//===-- tsan_rtl_access.cpp -----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer (TSan), a race detector. // // Definitions of memory access and function entry/exit entry points. //===----------------------------------------------------------------------===// #include "tsan_rtl.h" namespace __tsan { namespace v3 { ALWAYS_INLINE USED bool TryTraceMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size, AccessType typ) { DCHECK(size == 1 || size == 2 || size == 4 || size == 8); if (!kCollectHistory) return true; EventAccess *ev; if (UNLIKELY(!TraceAcquire(thr, &ev))) return false; u64 size_log = size == 1 ? 0 : size == 2 ? 1 : size == 4 ? 2 : 3; uptr pc_delta = pc - thr->trace_prev_pc + (1 << (EventAccess::kPCBits - 1)); thr->trace_prev_pc = pc; if (LIKELY(pc_delta < (1 << EventAccess::kPCBits))) { ev->is_access = 1; ev->is_read = !!(typ & kAccessRead); ev->is_atomic = !!(typ & kAccessAtomic); ev->size_log = size_log; ev->pc_delta = pc_delta; DCHECK_EQ(ev->pc_delta, pc_delta); ev->addr = CompressAddr(addr); TraceRelease(thr, ev); return true; } auto *evex = reinterpret_cast(ev); evex->is_access = 0; evex->is_func = 0; evex->type = EventType::kAccessExt; evex->is_read = !!(typ & kAccessRead); evex->is_atomic = !!(typ & kAccessAtomic); evex->size_log = size_log; evex->addr = CompressAddr(addr); evex->pc = pc; TraceRelease(thr, evex); return true; } ALWAYS_INLINE USED bool TryTraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size, AccessType typ) { if (!kCollectHistory) return true; EventAccessRange *ev; if (UNLIKELY(!TraceAcquire(thr, &ev))) return false; thr->trace_prev_pc = pc; ev->is_access = 0; ev->is_func = 0; ev->type = EventType::kAccessRange; ev->is_read = !!(typ & kAccessRead); ev->is_free = !!(typ & kAccessFree); ev->size_lo = size; ev->pc = CompressAddr(pc); ev->addr = CompressAddr(addr); ev->size_hi = size >> EventAccessRange::kSizeLoBits; TraceRelease(thr, ev); return true; } void TraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size, AccessType typ) { if (LIKELY(TryTraceMemoryAccessRange(thr, pc, addr, size, typ))) return; TraceSwitchPart(thr); UNUSED bool res = TryTraceMemoryAccessRange(thr, pc, addr, size, typ); DCHECK(res); } void TraceFunc(ThreadState *thr, uptr pc) { if (LIKELY(TryTraceFunc(thr, pc))) return; TraceSwitchPart(thr); UNUSED bool res = TryTraceFunc(thr, pc); DCHECK(res); } void TraceMutexLock(ThreadState *thr, EventType type, uptr pc, uptr addr, StackID stk) { DCHECK(type == EventType::kLock || type == EventType::kRLock); if (!kCollectHistory) return; EventLock ev; ev.is_access = 0; ev.is_func = 0; ev.type = type; ev.pc = CompressAddr(pc); ev.stack_lo = stk; ev.stack_hi = stk >> EventLock::kStackIDLoBits; ev._ = 0; ev.addr = CompressAddr(addr); TraceEvent(thr, ev); } void TraceMutexUnlock(ThreadState *thr, uptr addr) { if (!kCollectHistory) return; EventUnlock ev; ev.is_access = 0; ev.is_func = 0; ev.type = EventType::kUnlock; ev._ = 0; ev.addr = CompressAddr(addr); TraceEvent(thr, ev); } void TraceTime(ThreadState *thr) { if (!kCollectHistory) return; EventTime ev; ev.is_access = 0; ev.is_func = 0; ev.type = EventType::kTime; ev.sid = static_cast(thr->sid); ev.epoch = static_cast(thr->epoch); ev._ = 0; TraceEvent(thr, ev); } } // namespace v3 ALWAYS_INLINE Shadow LoadShadow(u64 *p) { u64 raw = atomic_load((atomic_uint64_t *)p, memory_order_relaxed); return Shadow(raw); } ALWAYS_INLINE void StoreShadow(u64 *sp, u64 s) { atomic_store((atomic_uint64_t *)sp, s, memory_order_relaxed); } ALWAYS_INLINE void StoreIfNotYetStored(u64 *sp, u64 *s) { StoreShadow(sp, *s); *s = 0; } extern "C" void __tsan_report_race(); ALWAYS_INLINE void HandleRace(ThreadState *thr, u64 *shadow_mem, Shadow cur, Shadow old) { thr->racy_state[0] = cur.raw(); thr->racy_state[1] = old.raw(); thr->racy_shadow_addr = shadow_mem; #if !SANITIZER_GO HACKY_CALL(__tsan_report_race); #else ReportRace(thr); #endif } static inline bool HappensBefore(Shadow old, ThreadState *thr) { return thr->clock.get(old.TidWithIgnore()) >= old.epoch(); } ALWAYS_INLINE void MemoryAccessImpl1(ThreadState *thr, uptr addr, int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic, u64 *shadow_mem, Shadow cur) { // This potentially can