//===-- tsan_rtl_report.cpp -----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer (TSan), a race detector. // //===----------------------------------------------------------------------===// #include "sanitizer_common/sanitizer_libc.h" #include "sanitizer_common/sanitizer_placement_new.h" #include "sanitizer_common/sanitizer_stackdepot.h" #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_stacktrace.h" #include "tsan_platform.h" #include "tsan_rtl.h" #include "tsan_suppressions.h" #include "tsan_symbolize.h" #include "tsan_report.h" #include "tsan_sync.h" #include "tsan_mman.h" #include "tsan_flags.h" #include "tsan_fd.h" namespace __tsan { using namespace __sanitizer; static ReportStack *SymbolizeStack(StackTrace trace); // Can be overriden by an application/test to intercept reports. #ifdef TSAN_EXTERNAL_HOOKS bool OnReport(const ReportDesc *rep, bool suppressed); #else SANITIZER_WEAK_CXX_DEFAULT_IMPL bool OnReport(const ReportDesc *rep, bool suppressed) { (void)rep; return suppressed; } #endif SANITIZER_WEAK_DEFAULT_IMPL void __tsan_on_report(const ReportDesc *rep) { (void)rep; } static void StackStripMain(SymbolizedStack *frames) { SymbolizedStack *last_frame = nullptr; SymbolizedStack *last_frame2 = nullptr; for (SymbolizedStack *cur = frames; cur; cur = cur->next) { last_frame2 = last_frame; last_frame = cur; } if (last_frame2 == 0) return; #if !SANITIZER_GO const char *last = last_frame->info.function; const char *last2 = last_frame2->info.function; // Strip frame above 'main' if (last2 && 0 == internal_strcmp(last2, "main")) { last_frame->ClearAll(); last_frame2->next = nullptr; // Strip our internal thread start routine. } else if (last && 0 == internal_strcmp(last, "__tsan_thread_start_func")) { last_frame->ClearAll(); last_frame2->next = nullptr; // Strip global ctors init, .preinit_array and main caller. } else if (last && (0 == internal_strcmp(last, "__do_global_ctors_aux") || 0 == internal_strcmp(last, "__libc_csu_init") || 0 == internal_strcmp(last, "__libc_start_main"))) { last_frame->ClearAll(); last_frame2->next = nullptr; // If both are 0, then we probably just failed to symbolize. } else if (last || last2) { // Ensure that we recovered stack completely. Trimmed stack // can actually happen if we do not instrument some code, // so it's only a debug print. However we must try hard to not miss it // due to our fault. DPrintf("Bottom stack frame is missed\n"); } #else // The last frame always point into runtime (gosched0, goexit0, runtime.main). last_frame->ClearAll(); last_frame2->next = nullptr; #endif } ReportStack *SymbolizeStackId(u32 stack_id) { if (stack_id == 0) return 0; StackTrace stack = StackDepotGet(stack_id); if (stack.trace == nullptr) return nullptr; return SymbolizeStack(stack); } static ReportStack *SymbolizeStack(StackTrace trace) { if (trace.size == 0) return 0; SymbolizedStack *top = nullptr; for (uptr si = 0; si < trace.size; si++) { const uptr pc = trace.trace[si]; uptr pc1 = pc; // We obtain the return address, but we're interested in the previous // instruction. if ((pc & kExternalPCBit) == 0) pc1 = StackTrace::GetPreviousInstructionPc(pc); SymbolizedStack *ent = SymbolizeCode(pc1); CHECK_NE(ent, 0); SymbolizedStack *last = ent; while (last->next) { last->info.address = pc; // restore original pc for report last = last->next; } last->info.address = pc; // restore original pc for report last->next = top; top = ent; } StackStripMain(top); auto *stack = New(); stack->frames = top; return stack; } bool ShouldReport(ThreadState *thr, ReportType