//===-- tsan_rtl.cpp ------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer (TSan), a race detector. // // Main file (entry points) for the TSan run-time. //===----------------------------------------------------------------------===// #include "tsan_rtl.h" #include "sanitizer_common/sanitizer_atomic.h" #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_file.h" #include "sanitizer_common/sanitizer_libc.h" #include "sanitizer_common/sanitizer_placement_new.h" #include "sanitizer_common/sanitizer_stackdepot.h" #include "sanitizer_common/sanitizer_symbolizer.h" #include "tsan_defs.h" #include "tsan_interface.h" #include "tsan_mman.h" #include "tsan_platform.h" #include "tsan_suppressions.h" #include "tsan_symbolize.h" #include "ubsan/ubsan_init.h" volatile int __tsan_resumed = 0; extern "C" void __tsan_resume() { __tsan_resumed = 1; } namespace __tsan { #if !SANITIZER_GO void (*on_initialize)(void); int (*on_finalize)(int); #endif // XXX PR lib/58349 (https://gnats.NetBSD.org/58349): NetBSD ld.elf_so // doesn't support TLS alignment beyond void *, so we have to buffer // some extra space and do the alignment ourselves at all the reference // sites. #if !SANITIZER_GO && !SANITIZER_MAC __attribute__((tls_model("initial-exec"))) THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState) + SANITIZER_CACHE_LINE_SIZE - 1] ALIGNED( SANITIZER_CACHE_LINE_SIZE); #endif static char ctx_placeholder[sizeof(Context) + SANITIZER_CACHE_LINE_SIZE - 1] ALIGNED(SANITIZER_CACHE_LINE_SIZE); Context *ctx; // Can be overriden by a front-end. #ifdef TSAN_EXTERNAL_HOOKS bool OnFinalize(bool failed); void OnInitialize(); #else #include SANITIZER_WEAK_CXX_DEFAULT_IMPL bool OnFinalize(bool failed) { #if !SANITIZER_GO if (on_finalize) return on_finalize(failed); #endif return failed; } SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnInitialize() { #if !SANITIZER_GO if (on_initialize) on_initialize(); #endif } #endif static ThreadContextBase *CreateThreadContext(Tid tid) { // Map thread trace when context is created. char name[50]; internal_snprintf(name, sizeof(name), "trace %u", tid); MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event), name); const uptr hdr = GetThreadTraceHeader(tid); internal_snprintf(name, sizeof(name), "trace header %u", tid); MapThreadTrace(hdr, sizeof(Trace), name); new((void*)hdr) Trace(); // We are going to use only a small part of the trace with the default // value of history_size. However, the constructor writes to the whole trace. // Release the unused part. uptr hdr_end = hdr + sizeof(Trace); hdr_end -= sizeof(TraceHeader) * (kTraceParts - TraceParts()); hdr_end = RoundUp(hdr_end, GetPageSizeCached()); if (hdr_end < hdr + sizeof(Trace)) { ReleaseMemoryPagesToOS(hdr_end, hdr + sizeof(Trace)); uptr unused = hdr + sizeof(Trace) - hdr_end; if (hdr_end != (uptr)MmapFixedNoAccess(hdr_end, unused)) { Report("ThreadSanitizer: failed to mprotect [0x%zx-0x%zx) \n", hdr_end, unused); CHECK("unable to mprotect" && 0); } } return New(tid); } #if !SANITIZER_GO static const u32 kThreadQuarantineSize = 16; #else static const u32 kThreadQuarantineSize = 64; #endif Context::Context() : initialized(), report_mtx(MutexTypeReport), nreported(), thread_registry(CreateThreadContext, kMaxTid, kThreadQuarantineSize, kMaxTidReuse), racy_mtx(MutexTypeRacy), racy_stacks(), racy_addresses(), fired_suppressions_mtx(MutexTypeFired), clock_alloc(LINKER_INITIALIZED, "clock allocator") { fired_suppressions.reserve(8); } // The objects are allocated in TLS, so one may rely on zero-initialization. ThreadState::ThreadState(Context *ctx, Tid tid, int unique_id, u64 epoch, unsigned reuse_count, uptr stk_addr, uptr stk_size, uptr tls_addr, uptr tls_size) : fast_state(tid, epoch) // Do not touch these, rely on zero initialization, // they may be accessed before the ctor. // , ignore_reads_and_writes() // , ignore_interceptors() , clock(tid, reuse_count) #if !SANITIZER_GO , jmp_bufs() #endif , tid(tid), unique_id(unique_id), stk_addr(stk_addr), stk_size(stk_size), tls_addr(tls_addr), tls_size(tls_size) #if !SANITIZER_GO , last_sleep_clock(tid) #endif { CHECK_EQ(reinterpret_cast(this) % SANITIZER_CACHE_LINE_SIZE, 0); #if !SANITIZER_GO shadow_stack_pos = shadow_stack; shadow_stack_end = shadow_stack + kShadowStackSize; #else // Setup dynamic shadow stack. const int kInitStackSize = 8; shadow_stack = (uptr *)Alloc(kInitStackSize * sizeof(uptr)); shadow_stack_pos = shadow_stack; shadow_stack_end = shadow_stack + kInitStackSize; #endif } #if !SANITIZER_GO void MemoryProfiler(u64 uptime) { if (ctx->memprof_fd == kInvalidFd) return; InternalMmapVector buf(4096); WriteMemoryProfile(buf.data(), buf.size(), uptime); WriteToFile(ctx->memprof_fd, buf.data(), internal_strlen(buf.data())); } void InitializeMemoryProfiler() { ctx->memprof_fd = kInvalidFd; const char *fname = flags()->profile_memory; if (!fname || !fname[0]) return; if (internal_strcmp(fname, "stdout") == 0) { ctx->memprof_fd = 1; } else if (internal_strcmp(fname, "stderr") == 0) { ctx->memprof_fd = 2; } else { InternalScopedString filename; filename.append("%s.%d", fname, (int)internal_getpid()); ctx->memprof_fd = OpenFile(filename.data(), WrOnly); if (ctx->memprof_fd == kInvalidFd) { Printf("ThreadSanitizer: failed to open memory profile file '%s'\n", filename.data()); return; } } MemoryProfiler(0); MaybeSpawnBackgroundThread(); } static void *BackgroundThread(void *arg) { // This is a non-initialized non-user thread, nothing to see here. // We don't use ScopedIgnoreInterceptors, because we want ignores to be // enabled even when the thread function exits (e.g. during pthread thread // shutdown code). cur_thread_init()->ignore_interceptors++; const u64 kMs2Ns = 1000 * 1000; const u64 start = NanoTime(); u64 last_flush = NanoTime(); uptr last_rss = 0; for (int i = 0; atomic_load(&ctx->stop_background_thread, memory_order_relaxed) == 0; i++) { SleepForMillis(100); u64 now = NanoTime(); // Flush memory if requested. if (flags()->flush_memory_ms > 0) { if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) { VPrintf(1, "ThreadSanitizer: periodic memory flush\n"); FlushShadowMemory(); last_flush = NanoTime(); } } if (flags()->memory_limit_mb > 0) { uptr rss = GetRSS(); uptr limit = uptr(flags()->memory_limit_mb) << 20; VPrintf(1, "ThreadSanitizer: memory flush check" " RSS=%llu LAST=%llu LIMIT=%llu\n", (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20); if (2 * rss > limit + last_rss) { VPrintf(1, "ThreadSanitizer: flushing memory due to RSS\n"); FlushShadowMemory(); rss = GetRSS(); VPrintf(1, "ThreadSanitizer: memory flushed RSS=%llu\n", (u64)rss>>20); } last_rss = rss; } MemoryProfiler(now - start); // Flush symbolizer cache if requested. if (flags()->flush_symbolizer_ms > 0) { u64 last = atomic_load(&ctx->last_symbolize_time_ns, memory_order_relaxed); if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) { Lock l(&ctx->report_mtx); ScopedErrorReportLock l2; SymbolizeFlush(); atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed); } } } return nullptr; } static void StartBackgroundThread() { ctx->background_thread = internal_start_thread(&BackgroundThread, 0); } #ifndef __mips__ static void