOR: switch (standard_sse_constant_p (x, mode)) { case 0: break; case 1: /* 0: xor eliminates false dependency */ *total = 0; return true; default: /* -1: cmp contains false dependency */ *total = 1; return true; } /* FALLTHRU */ case CONST_WIDE_INT: /* Fall back to (MEM (SYMBOL_REF)), since that's where it'll probably end up. Add a penalty for size. */ *total = (COSTS_N_INSNS (1) + (!TARGET_64BIT && flag_pic) + (GET_MODE_SIZE (mode) <= 4 ? 0 : GET_MODE_SIZE (mode) <= 8 ? 1 : 2)); return true; case ZERO_EXTEND: /* The zero extensions is often completely free on x86_64, so make it as cheap as possible. */ if (TARGET_64BIT && mode == DImode && GET_MODE (XEXP (x, 0)) == SImode) *total = 1; else if (TARGET_ZERO_EXTEND_WITH_AND) *total = cost->add; else *total = cost->movzx; return false; case SIGN_EXTEND: *total = cost->movsx; return false; case ASHIFT: if (SCALAR_INT_MODE_P (mode) && GET_MODE_SIZE (mode) < UNITS_PER_WORD && CONST_INT_P (XEXP (x, 1))) { HOST_WIDE_INT value = INTVAL (XEXP (x, 1)); if (value == 1) { *total = cost->add; return false; } if ((value == 2 || value == 3) && cost->lea <= cost->shift_const) { *total = cost->lea; return false; } } /* FALLTHRU */ case ROTATE: case ASHIFTRT: case LSHIFTRT: case ROTATERT: bool skip_op0, skip_op1; *total = ix86_shift_rotate_cost (cost, mode, CONSTANT_P (XEXP (x, 1)), CONST_INT_P (XEXP (x, 1)) ? INTVAL (XEXP (x, 1)) : -1, speed, GET_CODE (XEXP (x, 1)) == AND, SUBREG_P (XEXP (x, 1)) && GET_CODE (XEXP (XEXP (x, 1), 0)) == AND, &skip_op0, &skip_op1); if (skip_op0 || skip_op1) { if (!skip_op0) *total += rtx_cost (XEXP (x, 0), mode, code, 0, speed); if (!skip_op1) *total += rtx_cost (XEXP (x, 1), mode, code, 0, speed); return true; } return false; case FMA: { rtx sub; gcc_assert (FLOAT_MODE_P (mode)); gcc_assert (TARGET_FMA || TARGET_FMA4 || TARGET_AVX512F); *total = ix86_vec_cost (mode, GET_MODE_INNER (mode) == SFmode ? cost->fmass : cost->fmasd); *total += rtx_cost (XEXP (x, 1), mode, FMA, 1, speed); /* Negate in op0 or op2 is free: FMS, FNMA, FNMS. */ sub = XEXP (x, 0); if (GET_CODE (sub) == NEG) sub = XEXP (sub, 0); *total += rtx_cost (sub, mode, FMA, 0, speed); sub = XEXP (x, 2); if (GET_CODE (sub) == NEG) sub = XEXP (sub, 0); *total += rtx_cost (sub, mode, FMA, 2, speed); return true; } case MULT: if (!FLOAT_MODE_P (mode) && !VECTOR_MODE_P (mode)) { rtx op0 = XEXP (x, 0); rtx op1 = XEXP (x, 1); int nbits; if (CONST_INT_P (XEXP (x, 1))) { unsigned HOST_WIDE_INT value = INTVAL (XEXP (x, 1)); for (nbits = 0; value != 0; value &= value - 1) nbits++; } else /* This is arbitrary. */ nbits = 7; /* Compute costs correctly for widening multiplication. */ if ((GET_CODE (op0) == SIGN_EXTEND || GET_CODE (op0) == ZERO_EXTEND) && GET_MODE_SIZE (GET_MODE (XEXP (op0, 0))) * 2 == GET_MODE_SIZE (mode)) { int is_mulwiden = 0; machine_mode inner_mode = GET_MODE (op0); if (GET_CODE (op0) == GET_CODE (op1)) is_mulwiden = 1, op1 = XEXP (op1, 0); else if (CONST_INT_P (op1)) { if (GET_CODE (op0) == SIGN_EXTEND) is_mulwiden = trunc_int_for_mode (INTVAL (op1), inner_mode) == INTVAL (op1); else is_mulwiden = !(INTVAL (op1) & ~GET_MODE_MASK (inner_mode)); } if (is_mulwiden) op0 = XEXP (op0, 0), mode = GET_MODE (op0); } *total = (cost->mult_init[MODE_INDEX (mode)] + nbits * cost->mult_bit + rtx_cost (op0, mode, outer_code, opno, speed) + rtx_cost (op1, mode, outer_code, opno, speed)); return true; } *total = ix86_multiplication_cost (cost, mode); return false; case DIV: case UDIV: case MOD: case UMOD: *total = ix86_division_cost (cost, mode); return false; case PLUS: if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) <= UNITS_PER_WORD) { if (GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1)) && CONSTANT_P (XEXP (x, 1))) { HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1)); if (val == 2 || val == 4 || val == 8) { *total = cost->lea; *total += rtx_cost (XEXP (XEXP (x, 0), 1), mode, outer_code, opno, speed); *total += rtx_cost (XEXP (XEXP (XEXP (x, 0), 0), 0), mode, outer_code, opno, speed); *total += rtx_cost (XEXP (x, 1), mode, outer_code, opno, speed); return true; } } else if (GET_CODE (XEXP (x, 0)) == MULT && CONST_INT_P (XEXP (XEXP (x, 0), 1))) { HOST_WIDE_INT val = INTVAL (XEXP (XEXP (x, 0), 1)); if (val == 2 || val == 4 || val == 8) { *total = cost->lea; *total += rtx_cost (XEXP (XEXP (x, 0), 0), mode, outer_code, opno, speed); *total += rtx_cost (XEXP (x, 1), mode, outer_code, opno, speed); return true; } } else if (GET_CODE (XEXP (x, 0)) == PLUS) { /* Add with carry, ignore the cost of adding a carry flag. */ if (ix86_carry_flag_operator (XEXP (XEXP (x, 0), 0), mode)) *total = cost->add; else { *total = cost->lea; *total += rtx_cost (XEXP (XEXP (x, 0), 0), mode, outer_code, opno, speed); } *total += rtx_cost (XEXP (XEXP (x, 0), 1), mode, outer_code, opno, speed); *total += rtx_cost (XEXP (x, 1), mode, outer_code, opno, speed); return true; } } /* FALLTHRU */ case MINUS: /* Subtract with borrow, ignore the cost of subtracting a carry flag. */ if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) <= UNITS_PER_WORD && GET_CODE (XEXP (x, 0)) == MINUS && ix86_carry_flag_operator (XEXP (XEXP (x, 0), 1), mode)) { *total = cost->add; *total += rtx_cost (XEXP (XEXP (x, 0), 0), mode, outer_code, opno, speed); *total += rtx_cost (XEXP (x, 1), mode, outer_code, opno, speed); return true; } if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) { *total = cost->addss; return false; } else if (X87_FLOAT_MODE_P (mode)) { *total = cost->fadd; return false; } else if (FLOAT_MODE_P (mode)) { *total = ix86_vec_cost (mode, cost->addss); return false; } /* FALLTHRU */ case AND: case IOR: case XOR: if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) > UNITS_PER_WORD) { *total = (cost->add * 2 + (rtx_cost (XEXP (x, 0), mode, outer_code, opno, speed) << (GET_MODE (XEXP (x, 0)) != DImode)) + (rtx_cost (XEXP (x, 1), mode, outer_code, opno, speed) << (GET_MODE (XEXP (x, 1)) != DImode))); return true; } /* FALLTHRU */ case NEG: if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) { *total = cost->sse_op; return false; } else if (X87_FLOAT_MODE_P (mode)) { *total = cost->fchs; return false; } else if (FLOAT_MODE_P (mode)) { *total = ix86_vec_cost (mode, cost->sse_op); return false; } /* FALLTHRU */ case NOT: if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT) *total = ix86_vec_cost (mode, cost->sse_op); else if (GET_MODE_SIZE (mode) > UNITS_PER_WORD) *total = cost->add * 2; else *total = cost->add; return false; case COMPARE: if (GET_CODE (XEXP (x, 0)) == ZERO_EXTRACT && XEXP (XEXP (x, 0), 1) == const1_rtx && CONST_INT_P (XEXP (XEXP (x, 0), 2)) && XEXP (x, 1) == const0_rtx) { /* This kind of construct is implemented using test[bwl]. Treat it as if we had an AND. */ mode = GET_MODE (XEXP (XEXP (x, 0), 0)); *total = (cost->add + rtx_cost (XEXP (XEXP (x, 0), 0), mode, outer_code, opno, speed) + rtx_cost (const1_rtx, mode, outer_code, opno, speed)); return true; } if (GET_CODE (XEXP (x, 0)) == PLUS && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1))) { /* This is an overflow detection, count it as a normal compare. */ *total = rtx_cost (XEXP (x, 0), GET_MODE (XEXP (x, 0)), COMPARE, 0, speed); return true; } /* The embedded comparison operand is completely free. */ if (!general_operand (XEXP (x, 0), GET_MODE (XEXP (x, 0))) && XEXP (x, 1) == const0_rtx) *total = 0; return false; case FLOAT_EXTEND: if (!(SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH)) *total = 0; else *total = ix86_vec_cost (mode, cost->addss); return false; case FLOAT_TRUNCATE: if (!(SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH)) *total = cost->fadd; else *total = ix86_vec_cost (mode, cost->addss); return false; case ABS: /* SSE requires memory load for the constant operand. It may make sense to account for this. Of course the constant operand may or may not be reused. */ if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) *total = cost->sse_op; else if (X87_FLOAT_MODE_P (mode)) *total = cost->fabs; else if (FLOAT_MODE_P (mode)) *total = ix86_vec_cost (mode, cost->sse_op); return false; case SQRT: if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) *total = mode == SFmode ? cost->sqrtss : cost->sqrtsd; else if (X87_FLOAT_MODE_P (mode)) *total = cost->fsqrt; else if (FLOAT_MODE_P (mode)) *total = ix86_vec_cost (mode, mode == SFmode ? cost->sqrtss : cost->sqrtsd); return false; case UNSPEC: if (XINT (x, 1) == UNSPEC_TP) *total = 0; return false; case VEC_SELECT: case VEC_CONCAT: case VEC_DUPLICATE: /* ??? Assume all of these vector manipulation patterns are recognizable. In which case they all pretty much have the same cost. */ *total = cost->sse_op; return true; case VEC_MERGE: mask = XEXP (x, 2); /* This is masked instruction, assume the same cost, as nonmasked variant. */ if (TARGET_AVX512F && register_operand (mask, GET_MODE (mask))) *total = rtx_cost (XEXP (x, 0), mode, outer_code, opno, speed); else *total = cost->sse_op; return true; default: return false; } } #if TARGET_MACHO static int current_machopic_label_num; /* Given a symbol name and its associated stub, write out the definition of the stub. */ void machopic_output_stub (FILE *file, const char *symb, const char *stub) { unsigned int length; char *binder_name, *symbol_name, lazy_ptr_name[32]; int label = ++current_machopic_label_num; /* For 64-bit we shouldn't get here. */ gcc_assert (!TARGET_64BIT); /* Lose our funky encoding stuff so it doesn't contaminate the stub. */ symb = targetm.strip_name_encoding (symb); length = strlen (stub); binder_name = XALLOCAVEC (char, length + 32); GEN_BINDER_NAME_FOR_STUB (binder_name, stub, length); length = strlen (symb); symbol_name = XALLOCAVEC (char, length + 32); GEN_SYMBOL_NAME_FOR_SYMBOL (symbol_name, symb, length); sprintf (lazy_ptr_name, "L%d$lz", label); if (MACHOPIC_ATT_STUB) switch_to_section (darwin_sections[machopic_picsymbol_stub3_section]); else if (MACHOPIC_PURE) switch_to_section (darwin_sections[machopic_picsymbol_stub2_section]); else switch_to_section (darwin_sections[machopic_symbol_stub_section]); fprintf (file, "%s:\n", stub); fprintf (file, "\t.indirect_symbol %s\n", symbol_name); if (MACHOPIC_ATT_STUB) { fprintf (file, "\thlt ; hlt ; hlt ; hlt ; hlt\n"); } else if (MACHOPIC_PURE) { /* PIC stub. */ /* 25-byte PIC stub using "CALL get_pc_thunk". */ rtx tmp = gen_rtx_REG (SImode, 2 /* ECX */); output_set_got (tmp, NULL_RTX); /* "CALL ___.get_pc_thunk.cx". */ fprintf (file, "LPC$%d:\tmovl\t%s-LPC$%d(%%ecx),%%ecx\n", label, lazy_ptr_name, label); fprintf (file, "\tjmp\t*%%ecx\n"); } else fprintf (file, "\tjmp\t*%s\n", lazy_ptr_name); /* The AT&T-style ("self-modifying") stub is not lazily bound, thus it needs no stub-binding-helper. */ if (MACHOPIC_ATT_STUB) return; fprintf (file, "%s:\n", binder_name); if (MACHOPIC_PURE) { fprintf (file, "\tlea\t%s-%s(%%ecx),%%ecx\n", lazy_ptr_name, binder_name); fprintf (file, "\tpushl\t%%ecx\n"); } else fprintf (file, "\tpushl\t$%s\n", lazy_ptr_name); fputs ("\tjmp\tdyld_stub_binding_helper\n", file); /* N.B. Keep the correspondence of these 'symbol_ptr/symbol_ptr2/symbol_ptr3' sections consistent with the old-pic/new-pic/non-pic stubs; altering this will break compatibility with existing dylibs. */ if (MACHOPIC_PURE) { /* 25-byte PIC stub using "CALL get_pc_thunk". */ switch_to_section (darwin_sections[machopic_lazy_symbol_ptr2_section]); } else /* 16-byte -mdynamic-no-pic stub. */ switch_to_section(darwin_sections[machopic_lazy_symbol_ptr3_section]); fprintf (file, "%s:\n", lazy_ptr_name); fprintf (file, "\t.indirect_symbol %s\n", symbol_name); fprintf (file, ASM_LONG "%s\n", binder_name); } #endif /* TARGET_MACHO */ /* Order the registers for register allocator. */ void x86_order_regs_for_local_alloc (void) { int pos = 0; int i; /* First allocate the local general purpose registers. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (GENERAL_REGNO_P (i) && call_used_or_fixed_reg_p (i)) reg_alloc_order [pos++] = i; /* Global general purpose registers. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (GENERAL_REGNO_P (i) && !call_used_or_fixed_reg_p (i)) reg_alloc_order [pos++] = i; /* x87 registers come first in case we are doing FP math using them. */ if (!TARGET_SSE_MATH) for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++) reg_alloc_order [pos++] = i; /* SSE registers. */ for (i = FIRST_SSE_REG; i <= LAST_SSE_REG; i++) reg_alloc_order [pos++] = i; for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) reg_alloc_order [pos++] = i; /* Extended REX SSE registers. */ for (i = FIRST_EXT_REX_SSE_REG; i <= LAST_EXT_REX_SSE_REG; i++) reg_alloc_order [pos++] = i; /* Mask register. */ for (i = FIRST_MASK_REG; i <= LAST_MASK_REG; i++) reg_alloc_order [pos++] = i; /* x87 registers. */ if (TARGET_SSE_MATH) for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++) reg_alloc_order [pos++] = i; for (i = FIRST_MMX_REG; i <= LAST_MMX_REG; i++) reg_alloc_order [pos++] = i; /* Initialize the rest of array as we do not allocate some registers at all. */ while (pos < FIRST_PSEUDO_REGISTER) reg_alloc_order [pos++] = 0; } static bool ix86_ms_bitfield_layout_p (const_tree record_type) { return ((TARGET_MS_BITFIELD_LAYOUT && !lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (record_type))) || lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (record_type))); } /* Returns an expression indicating where the this parameter is located on entry to the FUNCTION. */ static rtx x86_this_parameter (tree function) { tree type = TREE_TYPE (function); bool aggr = aggregate_value_p (TREE_TYPE (type), type) != 0; int nregs; if (TARGET_64BIT) { const int *parm_regs; if (ix86_function_type_abi (type) == MS_ABI) parm_regs = x86_64_ms_abi_int_parameter_registers; else parm_regs = x86_64_int_parameter_registers; return gen_rtx_REG (Pmode, parm_regs[aggr]); } nregs = ix86_function_regparm (type, function); if (nregs > 0 && !stdarg_p (type)) { int regno; unsigned int ccvt = ix86_get_callcvt (type); if ((ccvt & IX86_CALLCVT_FASTCALL) != 0) regno = aggr ? DX_REG : CX_REG; else if ((ccvt & IX86_CALLCVT_THISCALL) != 0) { regno = CX_REG; if (aggr) return gen_rtx_MEM (SImode, plus_constant (Pmode, stack_pointer_rtx, 4)); } else { regno = AX_REG; if (aggr) { regno = DX_REG; if (nregs == 1) return gen_rtx_MEM (SImode, plus_constant (Pmode, stack_pointer_rtx, 4)); } } return gen_rtx_REG (SImode, regno); } return gen_rtx_MEM (SImode, plus_constant (Pmode, stack_pointer_rtx, aggr ? 8 : 4)); } /* Determine whether x86_output_mi_thunk can succeed. */ static bool x86_can_output_mi_thunk (const_tree, HOST_WIDE_INT, HOST_WIDE_INT vcall_offset, const_tree function) { /* 64-bit can handle anything. */ if (TARGET_64BIT) return true; /* For 32-bit, everything's fine if we have one free register. */ if (ix86_function_regparm (TREE_TYPE (function), function) < 3) return true; /* Need a free register for vcall_offset. */ if (vcall_offset) return false; /* Need a free register for GOT references. */ if (flag_pic && !targetm.binds_local_p (function)) return false; /* Otherwise ok. */ return true; } /* Output the assembler code for a thunk function. THUNK_DECL is the declaration for the thunk function itself, FUNCTION is the decl for the target function. DELTA is an immediate constant offset to be added to THIS. If VCALL_OFFSET is nonzero, the word at *(*this + vcall_offset) should be added to THIS. */ static void x86_output_mi_thunk (FILE *file, tree thunk_fndecl, HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset, tree function) { const char *fnname = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (thunk_fndecl)); rtx this_param = x86_this_parameter (function); rtx this_reg, tmp, fnaddr; unsigned int tmp_regno; rtx_insn *insn; if (TARGET_64BIT) tmp_regno = R10_REG; else { unsigned int ccvt = ix86_get_callcvt (TREE_TYPE (function)); if ((ccvt & IX86_CALLCVT_FASTCALL) != 0) tmp_regno = AX_REG; else if ((ccvt & IX86_CALLCVT_THISCALL) != 0) tmp_regno = DX_REG; else tmp_regno = CX_REG; } emit_note (NOTE_INSN_PROLOGUE_END); /* CET is enabled, insert EB instruction. */ if ((flag_cf_protection & CF_BRANCH)) emit_insn (gen_nop_endbr ()); /* If VCALL_OFFSET, we'll need THIS in a register. Might as well pull it in now and let DELTA benefit. */ if (REG_P (this_param)) this_reg = this_param; else if (vcall_offset) { /* Put the this parameter into %eax. */ this_reg = gen_rtx_REG (Pmode, AX_REG); emit_move_insn (this_reg, this_param); } else this_reg = NULL_RTX; /* Adjust the this parameter by a fixed constant. */ if (delta) { rtx delta_rtx = GEN_INT (delta); rtx delta_dst = this_reg ? this_reg : this_param; if (TARGET_64BIT) { if (!x86_64_general_operand (delta_rtx, Pmode)) { tmp = gen_rtx_REG (Pmode, tmp_regno); emit_move_insn (tmp, delta_rtx); delta_rtx = tmp; } } ix86_emit_binop (PLUS, Pmode, delta_dst, delta_rtx); } /* Adjust the this parameter by a value stored in the vtable. */ if (vcall_offset) { rtx vcall_addr, vcall_mem, this_mem; tmp = gen_rtx_REG (Pmode, tmp_regno); this_mem = gen_rtx_MEM (ptr_mode, this_reg); if (Pmode != ptr_mode) this_mem = gen_rtx_ZERO_EXTEND (Pmode, this_mem); emit_move_insn (tmp, this_mem); /* Adjust the this parameter. */ vcall_addr = plus_constant (Pmode, tmp, vcall_offset); if (TARGET_64BIT && !ix86_legitimate_address_p (ptr_mode, vcall_addr, true)) { rtx tmp2 = gen_rtx_REG (Pmode, R11_REG); emit_move_insn (tmp2, GEN_INT (vcall_offset)); vcall_addr = gen_rtx_PLUS (Pmode, tmp, tmp2); } vcall_mem = gen_rtx_MEM (ptr_mode, vcall_addr); if (Pmode != ptr_mode) emit_insn (gen_addsi_1_zext (this_reg, gen_rtx_REG (ptr_mode, REGNO (this_reg)), vcall_mem)); else ix86_emit_binop (PLUS, Pmode, this_reg, vcall_mem); } /* If necessary, drop THIS back to its stack slot. */ if (this_reg && this_reg != this_param) emit_move_insn (this_param, this_reg); fnaddr = XEXP (DECL_RTL (function), 0); if (TARGET_64BIT) { if (!flag_pic || targetm.binds_local_p (function) || TARGET_PECOFF) ; else { tmp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, fnaddr), UNSPEC_GOTPCREL); tmp = gen_rtx_CONST (Pmode, tmp); fnaddr = gen_const_mem (Pmode, tmp); } } else { if (!flag_pic || targetm.binds_local_p (function)) ; #if TARGET_MACHO else if (TARGET_MACHO) { fnaddr = machopic_indirect_call_target (DECL_RTL (function)); fnaddr = XEXP (fnaddr, 0); } #endif /* TARGET_MACHO */ else { tmp = gen_rtx_REG (Pmode, CX_REG); output_set_got (tmp, NULL_RTX); fnaddr = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, fnaddr), UNSPEC_GOT); fnaddr = gen_rtx_CONST (Pmode, fnaddr); fnaddr = gen_rtx_PLUS (Pmode, tmp, fnaddr); fnaddr = gen_const_mem (Pmode, fnaddr); } } /* Our sibling call patterns do not allow memories, because we have no predicate that can distinguish between frame and non-frame memory. For our purposes here, we can get away with (ab)using a jump pattern, because we're going to do no optimization. */ if (MEM_P (fnaddr)) { if (sibcall_insn_operand (fnaddr, word_mode)) { fnaddr = XEXP (DECL_RTL (function), 0); tmp = gen_rtx_MEM (QImode, fnaddr); tmp = gen_rtx_CALL (VOIDmode, tmp, const0_rtx); tmp = emit_call_insn (tmp); SIBLING_CALL_P (tmp) = 1; } else emit_jump_insn (gen_indirect_jump (fnaddr)); } else { if (ix86_cmodel == CM_LARGE_PIC && SYMBOLIC_CONST (fnaddr)) { // CM_LARGE_PIC always uses pseudo PIC register which is // uninitialized. Since FUNCTION is local and calling it // doesn't go through PLT, we use scratch register %r11 as // PIC register and initialize it here. pic_offset_table_rtx = gen_rtx_REG (Pmode, R11_REG); ix86_init_large_pic_reg (tmp_regno); fnaddr = legitimize_pic_address (fnaddr, gen_rtx_REG (Pmode, tmp_regno)); } if (!sibcall_insn_operand (fnaddr, word_mode)) { tmp = gen_rtx_REG (word_mode, tmp_regno); if (GET_MODE (fnaddr) != word_mode) fnaddr = gen_rtx_ZERO_EXTEND (word_mode, fnaddr); emit_move_insn (tmp, fnaddr); fnaddr = tmp; } tmp = gen_rtx_MEM (QImode, fnaddr); tmp = gen_rtx_CALL (VOIDmode, tmp, const0_rtx); tmp = emit_call_insn (tmp); SIBLING_CALL_P (tmp) = 1; } emit_barrier (); /* Emit just enough of rest_of_compilation to get the insns emitted. */ insn = get_insns (); shorten_branches (insn); assemble_start_function (thunk_fndecl, fnname); final_start_function (insn, file, 1); final (insn, file, 1); final_end_function (); assemble_end_function (thunk_fndecl, fnname); } static void x86_file_start (void) { default_file_start (); if (TARGET_16BIT) fputs ("\t.code16gcc\n", asm_out_file); #if TARGET_MACHO darwin_file_start (); #endif if (X86_FILE_START_VERSION_DIRECTIVE) fputs ("\t.version\t\"01.01\"\n", asm_out_file); if (X86_FILE_START_FLTUSED) fputs ("\t.global\t__fltused\n", asm_out_file); if (ix86_asm_dialect == ASM_INTEL) fputs ("\t.intel_syntax noprefix\n", asm_out_file); } int x86_field_alignment (tree type, int computed) { machine_mode mode; if (TARGET_64BIT || TARGET_ALIGN_DOUBLE) return computed; if (TARGET_IAMCU) return iamcu_alignment (type, computed); mode = TYPE_MODE (strip_array_types (type)); if (mode == DFmode || mode == DCmode || GET_MODE_CLASS (mode) == MODE_INT || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT) return MIN (32, computed); return computed; } /* Print call to TARGET to FILE. */ static void x86_print_call_or_nop (FILE *file, const char *target) { if (flag_nop_mcount || !strcmp (target, "nop")) /* 5 byte nop: nopl 0(%[re]ax,%[re]ax,1) */ fprintf (file, "1:" ASM_BYTE "0x0f, 0x1f, 0x44, 0x00, 0x00\n"); else fprintf (file, "1:\tcall\t%s\n", target); } static bool current_fentry_name (const char **name) { tree attr = lookup_attribute ("fentry_name", DECL_ATTRIBUTES (current_function_decl)); if (!attr) return false; *name = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))); return true; } static bool current_fentry_section (const char **name) { tree attr = lookup_attribute ("fentry_section", DECL_ATTRIBUTES (current_function_decl)); if (!attr) return false; *name = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))); return true; } /* Output assembler code to FILE to increment profiler label # LABELNO for profiling a function entry. */ void x86_function_profiler (FILE *file, int labelno ATTRIBUTE_UNUSED) { if (cfun->machine->endbr_queued_at_entrance) fprintf (file, "\t%s\n", TARGET_64BIT ? "endbr64" : "endbr32"); const char *mcount_name = MCOUNT_NAME; if (current_fentry_name (&mcount_name)) ; else if (fentry_name) mcount_name = fentry_name; else if (flag_fentry) mcount_name = MCOUNT_NAME_BEFORE_PROLOGUE; if (TARGET_64BIT) { #ifndef NO_PROFILE_COUNTERS fprintf (file, "\tleaq\t%sP%d(%%rip),%%r11\n", LPREFIX, labelno); #endif if (!TARGET_PECOFF && flag_pic) fprintf (file, "1:\tcall\t*%s@GOTPCREL(%%rip)\n", mcount_name); else x86_print_call_or_nop (file, mcount_name); } else if (flag_pic) { #ifndef NO_PROFILE_COUNTERS fprintf (file, "\tleal\t%sP%d@GOTOFF(%%ebx),%%" PROFILE_COUNT_REGISTER "\n", LPREFIX, labelno); #endif fprintf (file, "1:\tcall\t*%s@GOT(%%ebx)\n", mcount_name); } else { #ifndef NO_PROFILE_COUNTERS fprintf (file, "\tmovl\t$%sP%d,%%" PROFILE_COUNT_REGISTER "\n", LPREFIX, labelno); #endif x86_print_call_or_nop (file, mcount_name); } if (flag_record_mcount || lookup_attribute ("fentry_section", DECL_ATTRIBUTES (current_function_decl))) { const char *sname = "__mcount_loc"; if (current_fentry_section (&sname)) ; else if (fentry_section) sname = fentry_section; fprintf (file, "\t.section %s, \"a\",@progbits\n", sname); fprintf (file, "\t.%s 1b\n", TARGET_64BIT ? "quad" : "long"); fprintf (file, "\t.previous\n"); } } /* We don't have exact information about the insn sizes, but we may assume quite safely that we are informed about all 1 byte insns and memory address sizes. This is enough to eliminate unnecessary padding in 99% of cases. */ int ix86_min_insn_size (rtx_insn *insn) { int l = 0, len; if (!INSN_P (insn) || !active_insn_p (insn)) return 0; /* Discard alignments we've emit and jump instructions. */ if (GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE && XINT (PATTERN (insn), 1) == UNSPECV_ALIGN) return 0; /* Important case - calls are always 5 bytes. It is common to have many calls in the row. */ if (CALL_P (insn) && symbolic_reference_mentioned_p (PATTERN (insn)) && !SIBLING_CALL_P (insn)) return 5; len = get_attr_length (insn); if (len <= 1) return 1; /* For normal instructions we rely on get_attr_length being exact, with a few exceptions. */ if (!JUMP_P (insn)) { enum attr_type type = get_attr_type (insn); switch (type) { case TYPE_MULTI: if (GET_CODE (PATTERN (insn)) == ASM_INPUT || asm_noperands (PATTERN (insn)) >= 0) return 0; break; case TYPE_OTHER: case TYPE_FCMP: break; default: /* Otherwise trust get_attr_length. */ return len; } l = get_attr_length_address (insn); if (l < 4 && symbolic_reference_mentioned_p (PATTERN (insn))) l = 4; } if (l) return 1+l; else return 2; } #ifdef ASM_OUTPUT_MAX_SKIP_PAD /* AMD K8 core mispredicts jumps when there are more than 3 jumps in 16 byte window. */ static void ix86_avoid_jump_mispredicts (void) { rtx_insn *insn, *start = get_insns (); int nbytes = 0, njumps = 0; bool isjump = false; /* Look for all minimal intervals of instructions containing 4 jumps. The intervals are bounded by START and INSN. NBYTES is the total size of instructions in the interval including INSN and not including START. When the NBYTES is smaller than 16 bytes, it is possible that the end of START and INSN ends up in the same 16byte page. The smallest offset in the page INSN can start is the case where START ends on the offset 0. Offset of INSN is then NBYTES - sizeof (INSN). We add p2align to 16byte window with maxskip 15 - NBYTES + sizeof (INSN). Don't consider asm goto as jump, while it can contain a jump, it doesn't have to, control transfer to label(s) can be performed through other means, and also we estimate minimum length of all asm stmts as 0. */ for (insn = start; insn; insn = NEXT_INSN (insn)) { int min_size; if (LABEL_P (insn)) { align_flags alignment = label_to_alignment (insn); int align = alignment.levels[0].log; int max_skip = alignment.levels[0].maxskip; if (max_skip > 15) max_skip = 15; /* If align > 3, only up to 16 - max_skip - 1 bytes can be already in the current 16 byte page, because otherwise ASM_OUTPUT_MAX_SKIP_ALIGN could skip max_skip or fewer bytes to reach 16 byte boundary. */ if (align <= 0 || (align <= 3 && max_skip != (1 << align) - 1)) max_skip = 0; if (dump_file) fprintf (dump_file, "Label %i with max_skip %i\n", INSN_UID (insn), max_skip); if (max_skip) { while (nbytes + max_skip >= 16) { start = NEXT_INSN (start); if ((JUMP_P (start) && asm_noperands (PATTERN (start)) < 0) || CALL_P (start)) njumps--, isjump = true; else isjump = false; nbytes -= ix86_min_insn_size (start); } } continue; } min_size = ix86_min_insn_size (insn); nbytes += min_size; if (dump_file) fprintf (dump_file, "Insn %i estimated to %i bytes\n", INSN_UID (insn), min_size); if ((JUMP_P (insn) && asm_noperands (PATTERN (insn)) < 0) || CALL_P (insn)) njumps++; else continue; while (njumps > 3) { start = NEXT_INSN (start); if ((JUMP_P (start) && asm_noperands (PATTERN (start)) < 0) || CALL_P (start)) njumps--, isjump = true; else isjump = false; nbytes -= ix86_min_insn_size (start); } gcc_assert (njumps >= 0); if (dump_file) fprintf (dump_file, "Interval %i to %i has %i bytes\n", INSN_UID (start), INSN_UID (insn), nbytes); if (njumps == 3 && isjump && nbytes < 16) { int padsize = 15 - nbytes + ix86_min_insn_size (insn); if (dump_file) fprintf (dump_file, "Padding insn %i by %i bytes!