/* $NetBSD: g42xxeb_machdep.c,v 1.43 2024/05/13 00:08:06 msaitoh Exp $ */ /* * Copyright (c) 2002, 2003, 2004, 2005 Genetec Corporation. * All rights reserved. * * Written by Hiroyuki Bessho for Genetec Corporation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of Genetec Corporation may not be used to endorse or * promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Machine dependent functions for kernel setup for Genetec G4250EBX * evaluation board. * * Based on iq80310_machhdep.c */ /* * Copyright (c) 2001 Wasabi Systems, Inc. * All rights reserved. * * Written by Jason R. Thorpe for Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1997,1998 Mark Brinicombe. * Copyright (c) 1997,1998 Causality Limited. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Mark Brinicombe * for the NetBSD Project. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Machine dependent functions for kernel setup for Intel IQ80310 evaluation * boards using RedBoot firmware. */ #include "opt_arm_debug.h" #include "opt_console.h" #include "opt_ddb.h" #include "opt_kgdb.h" #include "opt_md.h" #include "opt_com.h" #include "lcd.h" #include <sys/param.h> #include <sys/device.h> #include <sys/systm.h> #include <sys/kernel.h> #include <sys/exec.h> #include <sys/proc.h> #include <sys/msgbuf.h> #include <sys/reboot.h> #include <sys/termios.h> #include <sys/ksyms.h> #include <sys/bus.h> #include <sys/cpu.h> #include <uvm/uvm_extern.h> #include <sys/conf.h> #include <dev/cons.h> #include <dev/md.h> #include <machine/db_machdep.h> #include <ddb/db_sym.h> #include <ddb/db_extern.h> #ifdef KGDB #include <sys/kgdb.h> #endif #include <machine/bootconfig.h> #include <arm/locore.h> #include <arm/undefined.h> #include <arm/arm32/machdep.h> #include <arm/xscale/pxa2x0reg.h> #include <arm/xscale/pxa2x0var.h> #include <arm/xscale/pxa2x0_gpio.h> #include <evbarm/g42xxeb/g42xxeb_reg.h> #include <evbarm/g42xxeb/g42xxeb_var.h> /* Kernel text starts 2MB in from the bottom of the kernel address space. */ #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000) #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) /* * The range 0xc1000000 - 0xccffffff is available for kernel VM space * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff */ #define KERNEL_VM_SIZE 0x0C000000 BootConfig bootconfig; /* Boot config storage */ char *boot_args = NULL; char *boot_file = NULL; vaddr_t physical_start; vaddr_t physical_freestart; vaddr_t physical_freeend; vaddr_t physical_end; u_int free_pages; /*int debug_flags;*/ #ifndef PMAP_STATIC_L1S int max_processes = 64; /* Default number */ #endif /* !PMAP_STATIC_L1S */ /* Physical and virtual addresses for some global pages */ pv_addr_t minidataclean; paddr_t msgbufphys; #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */ #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */ #define KERNEL_PT_KERNEL_NUM 4 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM) /* Page tables for mapping kernel VM */ #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; /* Prototypes */ #if 0 void process_kernel_args(char *); #endif void consinit(void); void kgdb_port_init(void); void change_clock(uint32_t v); bs_protos(bs_notimpl); #include "com.h" #if NCOM > 0 #include <dev/ic/comreg.h> #include <dev/ic/comvar.h> #endif #ifndef CONSPEED #define CONSPEED B115200 /* What RedBoot uses */ #endif #ifndef CONMODE #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ #endif int comcnspeed = CONSPEED; int comcnmode = CONMODE; static struct pxa2x0_gpioconf boarddep_gpioconf[] = { { 44, GPIO_ALT_FN_1_IN }, /* BTCST */ { 45, GPIO_ALT_FN_2_OUT }, /* BTRST */ { -1 } }; static struct pxa2x0_gpioconf *g42xxeb_gpioconf[] = { pxa25x_com_btuart_gpioconf, pxa25x_com_ffuart_gpioconf, #if 0 pxa25x_com_stuart_gpioconf, pxa25x_pxaacu_gpioconf, #endif boarddep_gpioconf, NULL }; /* * void cpu_reboot(int howto, char *bootstr) * * Reboots the system * * Deal with any syncing, unmounting, dumping and shutdown hooks, * then reset the CPU. */ void cpu_reboot(int howto, char *bootstr) { #ifdef DIAGNOSTIC /* info */ printf("boot: howto=%08x curproc=%p\n", howto, curproc); #endif /* * If we are still cold then hit the air brakes * and crash to earth fast */ if (cold) { doshutdownhooks(); pmf_system_shutdown(boothowto); printf("The operating system has halted.\n"); printf("Please press any key to reboot.\n\n"); cngetc(); printf("rebooting...\n"); cpu_reset(); /*NOTREACHED*/ } /* Disable console buffering */ /* cnpollc(1);*/ /* * If RB_NOSYNC was not specified sync the discs. * Note: Unless cold is set to 1 here, syslogd will die during the * unmount. It looks like syslogd is getting woken up only to find * that it cannot page part of the binary in as the filesystem has * been unmounted. */ if (!