live in an MMX/SSE scratch register. // The required intrinsics are: // __m128i _mm_move_epi64(__m128i*); // _mm_storel_epi64(u64*, __m128i); u64 store_word = cur.raw(); bool stored = false; // scan all the shadow values and dispatch to 4 categories: // same, replace, candidate and race (see comments below). // we consider only 3 cases regarding access sizes: // equal, intersect and not intersect. initially I considered // larger and smaller as well, it allowed to replace some // 'candidates' with 'same' or 'replace', but I think // it's just not worth it (performance- and complexity-wise). Shadow old(0); // It release mode we manually unroll the loop, // because empirically gcc generates better code this way. // However, we can't afford unrolling in debug mode, because the function // consumes almost 4K of stack. Gtest gives only 4K of stack to death test // threads, which is not enough for the unrolled loop. #if SANITIZER_DEBUG for (int idx = 0; idx < 4; idx++) { # include "tsan_update_shadow_word.inc" } #else int idx = 0; # include "tsan_update_shadow_word.inc" idx = 1; if (stored) { # include "tsan_update_shadow_word.inc" } else { # include "tsan_update_shadow_word.inc" } idx = 2; if (stored) { # include "tsan_update_shadow_word.inc" } else { # include "tsan_update_shadow_word.inc" } idx = 3; if (stored) { # include "tsan_update_shadow_word.inc" } else { # include "tsan_update_shadow_word.inc" } #endif // we did not find any races and had already stored // the current access info, so we are done if (LIKELY(stored)) return; // choose a random candidate slot and replace it StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word); return; RACE: HandleRace(thr, shadow_mem, cur, old); return; } void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size, AccessType typ) { DCHECK(!(typ & kAccessAtomic)); const bool kAccessIsWrite = !(typ & kAccessRead); const bool kIsAtomic = false; while (size) { int size1 = 1; int kAccessSizeLog = kSizeLog1; if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) { size1 = 8; kAccessSizeLog = kSizeLog8; } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) { size1 = 4; kAccessSizeLog = kSizeLog4; } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) { size1 = 2; kAccessSizeLog = kSizeLog2; } MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic); addr += size1; size -= size1; } } ALWAYS_INLINE bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) { Shadow cur(a); for (uptr i = 0; i < kShadowCnt; i++) { Shadow old(LoadShadow(&s[i])); if (Shadow::Addr0AndSizeAreEqual(cur, old) && old.TidWithIgnore() == cur.TidWithIgnore() && old.epoch() > sync_epoch && old.IsAtomic() == cur.IsAtomic() && old.IsRead() <= cur.IsRead()) return true; } return false; } #if TSAN_VECTORIZE # define SHUF(v0, v1, i0, i1, i2, i3) \ _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(v0), \ _mm_castsi128_ps(v1), \ (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64)) ALWAYS_INLINE bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) { // This is an optimized version of ContainsSameAccessSlow. // load current access into access[0:63] const m128 access = _mm_cvtsi64_si128(a); // duplicate high part of access in addr0: // addr0[0:31] = access[32:63] // addr0[32:63] = access[32:63] // addr0[64:95] = access[32:63] // addr0[96:127] = access[32:63] const m128 addr0 = SHUF(access, access, 1, 1, 1, 1); // load 4 shadow slots const m128 shadow0 = _mm_load_si128((__m128i *)s); const m128 shadow1 = _mm_load_si128((__m128i *)s + 1); // load high parts of 4 shadow slots into addr_vect: // addr_vect[0:31] = shadow0[32:63] // addr_vect[32:63] = shadow0[96:127] // addr_vect[64:95] = shadow1[32:63] // addr_vect[96:127] = shadow1[96:127] m128 addr_vect = SHUF(shadow0, shadow1, 1, 3, 1, 3); if (!is_write) { // set IsRead bit in addr_vect const m128 rw_mask1 = _mm_cvtsi64_si128(1 << 15); const m128 rw_mask = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0); addr_vect = _mm_or_si128(addr_vect, rw_mask); } // addr0 == addr_vect? const m128 addr_res = _mm_cmpeq_epi32(addr0, addr_vect); // epoch1[0:63] = sync_epoch const m128 epoch1 = _mm_cvtsi64_si128(sync_epoch); // epoch[0:31] = sync_epoch[0:31] // epoch[32:63] = sync_epoch[0:31] // epoch[64:95] = sync_epoch[0:31] // epoch[96:127] = sync_epoch[0:31] const m128 epoch = SHUF(epoch1, epoch1, 0, 0, 0, 0); // load low parts of shadow cell epochs into epoch_vect: // epoch_vect[0:31] = shadow0[0:31] // epoch_vect[32:63] = shadow0[64:95] // epoch_vect[64:95] = shadow1[0:31] // epoch_vect[96:127] = shadow1[64:95] const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2); // epoch_vect >= sync_epoch? const m128 epoch_res = _mm_cmpgt_epi32(epoch_vect, epoch); // addr_res & epoch_res const m128 res = _mm_and_si128(addr_res, epoch_res); // mask[0] = res[7] // mask[1] = res[15] // ... // mask[15] = res[127] const int mask = _mm_movemask_epi8(res); return mask != 0; } #endif ALWAYS_INLINE bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) { #if TSAN_VECTORIZE bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write); // NOTE: this check can fail if the shadow is concurrently mutated // by other threads. But it still can be useful if you modify // ContainsSameAccessFast and want to ensure that it's not completely broken. // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write)); return res; #else return ContainsSameAccessSlow(s, a, sync_epoch, is_write); #endif } ALWAYS_INLINE USED void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) { RawShadow *shadow_mem = MemToShadow(addr); DPrintf2( "#%d: MemoryAccess: @%p %p size=%d" " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n", (int)thr->fast_state.tid(), (void *)pc, (void *)addr, (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem, (uptr)shadow_mem[0], (uptr)shadow_mem[1], (uptr)shadow_mem[2], (uptr)shadow_mem[3]); #if SANITIZER_DEBUG if (!IsAppMem(addr)) { Printf("Access to non app mem %zx\n", addr); DCHECK(IsAppMem(addr)); } if (!IsShadowMem(shadow_mem)) { Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr); DCHECK(IsShadowMem(shadow_mem)); } #endif if (!SANITIZER_GO && !kAccessIsWrite && *shadow_mem == kShadowRodata) { // Access to .rodata section, no races here. // Measurements show that it can be 10-20% of all memory accesses. return; } FastState fast_state = thr->fast_state; if (UNLIKELY(fast_state.GetIgnoreBit())) { return; } Shadow cur(fast_state); cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog); cur.SetWrite(kAccessIsWrite); cur.SetAtomic(kIsAtomic); if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), thr->fast_synch_epoch, kAccessIsWrite))) { return; } if (kCollectHistory) { fast_state.IncrementEpoch(); thr->fast_state = fast_state; TraceAddEvent(thr, fast_state, EventTypeMop, pc); cur.IncrementEpoch(); } MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic, shadow_mem, cur); } // Called by MemoryAccessRange in tsan_rtl_thread.cpp ALWAYS_INLINE USED void MemoryAccessImpl(ThreadState *thr, uptr addr, int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic, u64 *shadow_mem, Shadow cur) { if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), thr->fast_synch_epoch, kAccessIsWrite))) { return; } MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic, shadow_mem, cur); } static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size, u64 val) { (void)thr; (void)pc; if (size == 0) return; // FIXME: fix me. uptr offset = addr % kShadowCell; if (offset) { offset = kShadowCell - offset; if (size <= offset) return; addr += offset; size -= offset; } DCHECK_EQ(addr % 8, 0); // If a user passes some insane arguments (memset(0)), // let it just crash as usual. if (!IsAppMem(addr) || !IsAppMem(addr + size - 1)) return; // Don't want to touch lots of shadow memory. // If a program maps 10MB stack, there is no need reset the whole range. size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1); // UnmapOrDie/MmapFixedNoReserve does not work on Windows. if (SANITIZER_WINDOWS || size < common_flags()->clear_shadow_mmap_threshold) { RawShadow *p = MemToShadow(addr); CHECK(IsShadowMem(p)); CHECK(IsShadowMem(p + size * kShadowCnt / kShadowCell - 1)); // FIXME: may overwrite a part outside the region for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) { p[i++] = val; for (uptr j = 1; j < kShadowCnt; j++) p[i++] = 0; } } else { // The region is big, reset only beginning and end. const uptr kPageSize = GetPageSizeCached(); RawShadow *begin = MemToShadow(addr); RawShadow *end = begin + size / kShadowCell * kShadowCnt; RawShadow *p = begin; // Set at least first kPageSize/2 to page boundary. while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) { *p++ = val; for (uptr j = 1; j < kShadowCnt; j++) *p++ = 0; } // Reset middle part. RawShadow *p1 = p; p = RoundDown(end, kPageSize); if (!MmapFixedSuperNoReserve((uptr)p1, (uptr)p - (uptr)p1)) Die(); // Set the ending. while (p < end) { *p++ = val; for (uptr j = 1; j < kShadowCnt; j++) *p++ = 0; } } } void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) { MemoryRangeSet(thr, pc, addr, size, 0); } void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) { // Processing more than 1k (4k of shadow) is expensive, // can cause excessive memory consumption (user does not necessary touch // the whole range) and most likely unnecessary. if (size > 1024) size = 1024; CHECK_EQ(thr->is_freeing, false); thr->is_freeing = true; MemoryAccessRange(thr, pc, addr, size, true); thr->is_freeing = false; if (kCollectHistory) { thr->fast_state.IncrementEpoch(); TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc); } Shadow s(thr->fast_state); s.ClearIgnoreBit(); s.MarkAsFreed(); s.SetWrite(true); s.SetAddr0AndSizeLog(0, 3); MemoryRangeSet(thr, pc, addr, size, s.raw()); } void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) { if (kCollectHistory) { thr->fast_state.IncrementEpoch(); TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc); } Shadow s(thr->fast_state); s.ClearIgnoreBit(); s.SetWrite(true); s.SetAddr0AndSizeLog(0, 3); MemoryRangeSet(thr, pc, addr, size, s.raw()); } void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) { if (thr->ignore_reads_and_writes == 0) MemoryRangeImitateWrite(thr, pc, addr, size); else MemoryResetRange(thr, pc, addr, size); } void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size, bool is_write) { if (size == 0) return; RawShadow *shadow_mem = MemToShadow(addr); DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_write=%d\n", thr->tid, (void *)pc, (void *)addr, (int)size, is_write); #if SANITIZER_DEBUG if (!IsAppMem(addr)) { Printf("Access to non app mem %zx\n", addr); DCHECK(IsAppMem(addr)); } if (!IsAppMem(addr + size - 1)) { Printf("Access to non app mem %zx\n", addr + size - 1); DCHECK(IsAppMem(addr + size - 1)); } if (!IsShadowMem(shadow_mem)) { Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr); DCHECK(IsShadowMem(shadow_mem)); } if (!IsShadowMem(shadow_mem + size * kShadowCnt / 8 - 1)) { Printf("Bad shadow addr %p (%zx)\n", shadow_mem + size * kShadowCnt / 8 - 1, addr + size - 1); DCHECK(IsShadowMem(shadow_mem + size * kShadowCnt / 8 - 1)); } #endif if (*shadow_mem == kShadowRodata) { DCHECK(!is_write); // Access to .rodata section, no races here. // Measurements show that it can be 10-20% of all memory accesses. return; } FastState fast_state = thr->fast_state; if (fast_state.GetIgnoreBit()) return; fast_state.IncrementEpoch(); thr->fast_state = fast_state; TraceAddEvent(thr, fast_state, EventTypeMop, pc); bool unaligned = (addr % kShadowCell) != 0; // Handle unaligned beginning, if any. for (; addr % kShadowCell && size; addr++, size--) { int const kAccessSizeLog = 0; Shadow cur(fast_state); cur.SetWrite(is_write); cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog); MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, shadow_mem, cur); } if (unaligned) shadow_mem += kShadowCnt; // Handle middle part, if any. for (; size >= kShadowCell; addr += kShadowCell, size -= kShadowCell) { int const kAccessSizeLog = 3; Shadow cur(fast_state); cur.SetWrite(is_write); cur.SetAddr0AndSizeLog(0, kAccessSizeLog); MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, shadow_mem, cur); shadow_mem += kShadowCnt; } // Handle ending, if any. for (; size; addr++, size--) { int const kAccessSizeLog = 0; Shadow cur(fast_state); cur.SetWrite(is_write); cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog); MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, shadow_mem, cur); } } } // namespace __tsan #if !SANITIZER_GO // Must be included in this file to make sure everything is inlined. # include "tsan_interface.inc" #endif