\n", INSN_UID (insn), padsize); emit_insn_before (gen_pad (GEN_INT (padsize)), insn); } } } #endif /* AMD Athlon works faster when RET is not destination of conditional jump or directly preceded by other jump instruction. We avoid the penalty by inserting NOP just before the RET instructions in such cases. */ static void ix86_pad_returns (void) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) { basic_block bb = e->src; rtx_insn *ret = BB_END (bb); rtx_insn *prev; bool replace = false; if (!JUMP_P (ret) || !ANY_RETURN_P (PATTERN (ret)) || optimize_bb_for_size_p (bb)) continue; for (prev = PREV_INSN (ret); prev; prev = PREV_INSN (prev)) if (active_insn_p (prev) || LABEL_P (prev)) break; if (prev && LABEL_P (prev)) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, bb->preds) if (EDGE_FREQUENCY (e) && e->src->index >= 0 && !(e->flags & EDGE_FALLTHRU)) { replace = true; break; } } if (!replace) { prev = prev_active_insn (ret); if (prev && ((JUMP_P (prev) && any_condjump_p (prev)) || CALL_P (prev))) replace = true; /* Empty functions get branch mispredict even when the jump destination is not visible to us. */ if (!prev && !optimize_function_for_size_p (cfun)) replace = true; } if (replace) { emit_jump_insn_before (gen_simple_return_internal_long (), ret); delete_insn (ret); } } } /* Count the minimum number of instructions in BB. Return 4 if the number of instructions >= 4. */ static int ix86_count_insn_bb (basic_block bb) { rtx_insn *insn; int insn_count = 0; /* Count number of instructions in this block. Return 4 if the number of instructions >= 4. */ FOR_BB_INSNS (bb, insn) { /* Only happen in exit blocks. */ if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn))) break; if (NONDEBUG_INSN_P (insn) && GET_CODE (PATTERN (insn)) != USE && GET_CODE (PATTERN (insn)) != CLOBBER) { insn_count++; if (insn_count >= 4) return insn_count; } } return insn_count; } /* Count the minimum number of instructions in code path in BB. Return 4 if the number of instructions >= 4. */ static int ix86_count_insn (basic_block bb) { edge e; edge_iterator ei; int min_prev_count; /* Only bother counting instructions along paths with no more than 2 basic blocks between entry and exit. Given that BB has an edge to exit, determine if a predecessor of BB has an edge from entry. If so, compute the number of instructions in the predecessor block. If there happen to be multiple such blocks, compute the minimum. */ min_prev_count = 4; FOR_EACH_EDGE (e, ei, bb->preds) { edge prev_e; edge_iterator prev_ei; if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)) { min_prev_count = 0; break; } FOR_EACH_EDGE (prev_e, prev_ei, e->src->preds) { if (prev_e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)) { int count = ix86_count_insn_bb (e->src); if (count < min_prev_count) min_prev_count = count; break; } } } if (min_prev_count < 4) min_prev_count += ix86_count_insn_bb (bb); return min_prev_count; } /* Pad short function to 4 instructions. */ static void ix86_pad_short_function (void) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) { rtx_insn *ret = BB_END (e->src); if (JUMP_P (ret) && ANY_RETURN_P (PATTERN (ret))) { int insn_count = ix86_count_insn (e->src); /* Pad short function. */ if (insn_count < 4) { rtx_insn *insn = ret; /* Find epilogue. */ while (insn && (!NOTE_P (insn) || NOTE_KIND (insn) != NOTE_INSN_EPILOGUE_BEG)) insn = PREV_INSN (insn); if (!insn) insn = ret; /* Two NOPs count as one instruction. */ insn_count = 2 * (4 - insn_count); emit_insn_before (gen_nops (GEN_INT (insn_count)), insn); } } } } /* Fix up a Windows system unwinder issue. If an EH region falls through into the epilogue, the Windows system unwinder will apply epilogue logic and produce incorrect offsets. This can be avoided by adding a nop between the last insn that can throw and the first insn of the epilogue. */ static void ix86_seh_fixup_eh_fallthru (void) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) { rtx_insn *insn, *next; /* Find the beginning of the epilogue. */ for (insn = BB_END (e->src); insn != NULL; insn = PREV_INSN (insn)) if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG) break; if (insn == NULL) continue; /* We only care about preceding insns that can throw. */ insn = prev_active_insn (insn); if (insn == NULL || !can_throw_internal (insn)) continue; /* Do not separate calls from their debug information. */ for (next = NEXT_INSN (insn); next != NULL; next = NEXT_INSN (next)) if (NOTE_P (next) && NOTE_KIND (next) == NOTE_INSN_VAR_LOCATION) insn = next; else break; emit_insn_after (gen_nops (const1_rtx), insn); } } /* Implement machine specific optimizations. We implement padding of returns for K8 CPUs and pass to avoid 4 jumps in the single 16 byte window. */ static void ix86_reorg (void) { /* We are freeing block_for_insn in the toplev to keep compatibility with old MDEP_REORGS that are not CFG based. Recompute it now. */ compute_bb_for_insn (); if (TARGET_SEH && current_function_has_exception_handlers ()) ix86_seh_fixup_eh_fallthru (); if (optimize && optimize_function_for_speed_p (cfun)) { if (TARGET_PAD_SHORT_FUNCTION) ix86_pad_short_function (); else if (TARGET_PAD_RETURNS) ix86_pad_returns (); #ifdef ASM_OUTPUT_MAX_SKIP_PAD if (TARGET_FOUR_JUMP_LIMIT) ix86_avoid_jump_mispredicts (); #endif } } /* Return nonzero when QImode register that must be represented via REX prefix is used. */ bool x86_extended_QIreg_mentioned_p (rtx_insn *insn) { int i; extract_insn_cached (insn); for (i = 0; i < recog_data.n_operands; i++) if (GENERAL_REG_P (recog_data.operand[i]) && !QI_REGNO_P (REGNO (recog_data.operand[i]))) return true; return false; } /* Return true when INSN mentions register that must be encoded using REX prefix. */ bool x86_extended_reg_mentioned_p (rtx insn) { subrtx_iterator::array_type array; FOR_EACH_SUBRTX (iter, array, INSN_P (insn) ? PATTERN (insn) : insn, NONCONST) { const_rtx x = *iter; if (REG_P (x) && (REX_INT_REGNO_P (REGNO (x)) || REX_SSE_REGNO_P (REGNO (x)))) return true; } return false; } /* If profitable, negate (without causing overflow) integer constant of mode MODE at location LOC. Return true in this case. */ bool x86_maybe_negate_const_int (rtx *loc, machine_mode mode) { HOST_WIDE_INT val; if (!CONST_INT_P (*loc)) return false; switch (mode) { case E_DImode: /* DImode x86_64 constants must fit in 32 bits. */ gcc_assert (x86_64_immediate_operand (*loc, mode)); mode = SImode; break; case E_SImode: case E_HImode: case E_QImode: break; default: gcc_unreachable (); } /* Avoid overflows. */ if (mode_signbit_p (mode, *loc)) return false; val = INTVAL (*loc); /* Make things pretty and `subl $4,%eax' rather than `addl $-4,%eax'. Exceptions: -128 encodes smaller than 128, so swap sign and op. */ if ((val < 0 && val != -128) || val == 128) { *loc = GEN_INT (-val); return true; } return false; } /* Generate an unsigned DImode/SImode to FP conversion. This is the same code optabs would emit if we didn't have TFmode patterns. */ void x86_emit_floatuns (rtx operands[2]) { rtx_code_label *neglab, *donelab; rtx i0, i1, f0, in, out; machine_mode mode, inmode; inmode = GET_MODE (operands[1]); gcc_assert (inmode == SImode || inmode == DImode); out = operands[0]; in = force_reg (inmode, operands[1]); mode = GET_MODE (out); neglab = gen_label_rtx (); donelab = gen_label_rtx (); f0 = gen_reg_rtx (mode); emit_cmp_and_jump_insns (in, const0_rtx, LT, const0_rtx, inmode, 0, neglab); expand_float (out, in, 0); emit_jump_insn (gen_jump (donelab)); emit_barrier (); emit_label (neglab); i0 = expand_simple_binop (inmode, LSHIFTRT, in, const1_rtx, NULL, 1, OPTAB_DIRECT); i1 = expand_simple_binop (inmode, AND, in, const1_rtx, NULL, 1, OPTAB_DIRECT); i0 = expand_simple_binop (inmode, IOR, i0, i1, i0, 1, OPTAB_DIRECT); expand_float (f0, i0, 0); emit_insn (gen_rtx_SET (out, gen_rtx_PLUS (mode, f0, f0))); emit_label (donelab); } /* Target hook for scalar_mode_supported_p. */ static bool ix86_scalar_mode_supported_p (scalar_mode mode) { if (DECIMAL_FLOAT_MODE_P (mode)) return default_decimal_float_supported_p (); else if (mode == TFmode) return true; else return default_scalar_mode_supported_p (mode); } /* Implements target hook vector_mode_supported_p. */ static bool ix86_vector_mode_supported_p (machine_mode mode) { if (TARGET_SSE && VALID_SSE_REG_MODE (mode)) return true; if (TARGET_SSE2 && VALID_SSE2_REG_MODE (mode)) return true; if (TARGET_AVX && VALID_AVX256_REG_MODE (mode)) return true; if (TARGET_AVX512F && VALID_AVX512F_REG_MODE (mode)) return true; if ((TARGET_MMX || TARGET_MMX_WITH_SSE) && VALID_MMX_REG_MODE (mode)) return true; if (TARGET_3DNOW && VALID_MMX_REG_MODE_3DNOW (mode)) return true; return false; } /* Target hook for c_mode_for_suffix. */ static machine_mode ix86_c_mode_for_suffix (char suffix) { if (suffix == 'q') return TFmode; if (suffix == 'w') return XFmode; return VOIDmode; } /* Worker function for TARGET_MD_ASM_ADJUST. We implement asm flag outputs, and maintain source compatibility with the old cc0-based compiler. */ static rtx_insn * ix86_md_asm_adjust (vec &outputs, vec &/*inputs*/, vec &constraints, vec &clobbers, HARD_REG_SET &clobbered_regs) { bool saw_asm_flag = false; start_sequence (); for (unsigned i = 0, n = outputs.length (); i < n; ++i) { const char *con = constraints[i]; if (strncmp (con, "=@cc", 4) != 0) continue; con += 4; if (strchr (con, ',') != NULL) { error ("alternatives not allowed in % flag output"); continue; } bool invert = false; if (con[0] == 'n') invert = true, con++; machine_mode mode = CCmode; rtx_code code = UNKNOWN; switch (con[0]) { case 'a': if (con[1] == 0) mode = CCAmode, code = EQ; else if (con[1] == 'e' && con[2] == 0) mode = CCCmode, code = NE; break; case 'b': if (con[1] == 0) mode = CCCmode, code = EQ; else if (con[1] == 'e' && con[2] == 0) mode = CCAmode, code = NE; break; case 'c': if (con[1] == 0) mode = CCCmode, code = EQ; break; case 'e': if (con[1] == 0) mode = CCZmode, code = EQ; break; case 'g': if (con[1] == 0) mode = CCGCmode, code = GT; else if (con[1] == 'e' && con[2] == 0) mode = CCGCmode, code = GE; break; case 'l': if (con[1] == 0) mode = CCGCmode, code = LT; else if (con[1] == 'e' && con[2] == 0) mode = CCGCmode, code = LE; break; case 'o': if (con[1] == 0) mode = CCOmode, code = EQ; break; case 'p': if (con[1] == 0) mode = CCPmode, code = EQ; break; case 's': if (con[1] == 0) mode = CCSmode, code = EQ; break; case 'z': if (con[1] == 0) mode = CCZmode, code = EQ; break; } if (code == UNKNOWN) { error ("unknown % flag output %qs", constraints[i]); continue; } if (invert) code = reverse_condition (code); rtx dest = outputs[i]; if (!saw_asm_flag) { /* This is the first asm flag output. Here we put the flags register in as the real output and adjust the condition to allow it. */ constraints[i] = "=Bf"; outputs[i] = gen_rtx_REG (CCmode, FLAGS_REG); saw_asm_flag = true; } else { /* We don't need the flags register as output twice. */ constraints[i] = "=X"; outputs[i] = gen_rtx_SCRATCH (SImode); } rtx x = gen_rtx_REG (mode, FLAGS_REG); x = gen_rtx_fmt_ee (code, QImode, x, const0_rtx); machine_mode dest_mode = GET_MODE (dest); if (!SCALAR_INT_MODE_P (dest_mode)) { error ("invalid type for % flag output"); continue; } if (dest_mode == QImode) emit_insn (gen_rtx_SET (dest, x)); else { rtx reg = gen_reg_rtx (QImode); emit_insn (gen_rtx_SET (reg, x)); reg = convert_to_mode (dest_mode, reg, 1); emit_move_insn (dest, reg); } } rtx_insn *seq = get_insns (); end_sequence (); if (saw_asm_flag) return seq; else { /* If we had no asm flag outputs, clobber the