StopBackgroundThread() { atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed); internal_join_thread(ctx->background_thread); ctx->background_thread = 0; } #endif #endif void DontNeedShadowFor(uptr addr, uptr size) { ReleaseMemoryPagesToOS(reinterpret_cast(MemToShadow(addr)), reinterpret_cast(MemToShadow(addr + size))); } #if !SANITIZER_GO void UnmapShadow(ThreadState *thr, uptr addr, uptr size) { if (size == 0) return; DontNeedShadowFor(addr, size); ScopedGlobalProcessor sgp; ctx->metamap.ResetRange(thr->proc(), addr, size); } #endif void MapShadow(uptr addr, uptr size) { // Global data is not 64K aligned, but there are no adjacent mappings, // so we can get away with unaligned mapping. // CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment const uptr kPageSize = GetPageSizeCached(); uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), kPageSize); uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), kPageSize); if (!MmapFixedSuperNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow")) Die(); // Meta shadow is 2:1, so tread carefully. static bool data_mapped = false; static uptr mapped_meta_end = 0; uptr meta_begin = (uptr)MemToMeta(addr); uptr meta_end = (uptr)MemToMeta(addr + size); meta_begin = RoundDownTo(meta_begin, 64 << 10); meta_end = RoundUpTo(meta_end, 64 << 10); if (!data_mapped) { // First call maps data+bss. data_mapped = true; if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin, "meta shadow")) Die(); } else { // Mapping continuous heap. // Windows wants 64K alignment. meta_begin = RoundDownTo(meta_begin, 64 << 10); meta_end = RoundUpTo(meta_end, 64 << 10); if (meta_end <= mapped_meta_end) return; if (meta_begin < mapped_meta_end) meta_begin = mapped_meta_end; if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin, "meta shadow")) Die(); mapped_meta_end = meta_end; } VPrintf(2, "mapped meta shadow for (0x%zx-0x%zx) at (0x%zx-0x%zx)\n", addr, addr + size, meta_begin, meta_end); } void MapThreadTrace(uptr addr, uptr size, const char *name) { DPrintf("#0: Mapping trace at 0x%zx-0x%zx(0x%zx)\n", addr, addr + size, size); CHECK_GE(addr, TraceMemBeg()); CHECK_LE(addr + size, TraceMemEnd()); CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment if (!MmapFixedSuperNoReserve(addr, size, name)) { Printf("FATAL: ThreadSanitizer can not mmap thread trace (0x%zx/0x%zx)\n", addr, size); Die(); } } #if !SANITIZER_GO static void OnStackUnwind(const SignalContext &sig, const void *, BufferedStackTrace *stack) { stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context, common_flags()->fast_unwind_on_fatal); } static void TsanOnDeadlySignal(int signo, void *siginfo, void *context) { HandleDeadlySignal(siginfo, context, GetTid(), &OnStackUnwind, nullptr); } #endif void CheckUnwind() { // There is high probability that interceptors will check-fail as well, // on the other hand there is no sense in processing interceptors // since we are going to die soon. ScopedIgnoreInterceptors ignore; #if !SANITIZER_GO cur_thread()->ignore_sync++; cur_thread()->ignore_reads_and_writes++; #endif PrintCurrentStackSlow(StackTrace::GetCurrentPc()); } bool is_initialized; void Initialize(ThreadState *thr) { // Thread safe because done before all threads exist. if (is_initialized) return; is_initialized = true; // We are not ready to handle interceptors yet. ScopedIgnoreInterceptors ignore; SanitizerToolName = "ThreadSanitizer"; // Install tool-specific callbacks in sanitizer_common. SetCheckUnwindCallback(CheckUnwind); ctx = new(reinterpret_cast((reinterpret_cast(ctx_placeholder) + SANITIZER_CACHE_LINE_SIZE - 1) & ~static_cast(SANITIZER_CACHE_LINE_SIZE - 1))) Context; const char *env_name = SANITIZER_GO ? "GORACE" : "TSAN_OPTIONS"; const char *options = GetEnv(env_name); CacheBinaryName(); CheckASLR(); InitializeFlags(&ctx->flags, options, env_name); AvoidCVE_2016_2143(); __sanitizer::InitializePlatformEarly(); __tsan::InitializePlatformEarly(); #if !SANITIZER_GO // Re-exec ourselves if we need to set additional env or command line args. MaybeReexec(); InitializeAllocator(); ReplaceSystemMalloc(); #endif if (common_flags()->detect_deadlocks) ctx->dd = DDetector::Create(flags()); Processor *proc = ProcCreate(); ProcWire(proc, thr); InitializeInterceptors(); InitializePlatform(); InitializeDynamicAnnotations(); #if !SANITIZER_GO InitializeShadowMemory(); InitializeAllocatorLate(); InstallDeadlySignalHandlers(TsanOnDeadlySignal); #endif // Setup correct file descriptor for error reports. __sanitizer_set_report_path(common_flags()->log_path); InitializeSuppressions(); #if !SANITIZER_GO InitializeLibIgnore(); Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer); #endif VPrintf(1, "***** Running under ThreadSanitizer v2 (pid %d) *****\n", (int)internal_getpid()); // Initialize thread 0. Tid tid = ThreadCreate(thr, 0, 0, true); CHECK_EQ(tid, kMainTid); ThreadStart(thr, tid, GetTid(), ThreadType::Regular); #if TSAN_CONTAINS_UBSAN __ubsan::InitAsPlugin(); #endif ctx->initialized = true; #if !SANITIZER_GO Symbolizer::LateInitialize(); InitializeMemoryProfiler(); #endif if (flags()->stop_on_start) { Printf("ThreadSanitizer is suspended at startup (pid %d)." " Call __tsan_resume().\n", (int)internal_getpid()); while (__tsan_resumed == 0) {} } OnInitialize(); } void MaybeSpawnBackgroundThread() { // On MIPS, TSan initialization is run before // __pthread_initialize_minimal_internal() is finished, so we can not spawn // new threads. #if !SANITIZER_GO && !defined(__mips__) static atomic_uint32_t bg_thread = {}; if (atomic_load(&bg_thread, memory_order_relaxed) == 0 && atomic_exchange(&bg_thread, 1, memory_order_relaxed) == 0) { StartBackgroundThread(); SetSandboxingCallback(StopBackgroundThread); } #endif } int Finalize(ThreadState *thr) { bool failed = false; if (common_flags()->print_module_map == 1) DumpProcessMap(); if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1) SleepForMillis(flags()->atexit_sleep_ms); // Wait for pending reports. ctx->report_mtx.Lock(); { ScopedErrorReportLock l; } ctx->report_mtx.Unlock(); #if !SANITIZER_GO if (Verbosity()) AllocatorPrintStats(); #endif ThreadFinalize(thr); if (ctx->nreported) { failed = true; #if !SANITIZER_GO Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported); #else Printf("Found %d data race(s)\n", ctx->nreported); #endif } if (common_flags()->print_suppressions) PrintMatchedSuppressions(); failed = OnFinalize(failed); return failed ? common_flags()->exitcode : 0; } #if !SANITIZER_GO void ForkBefore(ThreadState *thr, uptr pc) NO_THREAD_SAFETY_ANALYSIS { ctx->thread_registry.Lock(); ctx->report_mtx.Lock(); ScopedErrorReportLock::Lock(); // Suppress all reports in the pthread_atfork callbacks. // Reports will deadlock on the report_mtx. // We could ignore sync operations as well, // but so far it's unclear if it will do more good or harm. // Unnecessarily ignoring things can lead to false positives later. thr->suppress_reports++; // On OS X, REAL(fork) can call intercepted functions (OSSpinLockLock), and // we'll assert in CheckNoLocks() unless we ignore interceptors. thr->ignore_interceptors++; } void ForkParentAfter(ThreadState *thr, uptr pc) NO_THREAD_SAFETY_ANALYSIS { thr->suppress_reports--; // Enabled in ForkBefore. thr->ignore_interceptors--; ScopedErrorReportLock::Unlock(); ctx->report_mtx.Unlock(); ctx->thread_registry.Unlock(); } void ForkChildAfter(ThreadState *thr, uptr pc, bool start_thread) NO_THREAD_SAFETY_ANALYSIS { thr->suppress_reports--; // Enabled in ForkBefore. thr->ignore_interceptors--; ScopedErrorReportLock::Unlock(); ctx->report_mtx.Unlock(); ctx->thread_registry.Unlock(); uptr nthread = 0; ctx->thread_registry.GetNumberOfThreads(0, 0, &nthread /* alive threads */); VPrintf(1, "ThreadSanitizer: forked new process with pid %d," " parent had %d threads\n", (int)internal_getpid(), (int)nthread); if (nthread == 1) { if (start_thread) StartBackgroundThread(); } else { // We've just forked a multi-threaded process. We cannot reasonably function // after that (some mutexes may be locked before fork). So just enable // ignores for everything in the hope that we will exec soon. ctx->after_multithreaded_fork = true; thr->ignore_interceptors++; ThreadIgnoreBegin(thr, pc); ThreadIgnoreSyncBegin(thr, pc); } } #endif #if SANITIZER_GO NOINLINE void GrowShadowStack(ThreadState *thr) { const int sz = thr->shadow_stack_end - thr->shadow_stack; const int newsz = 2 * sz; auto *newstack = (uptr *)Alloc(newsz * sizeof(uptr)); internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr)); Free(thr->shadow_stack); thr->shadow_stack = newstack; thr->shadow_stack_pos = newstack + sz; thr->shadow_stack_end = newstack + newsz; } #endif StackID CurrentStackId(ThreadState *thr, uptr pc) { if (!thr->is_inited) // May happen during bootstrap. return kInvalidStackID; if (pc != 0) { #if !SANITIZER_GO DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); #else if (thr->shadow_stack_pos == thr->shadow_stack_end) GrowShadowStack(thr); #endif thr->shadow_stack_pos[0] = pc; thr->shadow_stack_pos++; } StackID id = StackDepotPut( StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack)); if (pc != 0) thr->shadow_stack_pos--; return id; } namespace v3 { NOINLINE void TraceSwitchPart(ThreadState *thr) { Trace *trace = &thr->tctx->trace; Event *pos = reinterpret_cast(atomic_load_relaxed(&thr->trace_pos)); DCHECK_EQ(reinterpret_cast(pos + 1) & TracePart::kAlignment, 0); auto *part = trace->parts.Back(); DPrintf("TraceSwitchPart part=%p pos=%p\n", part, pos); if (part) { // We can get here when we still have space in the current trace part. // The fast-path check in TraceAcquire has false positives in the middle of // the part. Check if we are indeed at the end of the current part or not, // and fill any gaps with NopEvent's. Event *end = &part->events[TracePart::kSize]; DCHECK_GE(pos, &part->events[0]); DCHECK_LE(pos, end); if (pos + 1 < end) { if ((reinterpret_cast(pos) & TracePart::kAlignment) == TracePart::kAlignment) *pos++ = NopEvent; *pos++ = NopEvent; DCHECK_LE(pos + 2, end); atomic_store_relaxed(&thr->trace_pos, reinterpret_cast(pos)); // Ensure we setup trace so that the next TraceAcquire // won't detect trace part end. Event *ev; CHECK(TraceAcquire(thr, &ev)); return; } // We are indeed at the end. for (; pos < end; pos++) *pos = NopEvent; } #if !SANITIZER_GO if (ctx->after_multithreaded_fork) { // We just need to survive till exec. CHECK(part); atomic_store_relaxed(&thr->trace_pos, reinterpret_cast(&part->events[0])); return; } #endif part = new (MmapOrDie(sizeof(TracePart), "TracePart")) TracePart(); part->trace = trace; thr->trace_prev_pc = 0; { Lock lock(&trace->mtx); trace->parts.PushBack(part); atomic_store_relaxed(&thr->trace_pos, reinterpret_cast(&part->events[0])); } // Make this part self-sufficient