typ) { // We set thr->suppress_reports in the fork context. // Taking any locking in the fork context can lead to deadlocks. // If any locks are already taken, it's too late to do this check. CheckedMutex::CheckNoLocks(); // For the same reason check we didn't lock thread_registry yet. if (SANITIZER_DEBUG) ThreadRegistryLock l(&ctx->thread_registry); if (!flags()->report_bugs || thr->suppress_reports) return false; switch (typ) { case ReportTypeSignalUnsafe: return flags()->report_signal_unsafe; case ReportTypeThreadLeak: #if !SANITIZER_GO // It's impossible to join phantom threads // in the child after fork. if (ctx->after_multithreaded_fork) return false; #endif return flags()->report_thread_leaks; case ReportTypeMutexDestroyLocked: return flags()->report_destroy_locked; default: return true; } } ScopedReportBase::ScopedReportBase(ReportType typ, uptr tag) { ctx->thread_registry.CheckLocked(); rep_ = New(); rep_->typ = typ; rep_->tag = tag; ctx->report_mtx.Lock(); } ScopedReportBase::~ScopedReportBase() { ctx->report_mtx.Unlock(); DestroyAndFree(rep_); } void ScopedReportBase::AddStack(StackTrace stack, bool suppressable) { ReportStack **rs = rep_->stacks.PushBack(); *rs = SymbolizeStack(stack); (*rs)->suppressable = suppressable; } void ScopedReportBase::AddMemoryAccess(uptr addr, uptr external_tag, Shadow s, StackTrace stack, const MutexSet *mset) { auto *mop = New(); rep_->mops.PushBack(mop); mop->tid = s.tid(); mop->addr = addr + s.addr0(); mop->size = s.size(); mop->write = s.IsWrite(); mop->atomic = s.IsAtomic(); mop->stack = SymbolizeStack(stack); mop->external_tag = external_tag; if (mop->stack) mop->stack->suppressable = true; for (uptr i = 0; i < mset->Size(); i++) { MutexSet::Desc d = mset->Get(i); u64 mid = this->AddMutex(d.id); ReportMopMutex mtx = {mid, d.write}; mop->mset.PushBack(mtx); } } void ScopedReportBase::AddUniqueTid(Tid unique_tid) { rep_->unique_tids.PushBack(unique_tid); } void ScopedReportBase::AddThread(const ThreadContext *tctx, bool suppressable) { for (uptr i = 0; i < rep_->threads.Size(); i++) { if ((u32)rep_->threads[i]->id == tctx->tid) return; } auto *rt = New(); rep_->threads.PushBack(rt); rt->id = tctx->tid; rt->os_id = tctx->os_id; rt->running = (tctx->status == ThreadStatusRunning); rt->name = internal_strdup(tctx->name); rt->parent_tid = tctx->parent_tid; rt->thread_type = tctx->thread_type; rt->stack = 0; rt->stack = SymbolizeStackId(tctx->creation_stack_id); if (rt->stack) rt->stack->suppressable = suppressable; } #if !SANITIZER_GO static bool FindThreadByUidLockedCallback(ThreadContextBase *tctx, void *arg) { int unique_id = *(int *)arg; return tctx->unique_id == (u32)unique_id; } static ThreadContext *FindThreadByUidLocked(Tid unique_id) { ctx->thread_registry.CheckLocked(); return static_cast( ctx->thread_registry.FindThreadContextLocked( FindThreadByUidLockedCallback, &unique_id)); } static ThreadContext *FindThreadByTidLocked(Tid tid) { ctx->thread_registry.CheckLocked(); return static_cast( ctx->thread_registry.GetThreadLocked(tid)); } static bool IsInStackOrTls(ThreadContextBase *tctx_base, void *arg) { uptr addr = (uptr)arg; ThreadContext *tctx = static_cast(tctx_base); if (tctx->status != ThreadStatusRunning) return false; ThreadState *thr = tctx->thr; CHECK(thr); return ((addr >= thr->stk_addr && addr < thr->stk_addr + thr->stk_size) || (addr >= thr->tls_addr && addr < thr->tls_addr + thr->tls_size)); } ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack) { ctx->thread_registry.CheckLocked(); ThreadContext *tctx = static_cast(ctx->thread_registry.FindThreadContextLocked( IsInStackOrTls, (void *)addr)); if (!tctx) return 0; ThreadState *thr = tctx->thr; CHECK(thr); *is_stack = (addr >= thr->stk_addr && addr < thr->stk_addr + thr->stk_size); return tctx; } #endif void ScopedReportBase::AddThread(Tid unique_tid, bool suppressable) { #if !SANITIZER_GO if (const ThreadContext *tctx = FindThreadByUidLocked(unique_tid)) AddThread(tctx, suppressable); #endif } void ScopedReportBase::AddMutex(const SyncVar *s) { for (uptr i = 0; i < rep_->mutexes.Size(); i++) { if (rep_->mutexes[i]->id == s->uid) return; } auto *rm = New(); rep_->mutexes.PushBack(rm); rm->id = s->uid; rm->addr = s->addr; rm->destroyed = false; rm->stack = SymbolizeStackId(s->creation_stack_id); } u64 ScopedReportBase::AddMutex(u64 id) { u64 uid = 0; u64 mid = id; uptr addr = SyncVar::SplitId(id, &uid); SyncVar *s = ctx->metamap.GetSyncIfExists(addr); // Check that the mutex is still alive. // Another mutex can be created at the same address, // so check uid as well. if (s && s->CheckId(uid)) { Lock l(&s->mtx); mid = s->uid; AddMutex(s); } else { AddDeadMutex(id); } return mid; } void ScopedReportBase::AddDeadMutex(u64 id) { for (uptr i = 0; i < rep_->mutexes.Size(); i++) { if (rep_->mutexes[i]->id == id) return; } auto *rm = New(); rep_->mutexes.PushBack(rm); rm->id = id; rm->addr = 0; rm->destroyed = true; rm->stack = 0; } void ScopedReportBase::AddLocation(uptr addr, uptr size) { if (addr == 0) return; #if !SANITIZER_GO int fd = -1; Tid creat_tid = kInvalidTid; StackID creat_stack = 0; if (FdLocation(addr, &fd, &creat_tid, &creat_stack)) { auto *loc = New(); loc->type = ReportLocationFD; loc->fd = fd; loc->tid = creat_tid; loc->stack = SymbolizeStackId(creat_stack); rep_->locs.PushBack(loc); ThreadContext *tctx = FindThreadByUidLocked(creat_tid); if (tctx) AddThread(tctx); return; } MBlock *b = 0; uptr block_begin = 0; Allocator *a = allocator(); if (a->PointerIsMine((void*)addr)) { block_begin = (uptr)a->GetBlockBegin((void *)addr); if (block_begin) b = ctx->metamap.GetBlock(block_begin); } if (!b) b = JavaHeapBlock(addr, &block_begin); if (b != 0) { ThreadContext *tctx = FindThreadByTidLocked(b->tid); auto *loc = New(); loc->type = ReportLocationHeap; loc->heap_chunk_start = (uptr)allocator()->GetBlockBegin((void *)addr); loc->heap_chunk_size = b->siz; loc->external_tag = b->tag; loc->tid = tctx ? tctx->tid : b->tid; loc->stack = SymbolizeStackId(b->stk); rep_->locs.PushBack(loc); if (tctx) AddThread(tctx); return; } bool is_stack = false; if (ThreadContext *tctx = IsThreadStackOrTls(addr, &is_stack)) { auto *loc = New(); loc->type = is_stack ? ReportLocationStack : ReportLocationTLS; loc->tid = tctx->tid; rep_->locs.PushBack(loc); AddThread(tctx); } #endif if (ReportLocation *loc = SymbolizeData(addr)) { loc->suppressable = true; rep_->locs.PushBack(loc); return; } } #if !SANITIZER_GO void ScopedReportBase::AddSleep(StackID stack_id) { rep_->sleep = SymbolizeStackId(stack_id); } #endif void ScopedReportBase::SetCount(int count) { rep_->count = count; } const ReportDesc *ScopedReportBase::GetReport() const { return rep_; } ScopedReport::ScopedReport(ReportType typ, uptr tag) : ScopedReportBase(typ, tag) {} ScopedReport::~ScopedReport() {} void RestoreStack(Tid tid, const u64 epoch, VarSizeStackTrace *stk, MutexSet *mset, uptr *tag) { // This function restores stack trace and mutex set for the thread/epoch. // It does so by getting stack trace and mutex set at the beginning of // trace part, and then replaying the trace till the given epoch. Trace* trace = ThreadTrace(tid); ReadLock