flags. */ clobbers.safe_push (gen_rtx_REG (CCmode, FLAGS_REG)); SET_HARD_REG_BIT (clobbered_regs, FLAGS_REG); return NULL; } } /* Implements target vector targetm.asm.encode_section_info. */ static void ATTRIBUTE_UNUSED ix86_encode_section_info (tree decl, rtx rtl, int first) { default_encode_section_info (decl, rtl, first); if (ix86_in_large_data_p (decl)) SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= SYMBOL_FLAG_FAR_ADDR; } /* Worker function for REVERSE_CONDITION. */ enum rtx_code ix86_reverse_condition (enum rtx_code code, machine_mode mode) { return (mode == CCFPmode ? reverse_condition_maybe_unordered (code) : reverse_condition (code)); } /* Output code to perform an x87 FP register move, from OPERANDS[1] to OPERANDS[0]. */ const char * output_387_reg_move (rtx_insn *insn, rtx *operands) { if (REG_P (operands[0])) { if (REG_P (operands[1]) && find_regno_note (insn, REG_DEAD, REGNO (operands[1]))) { if (REGNO (operands[0]) == FIRST_STACK_REG) return output_387_ffreep (operands, 0); return "fstp\t%y0"; } if (STACK_TOP_P (operands[0])) return "fld%Z1\t%y1"; return "fst\t%y0"; } else if (MEM_P (operands[0])) { gcc_assert (REG_P (operands[1])); if (find_regno_note (insn, REG_DEAD, REGNO (operands[1]))) return "fstp%Z0\t%y0"; else { /* There is no non-popping store to memory for XFmode. So if we need one, follow the store with a load. */ if (GET_MODE (operands[0]) == XFmode) return "fstp%Z0\t%y0\n\tfld%Z0\t%y0"; else return "fst%Z0\t%y0"; } } else gcc_unreachable(); } #ifdef TARGET_SOLARIS /* Solaris implementation of TARGET_ASM_NAMED_SECTION. */ static void i386_solaris_elf_named_section (const char *name, unsigned int flags, tree decl) { /* With Binutils 2.15, the "@unwind" marker must be specified on every occurrence of the ".eh_frame" section, not just the first one. */ if (TARGET_64BIT && strcmp (name, ".eh_frame") == 0) { fprintf (asm_out_file, "\t.section\t%s,\"%s\",@unwind\n", name, flags & SECTION_WRITE ? "aw" : "a"); return; } #ifndef USE_GAS if (HAVE_COMDAT_GROUP && flags & SECTION_LINKONCE) { solaris_elf_asm_comdat_section (name, flags, decl); return; } /* Solaris/x86 as uses the same syntax for the SHF_EXCLUDE flags as the SPARC assembler. One cannot mix single-letter flags and #exclude, so only emit the latter here. */ if (flags & SECTION_EXCLUDE) { fprintf (asm_out_file, "\t.section\t%s,#exclude\n", name); return; } #endif default_elf_asm_named_section (name, flags, decl); } #endif /* TARGET_SOLARIS */ /* Return the mangling of TYPE if it is an extended fundamental type. */ static const char * ix86_mangle_type (const_tree type) { type = TYPE_MAIN_VARIANT (type); if (TREE_CODE (type) != VOID_TYPE && TREE_CODE (type) != BOOLEAN_TYPE && TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != REAL_TYPE) return NULL; switch (TYPE_MODE (type)) { case E_TFmode: /* __float128 is "g". */ return "g"; case E_XFmode: /* "long double" or __float80 is "e". */ return "e"; default: return NULL; } } static GTY(()) tree ix86_tls_stack_chk_guard_decl; static tree ix86_stack_protect_guard (void) { if (TARGET_SSP_TLS_GUARD) { tree type_node = lang_hooks.types.type_for_mode (ptr_mode, 1); int qual = ENCODE_QUAL_ADDR_SPACE (ix86_stack_protector_guard_reg); tree type = build_qualified_type (type_node, qual); tree t; if (global_options_set.x_ix86_stack_protector_guard_symbol_str) { t = ix86_tls_stack_chk_guard_decl; if (t == NULL) { rtx x; t = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (ix86_stack_protector_guard_symbol_str), type); TREE_STATIC (t) = 1; TREE_PUBLIC (t) = 1; DECL_EXTERNAL (t) = 1; TREE_USED (t) = 1; TREE_THIS_VOLATILE (t) = 1; DECL_ARTIFICIAL (t) = 1; DECL_IGNORED_P (t) = 1; /* Do not share RTL as the declaration is visible outside of current function. */ x = DECL_RTL (t); RTX_FLAG (x, used) = 1; ix86_tls_stack_chk_guard_decl = t; } } else { tree asptrtype = build_pointer_type (type); t = build_int_cst (asptrtype, ix86_stack_protector_guard_offset); t = build2 (MEM_REF, asptrtype, t, build_int_cst (asptrtype, 0)); TREE_THIS_VOLATILE (t) = 1; } return t; } return default_stack_protect_guard (); } /* For 32-bit code we can save PIC register setup by using __stack_chk_fail_local hidden function instead of calling __stack_chk_fail directly. 64-bit code doesn't need to setup any PIC register, so it is better to call __stack_chk_fail directly. */ static tree ATTRIBUTE_UNUSED ix86_stack_protect_fail (void) { return TARGET_64BIT ? default_external_stack_protect_fail () : default_hidden_stack_protect_fail (); } /* Select a format to encode pointers in exception handling data. CODE is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is true if the symbol may be affected by dynamic relocations. ??? All x86 object file formats are capable of representing this. After all, the relocation needed is the same as for the call insn. Whether or not a particular assembler allows us to enter such, I guess we'll have to see. */ int asm_preferred_eh_data_format (int code, int global) { /* PE-COFF is effectively always -fPIC because of the .reloc section. */ if (flag_pic || TARGET_PECOFF) { int type = DW_EH_PE_sdata8; if (!TARGET_64BIT || ix86_cmodel == CM_SMALL_PIC || (ix86_cmodel == CM_MEDIUM_PIC && (global || code))) type = DW_EH_PE_sdata4; return (global ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | type; } if (ix86_cmodel == CM_SMALL || (ix86_cmodel == CM_MEDIUM && code)) return DW_EH_PE_udata4; return DW_EH_PE_absptr; } /* Implement targetm.vectorize.builtin_vectorization_cost. */ static int ix86_builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost, tree vectype, int) { bool fp = false; machine_mode mode = TImode; int index; if (vectype != NULL) { fp = FLOAT_TYPE_P (vectype); mode = TYPE_MODE (vectype); } switch (type_of_cost) { case scalar_stmt: return fp ? ix86_cost->addss : COSTS_N_INSNS (1); case scalar_load: /* load/store costs are relative to register move which is 2. Recompute it to COSTS_N_INSNS so everything have same base. */ return COSTS_N_INSNS (fp ? ix86_cost->sse_load[0] : ix86_cost->int_load [2]) / 2; case scalar_store: return COSTS_N_INSNS (fp ? ix86_cost->sse_store[0] : ix86_cost->int_store [2]) / 2; case vector_stmt: return ix86_vec_cost (mode, fp ? ix86_cost->addss : ix86_cost->sse_op); case vector_load: index = sse_store_index (mode); /* See PR82713 - we may end up being called on non-vector type. */ if (index < 0) index = 2; return COSTS_N_INSNS (ix86_cost->sse_load[index]) / 2; case vector_store: index = sse_store_index (mode); /* See PR82713 - we may end up being called on non-vector type. */ if (index < 0) index = 2; return COSTS_N_INSNS (ix86_cost->sse_store[index]) / 2; case vec_to_scalar: case scalar_to_vec: return ix86_vec_cost (mode, ix86_cost->sse_op); /* We should have separate costs for unaligned loads and gather/scatter. Do that incrementally. */ case unaligned_load: index = sse_store_index (mode); /* See PR82713 - we may end up being called on non-vector type. */ if (index < 0) index = 2; return COSTS_N_INSNS (ix86_cost->sse_unaligned_load[index]) / 2; case unaligned_store: index = sse_store_index (mode); /* See PR82713 - we may end up being called on non-vector type. */ if (index < 0) index = 2; return COSTS_N_INSNS (ix86_cost->sse_unaligned_store[index]) / 2; case vector_gather_load: return ix86_vec_cost (mode, COSTS_N_INSNS (ix86_cost->gather_static + ix86_cost->gather_per_elt * TYPE_VECTOR_SUBPARTS (vectype)) / 2); case vector_scatter_store: return ix86_vec_cost (mode, COSTS_N_INSNS (ix86_cost->scatter_static + ix86_cost->scatter_per_elt * TYPE_VECTOR_SUBPARTS (vectype)) / 2); case cond_branch_taken: return ix86_cost->cond_taken_branch_cost; case cond_branch_not_taken: return ix86_cost->cond_not_taken_branch_cost; case vec_perm: case vec_promote_demote: return ix86_vec_cost (mode, ix86_cost->sse_op); case vec_construct: { /* N element inserts into SSE vectors. */ int cost = TYPE_VECTOR_SUBPARTS (vectype) * ix86_cost->sse_op; /* One vinserti128 for combining two SSE vectors for AVX256. */ if (GET_MODE_BITSIZE (mode) == 256) cost += ix86_vec_cost (mode, ix86_cost->addss); /* One vinserti64x4 and two vinserti128 for combining SSE and AVX256 vectors to AVX512. */ else if (GET_MODE_BITSIZE (mode) == 512) cost += 3 * ix86_vec_cost (mode, ix86_cost->addss); return cost; } default: gcc_unreachable (); } } /* This function returns the calling abi specific va_list type node. It returns the FNDECL specific va_list type. */ static tree ix86_fn_abi_va_list (tree fndecl) { if (!TARGET_64BIT) return va_list_type_node; gcc_assert (fndecl != NULL_TREE); if (ix86_function_abi ((const_tree) fndecl) == MS_ABI) return ms_va_list_type_node; else return sysv_va_list_type_node; } /* Returns the canonical va_list type specified by TYPE. If there is no valid TYPE provided, it return NULL_TREE. */ static tree ix86_canonical_va_list_type (tree type) { if (TARGET_64BIT) { if (lookup_attribute ("ms_abi va_list", TYPE_ATTRIBUTES (type))) return ms_va_list_type_node; if ((TREE_CODE (type) == ARRAY_TYPE && integer_zerop (array_type_nelts (type))) || POINTER_TYPE_P (type)) { tree elem_type = TREE_TYPE (type); if (TREE_CODE (elem_type) == RECORD_TYPE && lookup_attribute ("sysv_abi va_list", TYPE_ATTRIBUTES (elem_type))) return sysv_va_list_type_node; } return NULL_TREE; } return std_canonical_va_list_type (type); } /* Iterate through the target-specific builtin types for va_list. IDX denotes the iterator, *PTREE is set to the result type of the va_list builtin, and *PNAME to its internal type. Returns zero if there is no element for this index, otherwise IDX should be increased upon the next call. Note, do not iterate a base builtin's name like __builtin_va_list. Used from c_common_nodes_and_builtins. */ static int ix86_enum_va_list (int idx, const char **pname, tree *ptree) { if (TARGET_64BIT) { switch (idx) { default: break; case 0: *ptree = ms_va_list_type_node; *pname = "__builtin_ms_va_list"; return 1; case 1: *ptree = sysv_va_list_type_node; *pname = "__builtin_sysv_va_list"; return 1; } } return 0; } #undef TARGET_SCHED_DISPATCH #define TARGET_SCHED_DISPATCH ix86_bd_has_dispatch #undef TARGET_SCHED_DISPATCH_DO #define TARGET_SCHED_DISPATCH_DO ix86_bd_do_dispatch #undef TARGET_SCHED_REASSOCIATION_WIDTH #define TARGET_SCHED_REASSOCIATION_WIDTH ix86_reassociation_width #undef TARGET_SCHED_REORDER #define TARGET_SCHED_REORDER ix86_atom_sched_reorder #undef TARGET_SCHED_ADJUST_PRIORITY #define TARGET_SCHED_ADJUST_PRIORITY ix86_adjust_priority #undef TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK #define TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK \ ix86_dependencies_evaluation_hook /* Implementation of reassociation_width target hook used by reassoc phase to identify parallelism level in reassociated tree. Statements tree_code is passed in OPC. Arguments type is passed in MODE. */ static int ix86_reassociation_width (unsigned int op, machine_mode mode) { int width = 1; /* Vector part. */ if (VECTOR_MODE_P (mode)) { int div = 1; if (INTEGRAL_MODE_P (mode)) width = ix86_cost->reassoc_vec_int; else if (FLOAT_MODE_P (mode)) width = ix86_cost->reassoc_vec_fp; if (width == 1) return 1; /* Integer vector instructions execute in FP unit and can execute 3 additions and one multiplication per cycle. */ if ((ix86_tune == PROCESSOR_ZNVER1 || ix86_tune == PROCESSOR_ZNVER2 || ix86_tune == PROCESSOR_ZNVER3) && INTEGRAL_MODE_P (mode) && op != PLUS && op != MINUS) return 1; /* Account for targets that splits wide vectors into multiple parts. */ if (TARGET_AVX256_SPLIT_REGS && GET_MODE_BITSIZE (mode) > 128) div = GET_MODE_BITSIZE (mode) / 128; else if (TARGET_SSE_SPLIT_REGS && GET_MODE_BITSIZE (mode) > 64) div = GET_MODE_BITSIZE (mode) / 64; width = (width + div - 1) / div; } /* Scalar part. */ else if (INTEGRAL_MODE_P (mode)) width = ix86_cost->reassoc_int; else if (FLOAT_MODE_P (mode)) width = ix86_cost->reassoc_fp; /* Avoid using too many registers in 32bit mode. */ if (!TARGET_64BIT && width > 2) width = 2; return width; } /* ??? No autovectorization into MMX or 3DNOW until we can reliably place emms and femms instructions. */ static machine_mode ix86_preferred_simd_mode (scalar_mode mode) { if (!TARGET_SSE) return word_mode; switch (mode) { case E_QImode: if (TARGET_AVX512BW && !TARGET_PREFER_AVX256) return V64QImode; else if (TARGET_AVX && !TARGET_PREFER_AVX128) return V32QImode; else return V16QImode; case E_HImode: if (TARGET_AVX512BW && !TARGET_PREFER_AVX256) return V32HImode; else if (TARGET_AVX && !TARGET_PREFER_AVX128) return V16HImode; else return V8HImode; case E_SImode: if (TARGET_AVX512F && !TARGET_PREFER_AVX256) return V16SImode; else if (TARGET_AVX && !TARGET_PREFER_AVX128) return V8SImode; else return V4SImode; case E_DImode: if (TARGET_AVX512F && !TARGET_PREFER_AVX256) return V8DImode; else if (TARGET_AVX && !TARGET_PREFER_AVX128) return V4DImode; else return V2DImode; case E_SFmode: if (TARGET_AVX512F && !TARGET_PREFER_AVX256) return V16SFmode; else if (TARGET_AVX && !TARGET_PREFER_AVX128) return V8SFmode; else return V4SFmode; case E_DFmode: if (TARGET_AVX512F && !TARGET_PREFER_AVX256) return V8DFmode; else if (TARGET_AVX && !TARGET_PREFER_AVX128) return V4DFmode; else if (TARGET_SSE2) return V2DFmode; /* FALLTHRU */ default: return word_mode; } } /* If AVX is enabled then try vectorizing with both 256bit and 128bit vectors. If AVX512F is enabled then try vectorizing with 512bit, 256bit and 128bit vectors. */ static unsigned int ix86_autovectorize_vector_modes (vector_modes *modes, bool all) { if (TARGET_AVX512F && !TARGET_PREFER_AVX256) { modes->safe_push (V64QImode); modes->safe_push (V32QImode); modes->safe_push (V16QImode); } else if (TARGET_AVX512F && all) { modes->safe_push (V32QImode); modes->safe_push (V16QImode); modes->safe_push (V64QImode); } else if (TARGET_AVX && !TARGET_PREFER_AVX128) { modes->safe_push (V32QImode); modes->safe_push (V16QImode); } else if (TARGET_AVX && all) { modes->safe_push (V16QImode); modes->safe_push (V32QImode); } else if (TARGET_MMX_WITH_SSE) modes->safe_push (V16QImode); if (TARGET_MMX_WITH_SSE) modes->safe_push (V8QImode); return 0; } /* Implemenation of targetm.vectorize.get_mask_mode. */ static opt_machine_mode ix86_get_mask_mode (machine_mode data_mode) { unsigned vector_size = GET_MODE_SIZE (data_mode); unsigned nunits = GET_MODE_NUNITS (data_mode); unsigned elem_size = vector_size / nunits; /* Scalar mask case. */ if ((TARGET_AVX512F && vector_size == 64) || (TARGET_AVX512VL && (vector_size == 32 || vector_size == 16))) { if (elem_size == 4 || elem_size == 8 || (TARGET_AVX512BW && (elem_size == 1 || elem_size == 2))) return smallest_int_mode_for_size (nunits); } scalar_int_mode elem_mode = smallest_int_mode_for_size (elem_size * BITS_PER_UNIT); gcc_assert (elem_size * nunits == vector_size); return mode_for_vector (elem_mode, nunits); } /* Return class of registers which could be used for pseudo of MODE and of class RCLASS for spilling instead of memory. Return NO_REGS if it is not possible or non-profitable. */ /* Disabled due to PRs 70902, 71453, 71555, 71596 and 71657. */ static reg_class_t ix86_spill_class (reg_class_t rclass, machine_mode mode) { if (0 && TARGET_GENERAL_REGS_SSE_SPILL && TARGET_SSE2 && TARGET_INTER_UNIT_MOVES_TO_VEC && TARGET_INTER_UNIT_MOVES_FROM_VEC && (mode == SImode || (TARGET_64BIT && mode == DImode)) && INTEGER_CLASS_P (rclass)) return ALL_SSE_REGS; return NO_REGS; } /* Implement TARGET_MAX_NOCE_IFCVT_SEQ_COST. Like the default implementation, but returns a lower bound. */ static unsigned int ix86_max_noce_ifcvt_seq_cost (edge e) { bool predictable_p = predictable_edge_p (e); if (predictable_p) { if (global_options_set.x_param_max_rtl_if_conversion_predictable_cost) return param_max_rtl_if_conversion_predictable_cost; } else { if (global_options_set.x_param_max_rtl_if_conversion_unpredictable_cost) return param_max_rtl_if_conversion_unpredictable_cost; } return BRANCH_COST (true, predictable_p) * COSTS_N_INSNS (2); } /* Return true if SEQ is a good candidate as a replacement for the if-convertible sequence described in IF_INFO. */ static bool ix86_noce_conversion_profitable_p (rtx_insn *seq, struct noce_if_info *if_info) { if (TARGET_ONE_IF_CONV_INSN && if_info->speed_p) { int cmov_cnt = 0; /* Punt if SEQ contains more than one CMOV or FCMOV instruction. Maybe we should allow even more conditional moves as long as they are used far enough not to stall the CPU, or also consider IF_INFO->TEST_BB succ edge probabilities. */ for (rtx_insn *insn = seq; insn; insn = NEXT_INSN (insn)) { rtx set = single_set (insn); if (!set) continue; if (GET_CODE (SET_SRC (set)) != IF_THEN_ELSE) continue; rtx src = SET_SRC (set); machine_mode mode = GET_MODE (src); if (GET_MODE_CLASS (mode) != MODE_INT && GET_MODE_CLASS (mode) != MODE_FLOAT) continue; if ((!REG_P (XEXP (src, 1)) && !MEM_P (XEXP (src, 1))) || (!REG_P (XEXP (src, 2)) && !MEM_P (XEXP (src, 2)))) continue; /* insn is CMOV or FCMOV. */ if (++cmov_cnt > 1) return false; } } return default_noce_conversion_profitable_p (seq, if_info); } /* Implement targetm.vectorize.init_cost. */ static void * ix86_init_cost (class loop *) { unsigned *cost = XNEWVEC (unsigned, 3); cost[vect_prologue] = cost[vect_body] = cost[vect_epilogue] = 0; return cost; } /* Implement targetm.vectorize.add_stmt_cost. */ static unsigned ix86_add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind, class _stmt_vec_info *stmt_info, int misalign, enum vect_cost_model_location where) { unsigned *cost = (unsigned *) data; unsigned retval = 0; bool scalar_p = (kind == scalar_stmt || kind == scalar_load || kind == scalar_store); tree vectype = stmt_info ? stmt_vectype (stmt_info) : NULL_TREE; int stmt_cost = - 1; bool fp = false; machine_mode mode = scalar_p ? SImode : TImode; if (vectype != NULL) { fp = FLOAT_TYPE_P (vectype); mode = TYPE_MODE (vectype); if (scalar_p) mode = TYPE_MODE (TREE_TYPE (vectype)); } if ((kind == vector_stmt || kind == scalar_stmt) && stmt_info && stmt_info->stmt && gimple_code (stmt_info->stmt) == GIMPLE_ASSIGN) { tree_code subcode = gimple_assign_rhs_code (stmt_info->stmt); /*machine_mode inner_mode = mode; if (VECTOR_MODE_P (mode)) inner_mode = GET_MODE_INNER (mode);*/ switch (subcode) { case PLUS_EXPR: case POINTER_PLUS_EXPR: case MINUS_EXPR: if (kind == scalar_stmt) { if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) stmt_cost = ix86_cost->addss; else if (X87_FLOAT_MODE_P (mode)) stmt_cost = ix86_cost->fadd; else stmt_cost = ix86_cost->add; } else stmt_cost = ix86_vec_cost (mode, fp ? ix86_cost->addss : ix86_cost->sse_op); break; case MULT_EXPR: case WIDEN_MULT_EXPR: case MULT_HIGHPART_EXPR: stmt_cost = ix86_multiplication_cost (ix86_cost, mode); break; case NEGATE_EXPR: if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) stmt_cost = ix86_cost->sse_op; else if (X87_FLOAT_MODE_P (mode)) stmt_cost = ix86_cost->fchs; else if (VECTOR_MODE_P (mode)) stmt_cost = ix86_vec_cost (mode, ix86_cost->sse_op); else stmt_cost = ix86_cost->add; break; case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR: case ROUND_DIV_EXPR: case TRUNC_MOD_EXPR: case CEIL_MOD_EXPR: case FLOOR_MOD_EXPR: case RDIV_EXPR: case ROUND_MOD_EXPR: case EXACT_DIV_EXPR: stmt_cost = ix86_division_cost (ix86_cost, mode); break; case RSHIFT_EXPR: case LSHIFT_EXPR: case LROTATE_EXPR: case RROTATE_EXPR: { tree op2 = gimple_assign_rhs2 (stmt_info->stmt); stmt_cost = ix86_shift_rotate_cost (ix86_cost, mode, TREE_CODE (op2) == INTEGER_CST, cst_and_fits_in_hwi (op2) ? int_cst_value (op2) : -1, true, false, false, NULL, NULL); } break; case NOP_EXPR: /* Only sign-conversions are free. */ if (tree_nop_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt_info->stmt)), TREE_TYPE (gimple_assign_rhs1 (stmt_info->stmt)))) stmt_cost = 0; break; case BIT_IOR_EXPR: case ABS_EXPR: case ABSU_EXPR: case MIN_EXPR: case MAX_EXPR: case BIT_XOR_EXPR: case BIT_AND_EXPR: case BIT_NOT_EXPR: if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) stmt_cost = ix86_cost->sse_op; else if (VECTOR_MODE_P (mode)) stmt_cost = ix86_vec_cost (mode, ix86_cost->sse_op); else stmt_cost = ix86_cost->add; break; default: break; } } combined_fn cfn; if ((kind == vector_stmt || kind == scalar_stmt) && stmt_info && stmt_info->stmt && (cfn = gimple_call_combined_fn (stmt_info->stmt)) != CFN_LAST) switch (cfn) { case CFN_FMA: stmt_cost = ix86_vec_cost (mode, mode == SFmode ? ix86_cost->fmass : ix86_cost->fmasd); break; default: break; } /* If we do elementwise loads into a vector then we are bound by latency and execution resources for the many scalar loads (AGU and load ports). Try to account for this by scaling the construction cost by the number of elements involved. */ if ((kind == vec_construct || kind == vec_to_scalar) && stmt_info && (STMT_VINFO_TYPE (stmt_info) == load_vec_info_type || STMT_VINFO_TYPE (stmt_info) == store_vec_info_type) && STMT_VINFO_MEMORY_ACCESS_TYPE (stmt_info) == VMAT_ELEMENTWISE && TREE_CODE (DR_STEP (STMT_VINFO_DATA_REF (stmt_info))) != INTEGER_CST) { stmt_cost = ix86_builtin_vectorization_cost (kind, vectype, misalign); stmt_cost *= (TYPE_VECTOR_SUBPARTS (vectype) + 1); } if (stmt_cost == -1) stmt_cost = ix86_builtin_vectorization_cost (kind, vectype, misalign); /* Penalize DFmode vector operations for Bonnell. */ if (TARGET_BONNELL && kind == vector_stmt && vectype && GET_MODE_INNER (TYPE_MODE (vectype)) == DFmode) stmt_cost *= 5; /* FIXME: The value here is arbitrary. */ /* Statements in an inner loop relative to the loop being vectorized are weighted more heavily. The value here is arbitrary and could potentially be improved with analysis. */ if (where == vect_body && stmt_info && stmt_in_inner_loop_p (stmt_info)) count *= 50; /* FIXME. */ retval = (unsigned) (count * stmt_cost); /* We need to multiply all vector stmt cost by 1.7 (estimated cost) for Silvermont as it has out of order integer pipeline and can execute 2 scalar instruction per tick, but has in order SIMD pipeline. */ if ((TARGET_SILVERMONT || TARGET_GOLDMONT || TARGET_GOLDMONT_PLUS || TARGET_TREMONT || TARGET_INTEL) && stmt_info && stmt_info->stmt) { tree lhs_op = gimple_get_lhs (stmt_info->stmt); if (lhs_op && TREE_CODE (TREE_TYPE (lhs_op)) == INTEGER_TYPE) retval = (retval * 17) / 10; } cost[where] += retval; return retval; } /* Implement targetm.vectorize.finish_cost. */ static void ix86_finish_cost (void *data, unsigned *prologue_cost, unsigned *body_cost, unsigned *epilogue_cost) { unsigned *cost = (unsigned *) data; *prologue_cost = cost[vect_prologue]; *body_cost = cost[vect_body]; *epilogue_cost = cost[vect_epilogue]; } /* Implement targetm.vectorize.destroy_cost_data. */ static void ix86_destroy_cost_data (void *data) { free (data); } /* Validate target specific memory model bits in VAL. */ static unsigned HOST_WIDE_INT ix86_memmodel_check (unsigned HOST_WIDE_INT val) { enum memmodel model = memmodel_from_int (val); bool strong; if (val & ~(unsigned HOST_WIDE_INT)(IX86_HLE_ACQUIRE|IX86_HLE_RELEASE |MEMMODEL_MASK) || ((val & IX86_HLE_ACQUIRE) && (val & IX86_HLE_RELEASE))) { warning (OPT_Winvalid_memory_model, "unknown architecture specific memory model"); return MEMMODEL_SEQ_CST; } strong = (is_mm_acq_rel (model) || is_mm_seq_cst (model)); if (val & IX86_HLE_ACQUIRE && !(is_mm_acquire (model) || strong)) { warning (OPT_Winvalid_memory_model, "% not used with % or stronger " "memory model"); return MEMMODEL_SEQ_CST | IX86_HLE_ACQUIRE; } if (val & IX86_HLE_RELEASE && !(is_mm_release (model) || strong)) { warning (OPT_Winvalid_memory_model, "% not used with % or stronger " "memory model"); return MEMMODEL_SEQ_CST | IX86_HLE_RELEASE; } return val; } /* Set CLONEI->vecsize_mangle, CLONEI->mask_mode, CLONEI->vecsize_int, CLONEI->vecsize_float and if CLONEI->simdlen is 0, also CLONEI->simdlen. Return 0 if SIMD clones shouldn't be emitted, or number of vecsize_mangle variants that should be emitted. */ static int ix86_simd_clone_compute_vecsize_and_simdlen (struct cgraph_node *node, struct cgraph_simd_clone *clonei, tree base_type, int num) { int ret = 1; if (clonei->simdlen && (clonei->simdlen < 2 || clonei->simdlen > 1024 || (clonei->simdlen & (clonei->simdlen - 1)) != 0)) { warning_at (DECL_SOURCE_LOCATION (node->decl), 0, "unsupported simdlen %d", clonei->simdlen); return 0; } tree ret_type = TREE_TYPE (TREE_TYPE (node->decl)); if (TREE_CODE (ret_type) != VOID_TYPE) switch (TYPE_MODE (ret_type)) { case E_QImode: case E_HImode: case E_SImode: case E_DImode: case E_SFmode: case E_DFmode: /* case E_SCmode: */ /* case E_DCmode: */ if (!AGGREGATE_TYPE_P (ret_type)) break; /* FALLTHRU */ default: warning_at (DECL_SOURCE_LOCATION (node->decl), 0, "unsupported return type %qT for simd", ret_type); return 0; } tree t; int i; tree type_arg_types = TYPE_ARG_TYPES (TREE_TYPE (node->decl)); bool decl_arg_p = (node->definition || type_arg_types == NULL_TREE); for (t = (decl_arg_p ? DECL_ARGUMENTS (node->decl) : type_arg_types), i = 0; t && t != void_list_node; t = TREE_CHAIN (t), i++) { tree arg_type = decl_arg_p ? TREE_TYPE (t) : TREE_VALUE (t); switch (TYPE_MODE (arg_type)) { case E_QImode: case E_HImode: case E_SImode: case E_DImode: case E_SFmode: case E_DFmode: /* case E_SCmode: */ /* case E_DCmode: */ if (!AGGREGATE_TYPE_P (arg_type)) break; /* FALLTHRU */ default: if (clonei->args[i].arg_type == SIMD_CLONE_ARG_TYPE_UNIFORM) break; warning_at (DECL_SOURCE_LOCATION (node->decl), 0, "unsupported argument type %qT for simd", arg_type); return 0; } } if (!TREE_PUBLIC (node->decl)) { /* If the function isn't exported, we can pick up just one ISA for the clones. */ if (TARGET_AVX512F) clonei->vecsize_mangle = 'e'; else if (TARGET_AVX2) clonei->vecsize_mangle = 'd'; else if (TARGET_AVX) clonei->vecsize_mangle = 'c'; else clonei->vecsize_mangle = 'b'; ret = 1; } else { clonei->vecsize_mangle = "bcde"[num]; ret = 4; } clonei->mask_mode = VOIDmode; switch (clonei->vecsize_mangle) { case 'b': clonei->vecsize_int = 128; clonei->vecsize_float = 128; break; case 'c': clonei->vecsize_int = 128; clonei->vecsize_float = 256; break; case 'd': clonei->vecsize_int = 256; clonei->vecsize_float = 256; break; case 'e': clonei->vecsize_int = 512; clonei->vecsize_float = 512; if (TYPE_MODE (base_type) == QImode) clonei->mask_mode = DImode; else clonei->mask_mode = SImode; break; } if (clonei->simdlen == 0) { if (SCALAR_INT_MODE_P (TYPE_MODE (base_type))) clonei->simdlen = clonei->vecsize_int; else clonei->simdlen = clonei->vecsize_float; clonei->simdlen /= GET_MODE_BITSIZE (TYPE_MODE (base_type)); } else if (clonei->simdlen > 16) { /* For compatibility with ICC, use the same upper bounds for simdlen. In particular, for CTYPE below, use the return type, unless the function returns void, in that case use the characteristic type. If it is possible for given SIMDLEN to pass CTYPE value in registers (8 [XYZ]MM* regs for 32-bit code, 16 [XYZ]MM* regs for 64-bit code), accept that SIMDLEN, otherwise warn and don't emit corresponding clone. */ tree ctype = ret_type; if (TREE_CODE (ret_type) == VOID_TYPE) ctype = base_type; int cnt = GET_MODE_BITSIZE (TYPE_MODE (ctype)) * clonei->simdlen; if (SCALAR_INT_MODE_P (TYPE_MODE (ctype))) cnt /= clonei->vecsize_int; else cnt /= clonei->vecsize_float; if (cnt > (TARGET_64BIT ? 