by restoring the current stack // and mutex set in the beginning of the trace. TraceTime(thr); for (uptr *pos = &thr->shadow_stack[0]; pos < thr->shadow_stack_pos; pos++) CHECK(TryTraceFunc(thr, *pos)); for (uptr i = 0; i < thr->mset.Size(); i++) { MutexSet::Desc d = thr->mset.Get(i); TraceMutexLock(thr, d.write ? EventType::kLock : EventType::kRLock, 0, d.addr, d.stack_id); } } } // namespace v3 void TraceSwitch(ThreadState *thr) { #if !SANITIZER_GO if (ctx->after_multithreaded_fork) return; #endif thr->nomalloc++; Trace *thr_trace = ThreadTrace(thr->tid); Lock l(&thr_trace->mtx); unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts(); TraceHeader *hdr = &thr_trace->headers[trace]; hdr->epoch0 = thr->fast_state.epoch(); ObtainCurrentStack(thr, 0, &hdr->stack0); hdr->mset0 = thr->mset; thr->nomalloc--; } Trace *ThreadTrace(Tid tid) { return (Trace *)GetThreadTraceHeader(tid); } uptr TraceTopPC(ThreadState *thr) { Event *events = (Event*)GetThreadTrace(thr->tid); uptr pc = events[thr->fast_state.GetTracePos()]; return pc; } uptr TraceSize() { return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1)); } uptr TraceParts() { return TraceSize() / kTracePartSize; } #if !SANITIZER_GO extern "C" void __tsan_trace_switch() { TraceSwitch(cur_thread()); } extern "C" void __tsan_report_race() { ReportRace(cur_thread()); } #endif void ThreadIgnoreBegin(ThreadState *thr, uptr pc) { DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid); thr->ignore_reads_and_writes++; CHECK_GT(thr->ignore_reads_and_writes, 0); thr->fast_state.SetIgnoreBit(); #if !SANITIZER_GO if (pc && !ctx->after_multithreaded_fork) thr->mop_ignore_set.Add(CurrentStackId(thr, pc)); #endif } void ThreadIgnoreEnd(ThreadState *thr) { DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid); CHECK_GT(thr->ignore_reads_and_writes, 0); thr->ignore_reads_and_writes--; if (thr->ignore_reads_and_writes == 0) { thr->fast_state.ClearIgnoreBit(); #if !SANITIZER_GO thr->mop_ignore_set.Reset(); #endif } } #if !SANITIZER_GO extern "C" SANITIZER_INTERFACE_ATTRIBUTE uptr __tsan_testonly_shadow_stack_current_size() { ThreadState *thr = cur_thread(); return thr->shadow_stack_pos - thr->shadow_stack; } #endif void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc) { DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid); thr->ignore_sync++; CHECK_GT(thr->ignore_sync, 0); #if !SANITIZER_GO if (pc && !ctx->after_multithreaded_fork) thr->sync_ignore_set.Add(CurrentStackId(thr, pc)); #endif } void ThreadIgnoreSyncEnd(ThreadState *thr) { DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid); CHECK_GT(thr->ignore_sync, 0); thr->ignore_sync--; #if !SANITIZER_GO if (thr->ignore_sync == 0) thr->sync_ignore_set.Reset(); #endif } bool MD5Hash::operator==(const MD5Hash &other) const { return hash[0] == other.hash[0] && hash[1] == other.hash[1]; } #if SANITIZER_DEBUG void build_consistency_debug() {} #else void build_consistency_release() {} #endif } // namespace __tsan #if SANITIZER_CHECK_DEADLOCKS namespace __sanitizer { using namespace __tsan; MutexMeta mutex_meta[] = { {MutexInvalid, "Invalid", {}}, {MutexThreadRegistry, "ThreadRegistry", {}}, {MutexTypeTrace, "Trace", {MutexLeaf}}, {MutexTypeReport, "Report", {MutexTypeSyncVar}}, {MutexTypeSyncVar, "SyncVar", {}}, {MutexTypeAnnotations, "Annotations", {}}, {MutexTypeAtExit, "AtExit", {MutexTypeSyncVar}}, {MutexTypeFired, "Fired", {MutexLeaf}}, {MutexTypeRacy, "Racy", {MutexLeaf}}, {MutexTypeGlobalProc, "GlobalProc", {}}, {}, }; void PrintMutexPC(uptr pc) { StackTrace(&pc, 1).Print(); } } // namespace __sanitizer #endif