l(&trace->mtx); const int partidx = (epoch / kTracePartSize) % TraceParts(); TraceHeader* hdr = &trace->headers[partidx]; if (epoch < hdr->epoch0 || epoch >= hdr->epoch0 + kTracePartSize) return; CHECK_EQ(RoundDown(epoch, kTracePartSize), hdr->epoch0); const u64 epoch0 = RoundDown(epoch, TraceSize()); const u64 eend = epoch % TraceSize(); const u64 ebegin = RoundDown(eend, kTracePartSize); DPrintf("#%d: RestoreStack epoch=%zu ebegin=%zu eend=%zu partidx=%d\n", tid, (uptr)epoch, (uptr)ebegin, (uptr)eend, partidx); Vector stack; stack.Resize(hdr->stack0.size + 64); for (uptr i = 0; i < hdr->stack0.size; i++) { stack[i] = hdr->stack0.trace[i]; DPrintf2(" #%02zu: pc=%zx\n", i, stack[i]); } if (mset) *mset = hdr->mset0; uptr pos = hdr->stack0.size; Event *events = (Event*)GetThreadTrace(tid); for (uptr i = ebegin; i <= eend; i++) { Event ev = events[i]; EventType typ = (EventType)(ev >> kEventPCBits); uptr pc = (uptr)(ev & ((1ull << kEventPCBits) - 1)); DPrintf2(" %zu typ=%d pc=%zx\n", i, typ, pc); if (typ == EventTypeMop) { stack[pos] = pc; } else if (typ == EventTypeFuncEnter) { if (stack.Size() < pos + 2) stack.Resize(pos + 2); stack[pos++] = pc; } else if (typ == EventTypeFuncExit) { if (pos > 0) pos--; } if (mset) { if (typ == EventTypeLock) { mset->Add(pc, true, epoch0 + i); } else if (typ == EventTypeUnlock) { mset->Del(pc, true); } else if (typ == EventTypeRLock) { mset->Add(pc, false, epoch0 + i); } else if (typ == EventTypeRUnlock) { mset->Del(pc, false); } } for (uptr j = 0; j <= pos; j++) DPrintf2(" #%zu: %zx\n", j, stack[j]); } if (pos == 0 && stack[0] == 0) return; pos++; stk->Init(&stack[0], pos); ExtractTagFromStack(stk, tag); } namespace v3 { // Replays the trace up to last_pos position in the last part // or up to the provided epoch/sid (whichever is earlier) // and calls the provided function f for each event. template void TraceReplay(Trace *trace, TracePart *last, Event *last_pos, Sid sid, Epoch epoch, Func f) { TracePart *part = trace->parts.Front(); Sid ev_sid = kFreeSid; Epoch ev_epoch = kEpochOver; for (;;) { DCHECK_EQ(part->trace, trace); // Note: an event can't start in the last element. // Since an event can take up to 2 elements, // we ensure we have at least 2 before adding an event. Event *end = &part->events[TracePart::kSize - 1]; if (part == last) end = last_pos; for (Event *evp = &part->events[0]; evp < end; evp++) { Event *evp0 = evp; if (!evp->is_access && !evp->is_func) { switch (evp->type) { case EventType::kTime: { auto *ev = reinterpret_cast(evp); ev_sid = static_cast(ev->sid); ev_epoch = static_cast(ev->epoch); if (ev_sid == sid && ev_epoch > epoch) return; break; } case EventType::kAccessExt: FALLTHROUGH; case EventType::kAccessRange: FALLTHROUGH; case EventType::kLock: FALLTHROUGH; case EventType::kRLock: // These take 2 Event elements. evp++; break; case EventType::kUnlock: // This takes 1 Event element. break; } } CHECK_NE(ev_sid, kFreeSid); CHECK_NE(ev_epoch, kEpochOver); f(ev_sid, ev_epoch, evp0); } if (part == last) return; part = trace->parts.Next(part); CHECK(part); } CHECK(0); } static void RestoreStackMatch(VarSizeStackTrace *pstk, MutexSet *pmset, Vector *stack, MutexSet *mset, uptr pc, bool *found) { DPrintf2(" MATCHED\n"); *pmset = *mset; stack->PushBack(pc); pstk->Init(&(*stack)[0], stack->Size()); stack->PopBack(); *found = true; } // Checks if addr1|size1 is fully contained in addr2|size2. // We check for fully contained instread of just overlapping // because a memory access is always traced once, but can be // split into multiple