16 : 8)) { warning_at (DECL_SOURCE_LOCATION (node->decl), 0, "unsupported simdlen %d", clonei->simdlen); return 0; } } return ret; } /* If SIMD clone NODE can't be used in a vectorized loop in current function, return -1, otherwise return a badness of using it (0 if it is most desirable from vecsize_mangle point of view, 1 slightly less desirable, etc.). */ static int ix86_simd_clone_usable (struct cgraph_node *node) { switch (node->simdclone->vecsize_mangle) { case 'b': if (!TARGET_SSE2) return -1; if (!TARGET_AVX) return 0; return TARGET_AVX2 ? 2 : 1; case 'c': if (!TARGET_AVX) return -1; return TARGET_AVX2 ? 1 : 0; case 'd': if (!TARGET_AVX2) return -1; return 0; case 'e': if (!TARGET_AVX512F) return -1; return 0; default: gcc_unreachable (); } } /* This function adjusts the unroll factor based on the hardware capabilities. For ex, bdver3 has a loop buffer which makes unrolling of smaller loops less important. This function decides the unroll factor using number of memory references (value 32 is used) as a heuristic. */ static unsigned ix86_loop_unroll_adjust (unsigned nunroll, class loop *loop) { basic_block *bbs; rtx_insn *insn; unsigned i; unsigned mem_count = 0; if (!TARGET_ADJUST_UNROLL) return nunroll; /* Count the number of memory references within the loop body. This value determines the unrolling factor for bdver3 and bdver4 architectures. */ subrtx_iterator::array_type array; bbs = get_loop_body (loop); for (i = 0; i < loop->num_nodes; i++) FOR_BB_INSNS (bbs[i], insn) if (NONDEBUG_INSN_P (insn)) FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST) if (const_rtx x = *iter) if (MEM_P (x)) { machine_mode mode = GET_MODE (x); unsigned int n_words = GET_MODE_SIZE (mode) / UNITS_PER_WORD; if (n_words > 4) mem_count += 2; else mem_count += 1; } free (bbs); if (mem_count && mem_count <=32) return MIN (nunroll, 32 / mem_count); return nunroll; } /* Implement TARGET_FLOAT_EXCEPTIONS_ROUNDING_SUPPORTED_P. */ static bool ix86_float_exceptions_rounding_supported_p (void) { /* For x87 floating point with standard excess precision handling, there is no adddf3 pattern (since x87 floating point only has XFmode operations) so the default hook implementation gets this wrong. */ return TARGET_80387 || (TARGET_SSE && TARGET_SSE_MATH); } /* Implement TARGET_ATOMIC_ASSIGN_EXPAND_FENV. */ static void ix86_atomic_assign_expand_fenv (tree *hold, tree *clear, tree *update) { if (!TARGET_80387 && !(TARGET_SSE && TARGET_SSE_MATH)) return; tree exceptions_var = create_tmp_var_raw (integer_type_node); if (TARGET_80387) { tree fenv_index_type = build_index_type (size_int (6)); tree fenv_type = build_array_type (unsigned_type_node, fenv_index_type); tree fenv_var = create_tmp_var_raw (fenv_type); TREE_ADDRESSABLE (fenv_var) = 1; tree fenv_ptr = build_pointer_type (fenv_type); tree fenv_addr = build1 (ADDR_EXPR, fenv_ptr, fenv_var); fenv_addr = fold_convert (ptr_type_node, fenv_addr); tree fnstenv = get_ix86_builtin (IX86_BUILTIN_FNSTENV); tree fldenv = get_ix86_builtin (IX86_BUILTIN_FLDENV); tree fnstsw = get_ix86_builtin (IX86_BUILTIN_FNSTSW); tree fnclex = get_ix86_builtin (IX86_BUILTIN_FNCLEX); tree hold_fnstenv = build_call_expr (fnstenv, 1, fenv_addr); tree hold_fnclex = build_call_expr (fnclex, 0); fenv_var = build4 (TARGET_EXPR, fenv_type, fenv_var, hold_fnstenv, NULL_TREE, NULL_TREE); *hold = build2 (COMPOUND_EXPR, void_type_node, fenv_var, hold_fnclex); *clear = build_call_expr (fnclex, 0); tree sw_var = create_tmp_var_raw (short_unsigned_type_node); tree fnstsw_call = build_call_expr (fnstsw, 0); tree sw_mod = build4 (TARGET_EXPR, short_unsigned_type_node, sw_var, fnstsw_call, NULL_TREE, NULL_TREE); tree exceptions_x87 = fold_convert (integer_type_node, sw_var); tree update_mod = build4 (TARGET_EXPR, integer_type_node, exceptions_var, exceptions_x87, NULL_TREE, NULL_TREE); *update = build2 (COMPOUND_EXPR, integer_type_node, sw_mod, update_mod); tree update_fldenv = build_call_expr (fldenv, 1, fenv_addr); *update = build2 (COMPOUND_EXPR, void_type_node, *update, update_fldenv); } if (TARGET_SSE && TARGET_SSE_MATH) { tree mxcsr_orig_var = create_tmp_var_raw (unsigned_type_node); tree mxcsr_mod_var = create_tmp_var_raw (unsigned_type_node); tree stmxcsr = get_ix86_builtin (IX86_BUILTIN_STMXCSR); tree ldmxcsr = get_ix86_builtin (IX86_BUILTIN_LDMXCSR); tree stmxcsr_hold_call = build_call_expr (stmxcsr, 0); tree hold_assign_orig = build4 (TARGET_EXPR, unsigned_type_node, mxcsr_orig_var, stmxcsr_hold_call, NULL_TREE, NULL_TREE); tree hold_mod_val = build2 (BIT_IOR_EXPR, unsigned_type_node, mxcsr_orig_var, build_int_cst (unsigned_type_node, 0x1f80)); hold_mod_val = build2 (BIT_AND_EXPR, unsigned_type_node, hold_mod_val, build_int_cst (unsigned_type_node, 0xffffffc0)); tree hold_assign_mod = build4 (TARGET_EXPR, unsigned_type_node, mxcsr_mod_var, hold_mod_val, NULL_TREE, NULL_TREE); tree ldmxcsr_hold_call = build_call_expr (ldmxcsr, 1, mxcsr_mod_var); tree hold_all = build2 (COMPOUND_EXPR, unsigned_type_node, hold_assign_orig, hold_assign_mod); hold_all = build2 (COMPOUND_EXPR, void_type_node, hold_all, ldmxcsr_hold_call); if (*hold) *hold = build2 (COMPOUND_EXPR, void_type_node, *hold, hold_all); else *hold = hold_all; tree ldmxcsr_clear_call = build_call_expr (ldmxcsr, 1, mxcsr_mod_var); if (*clear) *clear = build2 (COMPOUND_EXPR, void_type_node, *clear, ldmxcsr_clear_call); else *clear = ldmxcsr_clear_call; tree stxmcsr_update_call = build_call_expr (stmxcsr, 0); tree exceptions_sse = fold_convert (integer_type_node, stxmcsr_update_call); if (*update) { tree exceptions_mod = build2 (BIT_IOR_EXPR, integer_type_node, exceptions_var, exceptions_sse); tree exceptions_assign = build2 (MODIFY_EXPR, integer_type_node, exceptions_var, exceptions_mod); *update = build2 (COMPOUND_EXPR, integer_type_node, *update, exceptions_assign); } else *update = build4 (TARGET_EXPR, integer_type_node, exceptions_var, exceptions_sse, NULL_TREE, NULL_TREE); tree ldmxcsr_update_call = build_call_expr (ldmxcsr, 1, mxcsr_orig_var); *update = build2 (COMPOUND_EXPR, void_type_node, *update, ldmxcsr_update_call); } tree atomic_feraiseexcept = builtin_decl_implicit (BUILT_IN_ATOMIC_FERAISEEXCEPT); tree atomic_feraiseexcept_call = build_call_expr (atomic_feraiseexcept, 1, exceptions_var); *update = build2 (COMPOUND_EXPR, void_type_node, *update, atomic_feraiseexcept_call); } #if !TARGET_MACHO && !TARGET_DLLIMPORT_DECL_ATTRIBUTES /* For i386, common symbol is local only for non-PIE binaries. For x86-64, common symbol is local only for non-PIE binaries or linker supports copy reloc in PIE binaries. */ static bool ix86_binds_local_p (const_tree exp) { return default_binds_local_p_3 (exp, flag_shlib != 0, true, true, (!flag_pic || (TARGET_64BIT && HAVE_LD_PIE_COPYRELOC != 0))); } #endif /* If MEM is in the form of [base+offset], extract the two parts of address and set to BASE and OFFSET, otherwise return false. */ static bool extract_base_offset_in_addr (rtx mem, rtx *base, rtx *offset) { rtx addr; gcc_assert (MEM_P (mem)); addr = XEXP (mem, 0); if (GET_CODE (addr) == CONST) addr = XEXP (addr, 0); if (REG_P (addr) || GET_CODE (addr) == SYMBOL_REF) { *base = addr; *offset = const0_rtx; return true; } if (GET_CODE (addr) == PLUS && (REG_P (XEXP (addr, 0)) || GET_CODE (XEXP (addr, 0)) == SYMBOL_REF) && CONST_INT_P (XEXP (addr, 1))) { *base = XEXP (addr, 0); *offset = XEXP (addr, 1); return true; } return false; } /* Given OPERANDS of consecutive load/store, check if we can merge them into move multiple. LOAD is true if they are load instructions. MODE is the mode of memory operands. */ bool ix86_operands_ok_for_move_multiple (rtx *operands, bool load, machine_mode mode) { HOST_WIDE_INT offval_1, offval_2, msize; rtx mem_1, mem_2, reg_1, reg_2, base_1, base_2, offset_1, offset_2; if (load) { mem_1 = operands[1]; mem_2 = operands[3]; reg_1 = operands[0]; reg_2 = operands[2]; } else { mem_1 = operands[0]; mem_2 = operands[2]; reg_1 = operands[1]; reg_2 = operands[3]; } gcc_assert (REG_P (reg_1) && REG_P (reg_2)); if (REGNO (reg_1) != REGNO (reg_2)) return false; /* Check if the addresses are in the form of [base+offset]. */ if (!extract_base_offset_in_addr (mem_1, &base_1, &offset_1)) return false; if (!extract_base_offset_in_addr (mem_2, &base_2, &offset_2)) return false; /* Check if the bases are the same. */ if (!rtx_equal_p (base_1, base_2)) return false; offval_1 = INTVAL (offset_1); offval_2 = INTVAL (offset_2); msize = GET_MODE_SIZE (mode); /* Check if mem_1 is adjacent to mem_2 and mem_1 has lower address. */ if (offval_1 + msize != offval_2) return false; return true; } /* Implement the TARGET_OPTAB_SUPPORTED_P hook. */ static bool ix86_optab_supported_p (int op, machine_mode mode1, machine_mode, optimization_type opt_type) { switch (op) { case asin_optab: case acos_optab: case log1p_optab: case exp_optab: case exp10_optab: case exp2_optab: case expm1_optab: case ldexp_optab: case scalb_optab: case round_optab: return opt_type == OPTIMIZE_FOR_SPEED; case rint_optab: if (SSE_FLOAT_MODE_P (mode1) && TARGET_SSE_MATH && !flag_trapping_math && !TARGET_SSE4_1) return opt_type == OPTIMIZE_FOR_SPEED; return true; case floor_optab: case ceil_optab: case btrunc_optab: if (SSE_FLOAT_MODE_P (mode1) && TARGET_SSE_MATH && !flag_trapping_math && TARGET_SSE4_1) return true; return opt_type == OPTIMIZE_FOR_SPEED; case rsqrt_optab: return opt_type == OPTIMIZE_FOR_SPEED && use_rsqrt_p (); default: return true; } } /* Address space support. This is not "far pointers" in the 16-bit sense, but an easy way to use %fs and %gs segment prefixes. Therefore: (a) All address spaces have the same modes, (b) All address spaces have the same addresss forms, (c) While %fs and %gs are technically subsets of the generic address space, they are probably not subsets of each other. (d) Since we have no access to the segment base register values without resorting to a system call, we cannot convert a non-default address space to a default address space. Therefore we do not claim %fs or %gs are subsets of generic. Therefore we can (mostly) use the default hooks. */ /* All use of segmentation is assumed to make address 0 valid. */ static bool ix86_addr_space_zero_address_valid (addr_space_t as) { return as != ADDR_SPACE_GENERIC; } static void ix86_init_libfuncs (void) { if (TARGET_64BIT) { set_optab_libfunc (sdivmod_optab, TImode, "__divmodti4"); set_optab_libfunc (udivmod_optab, TImode, "__udivmodti4"); } else { set_optab_libfunc (sdivmod_optab, DImode, "__divmoddi4"); set_optab_libfunc (udivmod_optab, DImode, "__udivmoddi4"); } #if TARGET_MACHO darwin_rename_builtins (); #endif } /* Set the value of FLT_EVAL_METHOD in float.h. When using only the FPU, assume that the fpcw is set to extended precision; when using only SSE, rounding is correct; when using both SSE and the FPU, the rounding precision is indeterminate, since either may be chosen apparently at random. */ static enum flt_eval_method ix86_get_excess_precision (enum excess_precision_type type) { switch (type) { case EXCESS_PRECISION_TYPE_FAST: /* The fastest type to promote to will always be the native type, whether that occurs with implicit excess precision or otherwise. */ return FLT_EVAL_METHOD_PROMOTE_TO_FLOAT; case EXCESS_PRECISION_TYPE_STANDARD: case EXCESS_PRECISION_TYPE_IMPLICIT: /* Otherwise, the excess precision we want when we are in a standards compliant mode, and the implicit precision we provide would be identical were it not for the unpredictable cases. */ if (!TARGET_80387) return FLT_EVAL_METHOD_PROMOTE_TO_FLOAT; else if (!TARGET_MIX_SSE_I387) { if (!(TARGET_SSE && TARGET_SSE_MATH)) return FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE; else if (TARGET_SSE2) return FLT_EVAL_METHOD_PROMOTE_TO_FLOAT; } /* If we are in standards compliant mode, but we know we will calculate in unpredictable precision, return FLT_EVAL_METHOD_FLOAT. There is no reason to introduce explicit excess precision if the target can't guarantee it will honor it. */ return (type == EXCESS_PRECISION_TYPE_STANDARD ? FLT_EVAL_METHOD_PROMOTE_TO_FLOAT : FLT_EVAL_METHOD_UNPREDICTABLE); default: gcc_unreachable (); } return FLT_EVAL_METHOD_UNPREDICTABLE; } /* Implement PUSH_ROUNDING. On 386, we have pushw instruction that decrements by exactly 2 no matter what the position was, there is no pushb. But as CIE data alignment factor on this arch is -4 for 32bit targets and -8 for 64bit targets, we need to make sure all stack pointer adjustments are in multiple of 4 for 32bit targets and 8 for 64bit targets. */ poly_int64 ix86_push_rounding (poly_int64 bytes) { return ROUND_UP (bytes, UNITS_PER_WORD); } /* Target-specific selftests. */ #if CHECKING_P namespace selftest { /* Verify that hard regs are dumped as expected (in compact mode). */ static void ix86_test_dumping_hard_regs () { ASSERT_RTL_DUMP_EQ ("(reg:SI ax)", gen_raw_REG (SImode, 0)); ASSERT_RTL_DUMP_EQ ("(reg:SI dx)", gen_raw_REG (SImode, 1)); } /* Test dumping an insn with repeated references to the same SCRATCH, to verify the rtx_reuse code. */ static void ix86_test_dumping_memory_blockage () { set_new_first_and_last_insn (NULL, NULL); rtx pat = gen_memory_blockage (); rtx_reuse_manager r; r.preprocess (pat); /* Verify that the repeated references to the SCRATCH show use reuse IDS. The first should be prefixed with a reuse ID, and the second should be dumped as a "reuse_rtx" of that ID. The expected string assumes Pmode == DImode. */ if (Pmode == DImode) ASSERT_RTL_DUMP_EQ_WITH_REUSE ("(cinsn 1 (set (mem/v:BLK (0|scratch:DI) [0 A8])\n" " (unspec:BLK [\n" " (mem/v:BLK (reuse_rtx 0) [0 A8])\n" " ] UNSPEC_MEMORY_BLOCKAGE)))\n", pat, &r); } /* Verify loading an RTL dump; specifically a dump of copying a param on x86_64 from a hard reg into the frame. This test is target-specific since the dump contains target-specific hard reg names. */ static void ix86_test_loading_dump_fragment_1 () { rtl_dump_test t (SELFTEST_LOCATION, locate_file ("x86_64/copy-hard-reg-into-frame.rtl")); rtx_insn *insn = get_insn_by_uid (1); /* The block structure and indentation here is purely for readability; it mirrors the structure of the rtx. */ tree mem_expr; { rtx pat = PATTERN (insn); ASSERT_EQ (SET, GET_CODE (pat)); { rtx dest = SET_DEST (pat); ASSERT_EQ (MEM, GET_CODE (dest)); /* Verify the "/c" was parsed. */ ASSERT_TRUE (RTX_FLAG (dest, call)); ASSERT_EQ (SImode, GET_MODE (dest)); { rtx addr = XEXP (dest, 0); ASSERT_EQ (PLUS, GET_CODE (addr)); ASSERT_EQ (DImode, GET_MODE (addr)); { rtx lhs = XEXP (addr, 0); /* Verify that the "frame" REG was consolidated. */ ASSERT_RTX_PTR_EQ (frame_pointer_rtx, lhs); } { rtx rhs = XEXP (addr, 1); ASSERT_EQ (CONST_INT, GET_CODE (rhs)); ASSERT_EQ (-4, INTVAL (rhs)); } } /* Verify the "[1 i+0 S4 A32]" was parsed. */ ASSERT_EQ (1, MEM_ALIAS_SET (dest)); /* "i" should have been handled by synthesizing a global int variable named "i". */ mem_expr = MEM_EXPR (dest); ASSERT_NE (mem_expr, NULL); ASSERT_EQ (VAR_DECL, TREE_CODE (mem_expr)); ASSERT_EQ (integer_type_node, TREE_TYPE (mem_expr)); ASSERT_EQ (IDENTIFIER_NODE, TREE_CODE (DECL_NAME (mem_expr))); ASSERT_STREQ ("i", IDENTIFIER_POINTER (DECL_NAME (mem_expr))); /* "+0". */ ASSERT_TRUE (MEM_OFFSET_KNOWN_P (dest)); ASSERT_EQ (0, MEM_OFFSET (dest)); /* "S4". */ ASSERT_EQ (4, MEM_SIZE (dest)); /* "A32. */ ASSERT_EQ (32, MEM_ALIGN (dest)); } { rtx src = SET_SRC (pat); ASSERT_EQ (REG, GET_CODE (src)); ASSERT_EQ (SImode, GET_MODE (src)); ASSERT_EQ (5, REGNO (src)); tree reg_expr = REG_EXPR (src); /* "i" here should point to the same var as for the MEM_EXPR. */ ASSERT_EQ (reg_expr, mem_expr); } } } /* Verify that the RTL loader copes with a call_insn dump. This test is target-specific since the dump contains a target-specific hard reg name. */ static void ix86_test_loading_call_insn () { /* The test dump includes register "xmm0", where requires TARGET_SSE to exist. */ if (!TARGET_SSE) return; rtl_dump_test t (SELFTEST_LOCATION, locate_file ("x86_64/call-insn.rtl")); rtx_insn *insn = get_insns (); ASSERT_EQ (CALL_INSN, GET_CODE (insn)); /* "/j". */ ASSERT_TRUE (RTX_FLAG (insn, jump)); rtx pat = PATTERN (insn); ASSERT_EQ (CALL, GET_CODE (SET_SRC (pat))); /* Verify REG_NOTES. */ { /* "(expr_list:REG_CALL_DECL". */ ASSERT_EQ (EXPR_LIST, GET_CODE (REG_NOTES (insn))); rtx_expr_list *note0 = as_a (REG_NOTES (insn)); ASSERT_EQ (REG_CALL_DECL, REG_NOTE_KIND (note0)); /* "(expr_list:REG_EH_REGION (const_int 0 [0])". */ rtx_expr_list *note1 = note0->next (); ASSERT_EQ (REG_EH_REGION, REG_NOTE_KIND (note1)); ASSERT_EQ (NULL, note1->next ()); } /* Verify CALL_INSN_FUNCTION_USAGE. */ { /* "(expr_list:DF (use (reg:DF 21 xmm0))". */ rtx_expr_list *usage = as_a (CALL_INSN_FUNCTION_USAGE (insn)); ASSERT_EQ (EXPR_LIST, GET_CODE (usage)); ASSERT_EQ (DFmode, GET_MODE (usage)); ASSERT_EQ (USE, GET_CODE (usage->element ())); ASSERT_EQ (NULL, usage->next ()); } } /* Verify that the RTL loader copes a dump from print_rtx_function. This test is target-specific since the dump contains target-specific hard reg names. */ static void ix86_test_loading_full_dump () { rtl_dump_test t (SELFTEST_LOCATION, locate_file ("x86_64/times-two.rtl")); ASSERT_STREQ ("times_two", IDENTIFIER_POINTER (DECL_NAME (cfun->decl))); rtx_insn *insn_1 = get_insn_by_uid (1); ASSERT_EQ (NOTE, GET_CODE (insn_1)); rtx_insn *insn_7 = get_insn_by_uid (7); ASSERT_EQ (INSN, GET_CODE (insn_7)); ASSERT_EQ (PARALLEL, GET_CODE (PATTERN (insn_7))); rtx_insn *insn_15 = get_insn_by_uid (15); ASSERT_EQ (INSN, GET_CODE (insn_15)); ASSERT_EQ (USE, GET_CODE (PATTERN (insn_15))); /* Verify crtl->return_rtx. */ ASSERT_EQ (REG, GET_CODE (crtl->return_rtx)); ASSERT_EQ (0, REGNO (crtl->return_rtx)); ASSERT_EQ (SImode, GET_MODE (crtl->return_rtx)); } /* Verify that the RTL loader copes with UNSPEC and UNSPEC_VOLATILE insns. In particular, verify that it correctly loads the 2nd operand. This test is target-specific since these are machine-specific operands (and enums). */ static void ix86_test_loading_unspec () { rtl_dump_test t (SELFTEST_LOCATION, locate_file ("x86_64/unspec.rtl")); ASSERT_STREQ ("test_unspec", IDENTIFIER_POINTER (DECL_NAME (cfun->decl))); ASSERT_TRUE (cfun); /* Test of an UNSPEC. */ rtx_insn *insn = get_insns (); ASSERT_EQ (INSN, GET_CODE (insn)); rtx set = single_set (insn); ASSERT_NE (NULL, set); rtx dst = SET_DEST (set); ASSERT_EQ (MEM, GET_CODE (dst)); rtx src = SET_SRC (set); ASSERT_EQ (UNSPEC, GET_CODE (src)); ASSERT_EQ (BLKmode, GET_MODE (src)); ASSERT_EQ (UNSPEC_MEMORY_BLOCKAGE, XINT (src, 1)); rtx v0 = XVECEXP (src, 0, 0); /* Verify that the two uses of the first SCRATCH have pointer equality. */ rtx scratch_a = XEXP (dst, 0); ASSERT_EQ (SCRATCH, GET_CODE (scratch_a)); rtx scratch_b = XEXP (v0, 0); ASSERT_EQ (SCRATCH, GET_CODE (scratch_b)); ASSERT_EQ (scratch_a, scratch_b); /* Verify that the two mems are thus treated as equal. */ ASSERT_TRUE (rtx_equal_p (dst, v0)); /* Verify that the insn is recognized. */ ASSERT_NE(-1, recog_memoized (insn)); /* Test of an UNSPEC_VOLATILE, which has its own enum values. */ insn = NEXT_INSN (insn); ASSERT_EQ (INSN, GET_CODE (insn)); set = single_set (insn); ASSERT_NE (NULL, set); src = SET_SRC (set); ASSERT_EQ (UNSPEC_VOLATILE, GET_CODE (src)); ASSERT_EQ (UNSPECV_RDTSCP, XINT (src, 1)); } /* Run all target-specific selftests. */ static void ix86_run_selftests (void) { ix86_test_dumping_hard_regs (); ix86_test_dumping_memory_blockage (); /* Various tests of loading RTL dumps, here because they contain ix86-isms (e.g. names of hard regs). */ ix86_test_loading_dump_fragment_1 (); ix86_test_loading_call_insn (); ix86_test_loading_full_dump (); ix86_test_loading_unspec (); } } // namespace selftest #endif /* CHECKING_P */ /* Initialize the GCC target structure. */ #undef TARGET_RETURN_IN_MEMORY #define TARGET_RETURN_IN_MEMORY ix86_return_in_memory #undef TARGET_LEGITIMIZE_ADDRESS #define TARGET_LEGITIMIZE_ADDRESS ix86_legitimize_address #undef TARGET_ATTRIBUTE_TABLE #define TARGET_ATTRIBUTE_TABLE ix86_attribute_table #undef TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P #define TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P hook_bool_const_tree_true #if TARGET_DLLIMPORT_DECL_ATTRIBUTES # undef TARGET_MERGE_DECL_ATTRIBUTES # define TARGET_MERGE_DECL_ATTRIBUTES merge_dllimport_decl_attributes #endif #undef TARGET_COMP_TYPE_ATTRIBUTES #define TARGET_COMP_TYPE_ATTRIBUTES ix86_comp_type_attributes #undef TARGET_INIT_BUILTINS #define TARGET_INIT_BUILTINS ix86_init_builtins #undef TARGET_BUILTIN_DECL #define TARGET_BUILTIN_DECL ix86_builtin_decl #undef TARGET_EXPAND_BUILTIN #define TARGET_EXPAND_BUILTIN ix86_expand_builtin #undef TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION #define TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION \ ix86_builtin_vectorized_function #undef TARGET_VECTORIZE_BUILTIN_GATHER #define TARGET_VECTORIZE_BUILTIN_GATHER ix86_vectorize_builtin_gather #undef TARGET_VECTORIZE_BUILTIN_SCATTER #define TARGET_VECTORIZE_BUILTIN_SCATTER ix86_vectorize_builtin_scatter #undef TARGET_BUILTIN_RECIPROCAL #define TARGET_BUILTIN_RECIPROCAL ix86_builtin_reciprocal #undef TARGET_ASM_FUNCTION_EPILOGUE #define TARGET_ASM_FUNCTION_EPILOGUE ix86_output_function_epilogue #undef TARGET_ENCODE_SECTION_INFO #ifndef SUBTARGET_ENCODE_SECTION_INFO #define TARGET_ENCODE_SECTION_INFO ix86_encode_section_info #else #define TARGET_ENCODE_SECTION_INFO SUBTARGET_ENCODE_SECTION_INFO #endif #undef TARGET_ASM_OPEN_PAREN #define TARGET_ASM_OPEN_PAREN "" #undef TARGET_ASM_CLOSE_PAREN #define TARGET_ASM_CLOSE_PAREN "" #undef TARGET_ASM_BYTE_OP #define TARGET_ASM_BYTE_OP ASM_BYTE #undef TARGET_ASM_ALIGNED_HI_OP #define TARGET_ASM_ALIGNED_HI_OP ASM_SHORT #undef TARGET_ASM_ALIGNED_SI_OP #define TARGET_ASM_ALIGNED_SI_OP ASM_LONG #ifdef ASM_QUAD #undef TARGET_ASM_ALIGNED_DI_OP #define TARGET_ASM_ALIGNED_DI_OP ASM_QUAD #endif #undef TARGET_PROFILE_BEFORE_PROLOGUE #define TARGET_PROFILE_BEFORE_PROLOGUE ix86_profile_before_prologue #undef TARGET_MANGLE_DECL_ASSEMBLER_NAME #define TARGET_MANGLE_DECL_ASSEMBLER_NAME ix86_mangle_decl_assembler_name #undef TARGET_ASM_UNALIGNED_HI_OP #define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP #undef TARGET_ASM_UNALIGNED_SI_OP #define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP #undef TARGET_ASM_UNALIGNED_DI_OP #define TARGET_ASM_UNALIGNED_DI_OP TARGET_ASM_ALIGNED_DI_OP #undef TARGET_PRINT_OPERAND #define TARGET_PRINT_OPERAND ix86_print_operand #undef TARGET_PRINT_OPERAND_ADDRESS #define TARGET_PRINT_OPERAND_ADDRESS ix86_print_operand_address #undef TARGET_PRINT_OPERAND_PUNCT_VALID_P #define TARGET_PRINT_OPERAND_PUNCT_VALID_P ix86_print_operand_punct_valid_p #undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA #define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA i386_asm_output_addr_const_extra #undef TARGET_SCHED_INIT_GLOBAL #define TARGET_SCHED_INIT_GLOBAL ix86_sched_init_global #undef TARGET_SCHED_ADJUST_COST #define TARGET_SCHED_ADJUST_COST ix86_adjust_cost #undef TARGET_SCHED_ISSUE_RATE #define TARGET_SCHED_ISSUE_RATE ix86_issue_rate #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \ ia32_multipass_dfa_lookahead #undef TARGET_SCHED_MACRO_FUSION_P #define TARGET_SCHED_MACRO_FUSION_P ix86_macro_fusion_p #undef TARGET_SCHED_MACRO_FUSION_PAIR_P #define TARGET_SCHED_MACRO_FUSION_PAIR_P ix86_macro_fusion_pair_p #undef TARGET_FUNCTION_OK_FOR_SIBCALL #define TARGET_FUNCTION_OK_FOR_SIBCALL ix86_function_ok_for_sibcall #undef TARGET_MEMMODEL_CHECK #define TARGET_MEMMODEL_CHECK ix86_memmodel_check #undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV #define TARGET_ATOMIC_ASSIGN_EXPAND_FENV ix86_atomic_assign_expand_fenv #ifdef HAVE_AS_TLS #undef TARGET_HAVE_TLS #define TARGET_HAVE_TLS true #endif #undef TARGET_CANNOT_FORCE_CONST_MEM #define TARGET_CANNOT_FORCE_CONST_MEM ix86_cannot_force_const_mem #undef TARGET_USE_BLOCKS_FOR_CONSTANT_P #define TARGET_USE_BLOCKS_FOR_CONSTANT_P hook_bool_mode_const_rtx_true #undef TARGET_DELEGITIMIZE_ADDRESS #define TARGET_DELEGITIMIZE_ADDRESS ix86_delegitimize_address #undef TARGET_CONST_NOT_OK_FOR_DEBUG_P #define TARGET_CONST_NOT_OK_FOR_DEBUG_P ix86_const_not_ok_for_debug_p #undef TARGET_MS_BITFIELD_LAYOUT_P #define TARGET_MS_BITFIELD_LAYOUT_P ix86_ms_bitfield_layout_p #if TARGET_MACHO #undef TARGET_BINDS_LOCAL_P #define TARGET_BINDS_LOCAL_P darwin_binds_local_p #else #undef TARGET_BINDS_LOCAL_P #define TARGET_BINDS_LOCAL_P ix86_binds_local_p #endif #if TARGET_DLLIMPORT_DECL_ATTRIBUTES #undef TARGET_BINDS_LOCAL_P #define TARGET_BINDS_LOCAL_P i386_pe_binds_local_p #endif #undef TARGET_ASM_OUTPUT_MI_THUNK #define TARGET_ASM_OUTPUT_MI_THUNK x86_output_mi_thunk #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK #define TARGET_ASM_CAN_OUTPUT_MI_THUNK x86_can_output_mi_thunk #undef TARGET_ASM_FILE_START #define TARGET_ASM_FILE_START x86_file_start #undef TARGET_OPTION_OVERRIDE #define TARGET_OPTION_OVERRIDE ix86_option_override #undef TARGET_REGISTER_MOVE_COST #define TARGET_REGISTER_MOVE_COST ix86_register_move_cost #undef TARGET_MEMORY_MOVE_COST #define TARGET_MEMORY_MOVE_COST ix86_memory_move_cost #undef TARGET_RTX_COSTS #define TARGET_RTX_COSTS ix86_rtx_costs #undef TARGET_ADDRESS_COST #define TARGET_ADDRESS_COST ix86_address_cost #undef TARGET_FLAGS_REGNUM #define TARGET_FLAGS_REGNUM FLAGS_REG #undef TARGET_FIXED_CONDITION_CODE_REGS #define TARGET_FIXED_CONDITION_CODE_REGS ix86_fixed_condition_code_regs #undef TARGET_CC_MODES_COMPATIBLE #define TARGET_CC_MODES_COMPATIBLE ix86_cc_modes_compatible #undef TARGET_MACHINE_DEPENDENT_REORG #define TARGET_MACHINE_DEPENDENT_REORG ix86_reorg #undef TARGET_BUILD_BUILTIN_VA_LIST #define TARGET_BUILD_BUILTIN_VA_LIST ix86_build_builtin_va_list #undef TARGET_FOLD_BUILTIN #define TARGET_FOLD_BUILTIN ix86_fold_builtin #undef TARGET_GIMPLE_FOLD_BUILTIN #define TARGET_GIMPLE_FOLD_BUILTIN ix86_gimple_fold_builtin #undef TARGET_COMPARE_VERSION_PRIORITY #define TARGET_COMPARE_VERSION_PRIORITY ix86_compare_version_priority #undef TARGET_GENERATE_VERSION_DISPATCHER_BODY #define TARGET_GENERATE_VERSION_DISPATCHER_BODY \ ix86_generate_version_dispatcher_body #undef TARGET_GET_FUNCTION_VERSIONS_DISPATCHER #define TARGET_GET_FUNCTION_VERSIONS_DISPATCHER \ ix86_get_function_versions_dispatcher #undef TARGET_ENUM_VA_LIST_P #define TARGET_ENUM_VA_LIST_P ix86_enum_va_list #undef TARGET_FN_ABI_VA_LIST #define TARGET_FN_ABI_VA_LIST ix86_fn_abi_va_list #undef TARGET_CANONICAL_VA_LIST_TYPE #define TARGET_CANONICAL_VA_LIST_TYPE ix86_canonical_va_list_type #undef TARGET_EXPAND_BUILTIN_VA_START #define TARGET_EXPAND_BUILTIN_VA_START ix86_va_start #undef TARGET_MD_ASM_ADJUST #define TARGET_MD_ASM_ADJUST ix86_md_asm_adjust #undef TARGET_C_EXCESS_PRECISION #define TARGET_C_EXCESS_PRECISION ix86_get_excess_precision #undef TARGET_PROMOTE_PROTOTYPES #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true #undef TARGET_SETUP_INCOMING_VARARGS #define TARGET_SETUP_INCOMING_VARARGS ix86_setup_incoming_varargs #undef TARGET_MUST_PASS_IN_STACK #define TARGET_MUST_PASS_IN_STACK ix86_must_pass_in_stack #undef TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS #define TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS ix86_allocate_stack_slots_for_args #undef TARGET_FUNCTION_ARG_ADVANCE #define TARGET_FUNCTION_ARG_ADVANCE ix86_function_arg_advance #undef TARGET_FUNCTION_ARG #define TARGET_FUNCTION_ARG ix86_function_arg #undef TARGET_INIT_PIC_REG #define TARGET_INIT_PIC_REG ix86_init_pic_reg #undef TARGET_USE_PSEUDO_PIC_REG #define TARGET_USE_PSEUDO_PIC_REG ix86_use_pseudo_pic_reg #undef TARGET_FUNCTION_ARG_BOUNDARY #define TARGET_FUNCTION_ARG_BOUNDARY ix86_function_arg_boundary #undef TARGET_PASS_BY_REFERENCE #define TARGET_PASS_BY_REFERENCE ix86_pass_by_reference #undef TARGET_INTERNAL_ARG_POINTER #define TARGET_INTERNAL_ARG_POINTER ix86_internal_arg_pointer #undef TARGET_UPDATE_STACK_BOUNDARY #define TARGET_UPDATE_STACK_BOUNDARY ix86_update_stack_boundary #undef TARGET_GET_DRAP_RTX #define TARGET_GET_DRAP_RTX ix86_get_drap_rtx #undef TARGET_STRICT_ARGUMENT_NAMING #define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true #undef TARGET_STATIC_CHAIN #define TARGET_STATIC_CHAIN ix86_static_chain #undef TARGET_TRAMPOLINE_INIT #define TARGET_TRAMPOLINE_INIT ix86_trampoline_init #undef TARGET_RETURN_POPS_ARGS #define TARGET_RETURN_POPS_ARGS ix86_return_pops_args #undef TARGET_WARN_FUNC_RETURN #define TARGET_WARN_FUNC_RETURN ix86_warn_func_return #undef TARGET_LEGITIMATE_COMBINED_INSN #define TARGET_LEGITIMATE_COMBINED_INSN ix86_legitimate_combined_insn #undef TARGET_ASAN_SHADOW_OFFSET #define TARGET_ASAN_SHADOW_OFFSET ix86_asan_shadow_offset #undef TARGET_GIMPLIFY_VA_ARG_EXPR #define TARGET_GIMPLIFY_VA_ARG_EXPR ix86_gimplify_va_arg #undef TARGET_SCALAR_MODE_SUPPORTED_P #define TARGET_SCALAR_MODE_SUPPORTED_P ix86_scalar_mode_supported_p #undef TARGET_VECTOR_MODE_SUPPORTED_P #define TARGET_VECTOR_MODE_SUPPORTED_P ix86_vector_mode_supported_p #undef TARGET_C_MODE_FOR_SUFFIX #define TARGET_C_MODE_FOR_SUFFIX ix86_c_mode_for_suffix #ifdef HAVE_AS_TLS #undef TARGET_ASM_OUTPUT_DWARF_DTPREL #define TARGET_ASM_OUTPUT_DWARF_DTPREL i386_output_dwarf_dtprel #endif #ifdef SUBTARGET_INSERT_ATTRIBUTES #undef TARGET_INSERT_ATTRIBUTES #define TARGET_INSERT_ATTRIBUTES SUBTARGET_INSERT_ATTRIBUTES #endif #undef TARGET_MANGLE_TYPE #define TARGET_MANGLE_TYPE ix86_mangle_type #undef TARGET_STACK_PROTECT_GUARD #define TARGET_STACK_PROTECT_GUARD ix86_stack_protect_guard #if !TARGET_MACHO #undef TARGET_STACK_PROTECT_FAIL #define TARGET_STACK_PROTECT_FAIL ix86_stack_protect_fail #endif #undef TARGET_FUNCTION_VALUE #define TARGET_FUNCTION_VALUE ix86_function_value #undef TARGET_FUNCTION_VALUE_REGNO_P #define TARGET_FUNCTION_VALUE_REGNO_P ix86_function_value_regno_p #undef TARGET_PROMOTE_FUNCTION_MODE #define TARGET_PROMOTE_FUNCTION_MODE ix86_promote_function_mode #undef TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE #define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE ix86_override_options_after_change #undef TARGET_MEMBER_TYPE_FORCES_BLK #define TARGET_MEMBER_TYPE_FORCES_BLK ix86_member_type_forces_blk #undef TARGET_INSTANTIATE_DECLS #define TARGET_INSTANTIATE_DECLS ix86_instantiate_decls #undef TARGET_SECONDARY_RELOAD #define TARGET_SECONDARY_RELOAD ix86_secondary_reload #undef TARGET_SECONDARY_MEMORY_NEEDED #define TARGET_SECONDARY_MEMORY_NEEDED ix86_secondary_memory_needed #undef TARGET_SECONDARY_MEMORY_NEEDED_MODE #define TARGET_SECONDARY_MEMORY_NEEDED_MODE ix86_secondary_memory_needed_mode #undef TARGET_CLASS_MAX_NREGS #define TARGET_CLASS_MAX_NREGS ix86_class_max_nregs #undef TARGET_PREFERRED_RELOAD_CLASS #define TARGET_PREFERRED_RELOAD_CLASS ix86_preferred_reload_class #undef TARGET_PREFERRED_OUTPUT_RELOAD_CLASS #define TARGET_PREFERRED_OUTPUT_RELOAD_CLASS ix86_preferred_output_reload_class #undef TARGET_CLASS_LIKELY_SPILLED_P #define TARGET_CLASS_LIKELY_SPILLED_P ix86_class_likely_spilled_p #undef TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST #define TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST \ ix86_builtin_vectorization_cost #undef TARGET_VECTORIZE_VEC_PERM_CONST #define TARGET_VECTORIZE_VEC_PERM_CONST ix86_vectorize_vec_perm_const #undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE #define TARGET_VECTORIZE_PREFERRED_SIMD_MODE \ ix86_preferred_simd_mode #undef TARGET_VECTORIZE_SPLIT_REDUCTION #define TARGET_VECTORIZE_SPLIT_REDUCTION \ ix86_split_reduction #undef TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_MODES #define TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_MODES \ ix86_autovectorize_vector_modes #undef TARGET_VECTORIZE_GET_MASK_MODE #define TARGET_VECTORIZE_GET_MASK_MODE ix86_get_mask_mode #undef TARGET_VECTORIZE_INIT_COST #define TARGET_VECTORIZE_INIT_COST ix86_init_cost #undef TARGET_VECTORIZE_ADD_STMT_COST #define TARGET_VECTORIZE_ADD_STMT_COST ix86_add_stmt_cost #undef TARGET_VECTORIZE_FINISH_COST #define TARGET_VECTORIZE_FINISH_COST ix86_finish_cost #undef TARGET_VECTORIZE_DESTROY_COST_DATA #define TARGET_VECTORIZE_DESTROY_COST_DATA ix86_destroy_cost_data #undef TARGET_SET_CURRENT_FUNCTION #define TARGET_SET_CURRENT_FUNCTION ix86_set_current_function #undef TARGET_OPTION_VALID_ATTRIBUTE_P #define TARGET_OPTION_VALID_ATTRIBUTE_P ix86_valid_target_attribute_p #undef TARGET_OPTION_SAVE #define TARGET_OPTION_SAVE ix86_function_specific_save #undef TARGET_OPTION_RESTORE #define TARGET_OPTION_RESTORE ix86_function_specific_restore #undef TARGET_OPTION_POST_STREAM_IN #define TARGET_OPTION_POST_STREAM_IN ix86_function_specific_post_stream_in #undef TARGET_OPTION_PRINT #define TARGET_OPTION_PRINT ix86_function_specific_print #undef TARGET_OPTION_FUNCTION_VERSIONS #define TARGET_OPTION_FUNCTION_VERSIONS common_function_versions #undef TARGET_CAN_INLINE_P #define TARGET_CAN_INLINE_P ix86_can_inline_p #undef TARGET_LEGITIMATE_ADDRESS_P #define TARGET_LEGITIMATE_ADDRESS_P ix86_legitimate_address_p #undef TARGET_REGISTER_PRIORITY #define TARGET_REGISTER_PRIORITY ix86_register_priority #undef TARGET_REGISTER_USAGE_LEVELING_P #define TARGET_REGISTER_USAGE_LEVELING_P hook_bool_void_true #undef TARGET_LEGITIMATE_CONSTANT_P #define TARGET_LEGITIMATE_CONSTANT_P ix86_legitimate_constant_p #undef TARGET_COMPUTE_FRAME_LAYOUT #define TARGET_COMPUTE_FRAME_LAYOUT ix86_compute_frame_layout #undef TARGET_FRAME_POINTER_REQUIRED #define TARGET_FRAME_POINTER_REQUIRED ix86_frame_pointer_required #undef TARGET_CAN_ELIMINATE #define TARGET_CAN_ELIMINATE ix86_can_eliminate #undef TARGET_EXTRA_LIVE_ON_ENTRY #define TARGET_EXTRA_LIVE_ON_ENTRY ix86_live_on_entry #undef TARGET_ASM_CODE_END #define TARGET_ASM_CODE_END ix86_code_end #undef TARGET_CONDITIONAL_REGISTER_USAGE #define TARGET_CONDITIONAL_REGISTER_USAGE ix86_conditional_register_usage #undef TARGET_CANONICALIZE_COMPARISON #define TARGET_CANONICALIZE_COMPARISON ix86_canonicalize_comparison #undef TARGET_LOOP_UNROLL_ADJUST #define TARGET_LOOP_UNROLL_ADJUST ix86_loop_unroll_adjust /* Disabled due to PRs 70902, 71453, 71555, 71596 and 71657. */ #undef TARGET_SPILL_CLASS #define TARGET_SPILL_CLASS ix86_spill_class #undef TARGET_SIMD_CLONE_COMPUTE_VECSIZE_AND_SIMDLEN #define TARGET_SIMD_CLONE_COMPUTE_VECSIZE_AND_SIMDLEN \ ix86_simd_clone_compute_vecsize_and_simdlen #undef TARGET_SIMD_CLONE_ADJUST #define TARGET_SIMD_CLONE_ADJUST ix86_simd_clone_adjust #undef TARGET_SIMD_CLONE_USABLE #define TARGET_SIMD_CLONE_USABLE ix86_simd_clone_usable #undef TARGET_OMP_DEVICE_KIND_ARCH_ISA #define TARGET_OMP_DEVICE_KIND_ARCH_ISA ix86_omp_device_kind_arch_isa #undef TARGET_FLOAT_EXCEPTIONS_ROUNDING_SUPPORTED_P #define TARGET_FLOAT_EXCEPTIONS_ROUNDING_SUPPORTED_P \ ix86_float_exceptions_rounding_supported_p #undef TARGET_MODE_EMIT #define TARGET_MODE_EMIT ix86_emit_mode_set #undef TARGET_MODE_NEEDED #define TARGET_MODE_NEEDED ix86_mode_needed #undef TARGET_MODE_AFTER #define TARGET_MODE_AFTER ix86_mode_after #undef TARGET_MODE_ENTRY #define TARGET_MODE_ENTRY ix86_mode_entry #undef TARGET_MODE_EXIT #define TARGET_MODE_EXIT ix86_mode_exit #undef TARGET_MODE_PRIORITY #define TARGET_MODE_PRIORITY ix86_mode_priority #undef TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS #define TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS true #undef TARGET_OFFLOAD_OPTIONS #define TARGET_OFFLOAD_OPTIONS \ ix86_offload_options #undef TARGET_ABSOLUTE_BIGGEST_ALIGNMENT #define TARGET_ABSOLUTE_BIGGEST_ALIGNMENT 512 #undef TARGET_OPTAB_SUPPORTED_P #define TARGET_OPTAB_SUPPORTED_P ix86_optab_supported_p #undef TARGET_HARD_REGNO_SCRATCH_OK #define TARGET_HARD_REGNO_SCRATCH_OK ix86_hard_regno_scratch_ok #undef TARGET_CUSTOM_FUNCTION_DESCRIPTORS #define TARGET_CUSTOM_FUNCTION_DESCRIPTORS 1 #undef TARGET_ADDR_SPACE_ZERO_ADDRESS_VALID #define TARGET_ADDR_SPACE_ZERO_ADDRESS_VALID ix86_addr_space_zero_address_valid #undef TARGET_INIT_LIBFUNCS #define TARGET_INIT_LIBFUNCS ix86_init_libfuncs #undef TARGET_EXPAND_DIVMOD_LIBFUNC #define TARGET_EXPAND_DIVMOD_LIBFUNC ix86_expand_divmod_libfunc #undef TARGET_MAX_NOCE_IFCVT_SEQ_COST #define TARGET_MAX_NOCE_IFCVT_SEQ_COST ix86_max_noce_ifcvt_seq_cost #undef TARGET_NOCE_CONVERSION_PROFITABLE_P #define TARGET_NOCE_CONVERSION_PROFITABLE_P ix86_noce_conversion_profitable_p #undef TARGET_HARD_REGNO_NREGS #define TARGET_HARD_REGNO_NREGS ix86_hard_regno_nregs #undef TARGET_HARD_REGNO_MODE_OK #define TARGET_HARD_REGNO_MODE_OK ix86_hard_regno_mode_ok #undef TARGET_MODES_TIEABLE_P #define TARGET_MODES_TIEABLE_P ix86_modes_tieable_p #undef TARGET_HARD_REGNO_CALL_PART_CLOBBERED #define TARGET_HARD_REGNO_CALL_PART_CLOBBERED \ ix86_hard_regno_call_part_clobbered #undef TARGET_CAN_CHANGE_MODE_CLASS #define TARGET_CAN_CHANGE_MODE_CLASS ix86_can_change_mode_class #undef TARGET_STATIC_RTX_ALIGNMENT #define TARGET_STATIC_RTX_ALIGNMENT ix86_static_rtx_alignment #undef TARGET_CONSTANT_ALIGNMENT #define TARGET_CONSTANT_ALIGNMENT ix86_constant_alignment #undef TARGET_EMPTY_RECORD_P #define TARGET_EMPTY_RECORD_P ix86_is_empty_record #undef TARGET_WARN_PARAMETER_PASSING_ABI #define TARGET_WARN_PARAMETER_PASSING_ABI ix86_warn_parameter_passing_abi #undef TARGET_GET_MULTILIB_ABI_NAME #define TARGET_GET_MULTILIB_ABI_NAME \ ix86_get_multilib_abi_name static bool ix86_libc_has_fast_function (int fcode ATTRIBUTE_UNUSED) { #ifdef OPTION_GLIBC if (OPTION_GLIBC) return (built_in_function)fcode == BUILT_IN_MEMPCPY; else return false; #else return false; #endif } #undef TARGET_LIBC_HAS_FAST_FUNCTION #define TARGET_LIBC_HAS_FAST_FUNCTION ix86_libc_has_fast_function #if CHECKING_P #undef TARGET_RUN_TARGET_SELFTESTS #define TARGET_RUN_TARGET_SELFTESTS selftest::ix86_run_selftests #endif /* #if CHECKING_P */ struct gcc_target targetm = TARGET_INITIALIZER; #include "gt-i386.h"