accesses in the shadow. static constexpr bool IsWithinAccess(uptr addr1, uptr size1, uptr addr2, uptr size2) { return addr1 >= addr2 && addr1 + size1 <= addr2 + size2; } // Replays the trace of thread tid up to the target event identified // by sid/epoch/addr/size/typ and restores and returns stack, mutex set // and tag for that event. If there are multiple such events, it returns // the last one. Returns false if the event is not present in the trace. bool RestoreStack(Tid tid, EventType type, Sid sid, Epoch epoch, uptr addr, uptr size, AccessType typ, VarSizeStackTrace *pstk, MutexSet *pmset, uptr *ptag) { // This function restores stack trace and mutex set for the thread/epoch. // It does so by getting stack trace and mutex set at the beginning of // trace part, and then replaying the trace till the given epoch. DPrintf2("RestoreStack: tid=%u sid=%u@%u addr=0x%zx/%zu typ=%x\n", tid, static_cast(sid), static_cast(epoch), addr, size, static_cast(typ)); ctx->slot_mtx.CheckLocked(); // needed to prevent trace part recycling ctx->thread_registry.CheckLocked(); ThreadContext *tctx = static_cast(ctx->thread_registry.GetThreadLocked(tid)); Trace *trace = &tctx->trace; // Snapshot first/last parts and the current position in the last part. TracePart *first_part; TracePart *last_part; Event *last_pos; { Lock lock(&trace->mtx); first_part = trace->parts.Front(); if (!first_part) return false; last_part = trace->parts.Back(); last_pos = trace->final_pos; if (tctx->thr) last_pos = (Event *)atomic_load_relaxed(&tctx->thr->trace_pos); } DynamicMutexSet mset; Vector stack; uptr prev_pc = 0; bool found = false; bool is_read = typ & kAccessRead; bool is_atomic = typ & kAccessAtomic; bool is_free = typ & kAccessFree; TraceReplay( trace, last_part, last_pos, sid, epoch, [&](Sid ev_sid, Epoch ev_epoch, Event *evp) { bool match = ev_sid == sid && ev_epoch == epoch; if (evp->is_access) { if (evp->is_func == 0 && evp->type == EventType::kAccessExt && evp->_ == 0) // NopEvent return; auto *ev = reinterpret_cast(evp); uptr ev_addr = RestoreAddr(ev->addr); uptr ev_size = 1 << ev->size_log; uptr ev_pc = prev_pc + ev->pc_delta - (1 << (EventAccess::kPCBits - 1)); prev_pc = ev_pc; DPrintf2(" Access: pc=0x%zx addr=0x%zx/%zu type=%u/%u\n", ev_pc, ev_addr, ev_size, ev->is_read, ev->is_atomic); if (match && type == EventType::kAccessExt && IsWithinAccess(addr, size, ev_addr, ev_size) && is_read == ev->is_read && is_atomic == ev->is_atomic && !is_free) RestoreStackMatch(pstk, pmset, &stack, mset, ev_pc, &found); return; } if (evp->is_func) { auto *ev = reinterpret_cast(evp); if (ev->pc) { DPrintf2(" FuncEnter: pc=0x%llx\n", ev->pc); stack.PushBack(ev->pc); } else { DPrintf2(" FuncExit\n"); CHECK(stack.Size()); stack.PopBack(); } return; } switch (evp->type) { case EventType::kAccessExt: { auto *ev = reinterpret_cast(evp); uptr ev_addr = RestoreAddr(ev->addr); uptr ev_size = 1 << ev->size_log; prev_pc = ev->pc; DPrintf2(" AccessExt: pc=0x%llx addr=0x%zx/%zu type=%u/%u\n", ev->pc, ev_addr, ev_size, ev->is_read, ev->is_atomic); if (match && type == EventType::kAccessExt && IsWithinAccess(addr, size, ev_addr, ev_size) && is_read == ev->is_read && is_atomic == ev->is_atomic && !is_free) RestoreStackMatch(pstk, pmset, &stack, mset, ev->pc, &found); break; } case EventType::kAccessRange: { auto *ev = reinterpret_cast(evp); uptr ev_addr = RestoreAddr(ev->addr); uptr ev_size = (ev->size_hi << EventAccessRange::kSizeLoBits) + ev->size_lo; uptr ev_pc = RestoreAddr(ev->pc); prev_pc = ev_pc; DPrintf2(" Range: pc=0x%zx addr=0x%zx/%zu type=%u/%u\n", ev_pc, ev_addr, ev_size, ev->is_read, ev->is_free); if (match && type == EventType::kAccessExt && IsWithinAccess(addr, size, ev_addr, ev_size) && is_read == ev->is_read && !is_atomic && is_free == ev->is_free) RestoreStackMatch(pstk, pmset, &stack, mset, ev_pc, &found); break; } case EventType::kLock: FALLTHROUGH; case EventType::kRLock: { auto *ev = reinterpret_cast(evp); bool is_write = ev->type == EventType::kLock; uptr ev_addr = RestoreAddr(ev->addr); uptr ev_pc = RestoreAddr(ev->pc); StackID stack_id = (ev->stack_hi << EventLock::kStackIDLoBits) + ev->stack_lo; DPrintf2(" Lock: pc=0x%zx addr=0x%zx stack=%u write=%d\n", ev_pc, ev_addr, stack_id, is_write); mset->AddAddr(ev_addr, stack_id, is_write); // Events with ev_pc == 0 are written to the beginning of trace // part as initial mutex set (are not real). if (match && type == EventType::kLock && addr == ev_addr && ev_pc) RestoreStackMatch(pstk, pmset, &stack, mset, ev_pc, &found); break; } case EventType::kUnlock: { auto *ev = reinterpret_cast(evp); uptr ev_addr = RestoreAddr(ev->addr); DPrintf2(" Unlock: addr=0x%zx\n", ev_addr); mset->DelAddr(ev_addr); break; } case EventType::kTime: // TraceReplay already extracted sid/epoch from it, // nothing else to do here. break; } }); ExtractTagFromStack(pstk, ptag); return found; } } // namespace v3 bool RacyStacks::operator==(const RacyStacks &other) const { if (hash[0] == other.hash[0] && hash[1] == other.hash[1]) return true; if (hash[0] == other.hash[1] && hash[1] == other.hash[0]) return true; return false; } static bool FindRacyStacks(const RacyStacks &hash) { for (uptr i = 0; i < ctx->racy_stacks.Size(); i++) { if (hash == ctx->racy_stacks[i]) { VPrintf(2, "ThreadSanitizer: suppressing report as doubled (stack)\n"); return true; } } return false; } static bool HandleRacyStacks(ThreadState *thr, VarSizeStackTrace traces[2]) { if (!flags()->suppress_equal_stacks) return false; RacyStacks hash; hash.hash[0] = md5_hash(traces[0].trace, traces[0].size * sizeof(uptr)); hash.hash[1] = md5_hash(traces[1].trace, traces[1].size * sizeof(uptr)); { ReadLock lock(&ctx->racy_mtx); if (FindRacyStacks(hash)) return true; } Lock lock(&ctx->racy_mtx); if (FindRacyStacks(hash)) return true; ctx->racy_stacks.PushBack(hash); return false; } static bool FindRacyAddress(const RacyAddress &ra0) { for (uptr i = 0; i < ctx->racy_addresses.Size(); i++) { RacyAddress ra2 = ctx->racy_addresses[i]; uptr maxbeg = max(ra0.addr_min, ra2.addr_min); uptr minend = min(ra0.addr_max, ra2.addr_max); if (maxbeg < minend) { VPrintf(2, "ThreadSanitizer: suppressing report as doubled (addr)\n"); return true; } } return false; } static bool HandleRacyAddress(ThreadState *thr, uptr addr_min, uptr addr_max) { if (!flags()->suppress_equal_addresses) return false; RacyAddress ra0 = {addr_min, addr_max}; { ReadLock lock(&ctx->racy_mtx); if (FindRacyAddress(ra0)) return true; } Lock lock(&ctx->racy_mtx); if (FindRacyAddress(ra0)) return true; ctx->racy_addresses.PushBack(ra0); return false; } bool OutputReport(ThreadState *thr, const ScopedReport &srep) { // These should have been checked in ShouldReport. // It's too late to check them here, we have already taken locks. CHECK(flags()->report_bugs); CHECK(!thr->suppress_reports); atomic_store_relaxed(&ctx->last_symbolize_time_ns, NanoTime()); const ReportDesc *rep = srep.GetReport(); CHECK_EQ(thr->current_report, nullptr); thr->current_report = rep; Suppression *supp = 0; uptr pc_or_addr = 0; for (uptr i = 0; pc_or_addr == 0 && i < rep->mops.Size(); i++) pc_or_addr = IsSuppressed(rep->typ, rep->mops[i]->stack, &supp); for (uptr i = 0; pc_or_addr == 0 && i < rep->stacks.Size(); i++) pc_or_addr = IsSuppressed(rep->typ, rep->stacks[i], &supp); for (uptr i = 0; pc_or_addr == 0 && i < rep->threads.Size(); i++) pc_or_addr = IsSuppressed(rep->typ, rep->threads[i]->stack, &supp); for (uptr i = 0; pc_or_addr == 0 && i < rep->locs.Size(); i++) pc_or_addr = IsSuppressed(rep->typ, rep->locs[i], &supp); if (pc_or_addr != 0) { Lock lock(&ctx->fired_suppressions_mtx); FiredSuppression s = {srep.GetReport()->typ, pc_or_addr, supp}; ctx->fired_suppressions.push_back(s); } { bool old_is_freeing = thr->is_freeing; thr->is_freeing = false; bool suppressed = OnReport(rep, pc_or_addr != 0); thr->is_freeing = old_is_freeing; if (suppressed) { thr->current_report = nullptr; return false; } } PrintReport(rep); __tsan_on_report(rep); ctx->nreported++; if (flags()->halt_on_error) Die(); thr->current_report = nullptr; return true; } bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace) { ReadLock lock(&ctx->fired_suppressions_mtx); for (uptr k = 0; k < ctx->fired_suppressions.size(); k++) { if (ctx->fired_suppressions[k].type != type) continue; for (uptr j = 0; j < trace.size; j++) { FiredSuppression *s = &ctx->fired_suppressions[k]; if (trace.trace[j] == s->pc_or_addr) { if (s->supp) atomic_fetch_add(&s->supp->hit_count, 1, memory_order_relaxed); return true; } } } return false; } static bool IsFiredSuppression(Context *ctx, ReportType type, uptr addr) { ReadLock lock(&ctx->fired_suppressions_mtx); for (uptr k = 0; k < ctx->fired_suppressions.size(); k++) { if (ctx->fired_suppressions[k].type != type) continue; FiredSuppression *s = &ctx->fired_suppressions[k]; if (addr == s->pc_or_addr) { if (s->supp) atomic_fetch_add(&s->supp->hit_count, 1, memory_order_relaxed); return true; } } return false; } static bool RaceBetweenAtomicAndFree(ThreadState *thr) { Shadow s0(thr->racy_state[0]); Shadow s1(thr->racy_state[1]); CHECK(!(s0.IsAtomic() && s1.IsAtomic())); if (!s0.IsAtomic() && !s1.IsAtomic()) return true; if (s0.IsAtomic() && s1.IsFreed()) return true; if (s1.IsAtomic() && thr->is_freeing) return true; return false; } void ReportRace(ThreadState *thr) { CheckedMutex::CheckNoLocks(); // Symbolizer makes lots of intercepted calls. If we try to process them, // at best it will cause deadlocks on internal mutexes. ScopedIgnoreInterceptors ignore; if (!ShouldReport(thr, ReportTypeRace)) return; if (!flags()->report_atomic_races && !RaceBetweenAtomicAndFree(thr)) return; bool freed = false; { Shadow s(thr->racy_state[1]); freed = s.GetFreedAndReset(); thr->racy_state[1] = s.raw(); } uptr addr = ShadowToMem(thr->racy_shadow_addr); uptr addr_min = 0; uptr addr_max = 0; { uptr a0 = addr + Shadow(thr->racy_state[0]).addr0(); uptr a1 = addr + Shadow(thr->racy_state[1]).addr0(); uptr e0 = a0 + Shadow(thr->racy_state[0]).size(); uptr e1 = a1 + Shadow(thr->racy_state[1]).size(); addr_min = min(a0, a1); addr_max = max(e0, e1); if (IsExpectedReport(addr_min, addr_max - addr_min)) return; } if (HandleRacyAddress(thr, addr_min, addr_max)) return; ReportType typ = ReportTypeRace; if (thr->is_vptr_access && freed) typ = ReportTypeVptrUseAfterFree; else if (thr->is_vptr_access) typ = ReportTypeVptrRace; else if (freed) typ = ReportTypeUseAfterFree; if (IsFiredSuppression(ctx, typ, addr)) return; const uptr kMop = 2; VarSizeStackTrace traces[kMop]; uptr tags[kMop] = {kExternalTagNone}; uptr toppc = TraceTopPC(thr); if (toppc >> kEventPCBits) { // This is a work-around for a known issue. // The scenario where this happens is rather elaborate and requires // an instrumented __sanitizer_report_error_summary callback and // a __tsan_symbolize_external callback and a race during a range memory // access larger than 8 bytes. MemoryAccessRange adds the current PC to // the trace and starts processing memory accesses. A first memory access // triggers a race, we report it and call the instrumented // __sanitizer_report_error_summary, which adds more stuff to the trace // since it is intrumented. Then a second memory access in MemoryAccessRange // also triggers a race and we get here and call TraceTopPC to get the // current PC, however now it contains some unrelated events from the // callback. Most likely, TraceTopPC will now return a EventTypeFuncExit // event. Later we subtract -1 from it (in GetPreviousInstructionPc) // and the resulting PC has kExternalPCBit set, so we pass it to // __tsan_symbolize_external_ex. __tsan_symbolize_external_ex is within its // rights to crash since the PC is completely bogus. // test/tsan/double_race.cpp contains a test case for this. toppc = 0; } ObtainCurrentStack(thr, toppc, &traces[0], &tags[0]); if (IsFiredSuppression(ctx, typ, traces[0])) return; DynamicMutexSet mset2; Shadow s2(thr->racy_state[1]); RestoreStack(s2.tid(), s2.epoch(), &traces[1], mset2, &tags[1]); if (IsFiredSuppression(ctx, typ, traces[1])) return; if (HandleRacyStacks(thr, traces)) return; // If any of the accesses has a tag, treat this as an "external" race. uptr tag = kExternalTagNone; for (uptr i = 0; i < kMop; i++) { if (tags[i] != kExternalTagNone) { typ = ReportTypeExternalRace; tag = tags[i]; break; } } ThreadRegistryLock l0(&ctx->thread_registry); ScopedReport rep(typ, tag); for (uptr i = 0; i < kMop; i++) { Shadow s(thr->racy_state[i]); rep.AddMemoryAccess(addr, tags[i], s, traces[i], i == 0 ? &thr->mset : mset2); } for (uptr i = 0; i < kMop; i++) { FastState s(thr->racy_state[i]); ThreadContext *tctx = static_cast( ctx->thread_registry.GetThreadLocked(s.tid())); if (s.epoch() < tctx->epoch0 || s.epoch() > tctx->epoch1) continue; rep.AddThread(tctx); } rep.AddLocation(addr_min, addr_max - addr_min); #if !SANITIZER_GO { Shadow s(thr->racy_state[1]); if (s.epoch() <= thr->last_sleep_clock.get(s.tid())) rep.AddSleep(thr->last_sleep_stack_id); } #endif OutputReport(thr, rep); } void PrintCurrentStack(ThreadState *thr, uptr pc) { VarSizeStackTrace trace; ObtainCurrentStack(thr, pc, &trace); PrintStack(SymbolizeStack(trace)); } // Always inlining PrintCurrentStackSlow, because LocatePcInTrace assumes // __sanitizer_print_stack_trace exists in the actual unwinded stack, but // tail-call to PrintCurrentStackSlow breaks this assumption because // __sanitizer_print_stack_trace disappears after tail-call. // However, this solution is not reliable enough, please see dvyukov's comment // http://reviews.llvm.org/D19148#406208 // Also see PR27280 comment 2 and 3 for breaking examples and analysis. ALWAYS_INLINE USED void PrintCurrentStackSlow(uptr pc) { #if !SANITIZER_GO uptr bp = GET_CURRENT_FRAME(); auto *ptrace = New(); ptrace->Unwind(pc, bp, nullptr, false); for (uptr i = 0; i < ptrace->size / 2; i++) { uptr tmp = ptrace->trace_buffer[i]; ptrace->trace_buffer[i] = ptrace->trace_buffer[ptrace->size - i - 1]; ptrace->trace_buffer[ptrace->size - i - 1] = tmp; } PrintStack(SymbolizeStack(*ptrace)); #endif } } // namespace __tsan using namespace __tsan; extern "C" { SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_print_stack_trace() { PrintCurrentStackSlow(StackTrace::GetCurrentPc()); } } // extern "C"