(howto & RB_NOSYNC)) bootsync(); /* Say NO to interrupts */ splhigh(); /* Do a dump if requested. */ if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) dumpsys(); /* Run any shutdown hooks */ doshutdownhooks(); pmf_system_shutdown(boothowto); /* Make sure IRQ's are disabled */ IRQdisable; if (howto & RB_HALT) { printf("The operating system has halted.\n"); printf("Please press any key to reboot.\n\n"); cngetc(); } printf("rebooting...\n"); cpu_reset(); /*NOTREACHED*/ } static inline pd_entry_t * read_ttb(void) { long ttb; __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb)); return (pd_entry_t *)(ttb & ~((1<<14)-1)); } /* * Static device mappings. These peripheral registers are mapped at * fixed virtual addresses very early in initarm() so that we can use * them while booting the kernel, and stay at the same address * throughout whole kernel's life time. * * We use this table twice; once with bootstrap page table, and once * with kernel's page table which we build up in initarm(). * * Since we map these registers into the bootstrap page table using * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map * registers segment-aligned and segment-rounded in order to avoid * using the 2nd page tables. */ static const struct pmap_devmap g42xxeb_devmap[] = { DEVMAP_ENTRY( G42XXEB_PLDREG_VBASE, G42XXEB_PLDREG_BASE, G42XXEB_PLDREG_SIZE ), DEVMAP_ENTRY( G42XXEB_GPIO_VBASE, PXA2X0_GPIO_BASE, PXA250_GPIO_SIZE ), DEVMAP_ENTRY( G42XXEB_CLKMAN_VBASE, PXA2X0_CLKMAN_BASE, PXA2X0_CLKMAN_SIZE ), DEVMAP_ENTRY( G42XXEB_INTCTL_VBASE, PXA2X0_INTCTL_BASE, PXA2X0_INTCTL_SIZE ), DEVMAP_ENTRY( G42XXEB_FFUART_VBASE, PXA2X0_FFUART_BASE, 4 * COM_NPORTS ), DEVMAP_ENTRY( G42XXEB_BTUART_VBASE, PXA2X0_BTUART_BASE, 4 * COM_NPORTS ), DEVMAP_ENTRY_END }; /* * vaddr_t initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ vaddr_t initarm(void *arg) { int loop; int loop1; u_int l1pagetable; paddr_t memstart; psize_t memsize; int led_data = 1; #define LEDSTEP_P() ioreg8_write(G42XXEB_PLDREG_BASE+G42XXEB_LED, led_data++) #define LEDSTEP() pldreg8_write(G42XXEB_LED, led_data++); /* use physical address until pagetable is set */ LEDSTEP_P(); /* map some peripheral registers at static I/O area */ pmap_devmap_bootstrap((vaddr_t)read_ttb(), g42xxeb_devmap); LEDSTEP_P(); /* start 32.768 kHz OSC */ ioreg_write(G42XXEB_CLKMAN_VBASE + 0x08, 2); /* Get ready for splfoo() */ pxa2x0_intr_bootstrap(G42XXEB_INTCTL_VBASE); LEDSTEP(); /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); LEDSTEP(); /* * Okay, RedBoot has provided us with the following memory map: * * Physical Address Range Description * ----------------------- ---------------------------------- * 0x00000000 - 0x01ffffff flash Memory (32MB) * 0x04000000 - 0x05ffffff Application flash Memory (32MB) * 0x08000000 - 0x080000ff I/O baseboard registers * 0x0c000000 - 0x0c0fffff Ethernet Controller * 0x14000000 - 0x17ffffff Expansion Card (64MB) * 0x40000000 - 0x480fffff Processor Registers * 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB) * * * Virtual Address Range X C B Description * ----------------------- - - - ---------------------------------- * 0x00000000 - 0x00003fff N Y Y SDRAM * 0x00004000 - 0x01ffffff N Y N ROM * 0x08000000 - 0x080fffff N N N I/O baseboard registers * 0x0a000000 - 0x0a0fffff N N N SRAM * 0x40000000 - 0x480fffff N N N Processor Registers * 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM * 0xa0017000 - 0xa3ffffff Y Y Y SDRAM * 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region * (done by this routine) * 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers * 0xfd100000 - 0xfd3fffff N N N Processor Registers. * 0xfd400000 - 0xfd4fffff N N N FF-UART * 0xfd500000 - 0xfd5fffff N N N BT-UART * * RedBoot's first level page table is at 0xa0004000. There * are also 2 second-level tables at 0xa0008000 and * 0xa0008400. We will continue to use them until we switch to * our pagetable by cpu_setttb(). */ cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); LEDSTEP(); /* setup GPIO for BTUART, in case bootloader doesn't take care of it */ pxa2x0_gpio_bootstrap(G42XXEB_GPIO_VBASE); pxa2x0_gpio_config(g42xxeb_gpioconf); LEDSTEP(); consinit(); #ifdef KGDB LEDSTEP(); kgdb_port_init(); #endif LEDSTEP(); /* Talk to the user */ printf("\nNetBSD/evbarm (g42xxeb) booting ...\n"); #if 0 /* * Examine the boot args string for options we need to know about * now. */ process_kernel_args((char *)nwbootinfo.bt_args); #endif memstart = 0xa0000000; memsize = 0x04000000; /* 64MB */ printf("initarm: Configuring system ...\n"); /* Fake bootconfig structure for the benefit of pmap.c */ /* XXX must make the memory description h/w independent */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = memstart; bootconfig.dram[0].pages = memsize / PAGE_SIZE; /* * Set up the variables that define the availability of * physical memory. For now, we're going to set * physical_freestart to 0xa0200000 (where the kernel * was loaded), and allocate the memory we need downwards. * If we get too close to the L1 table that we set up, we * will panic. We will update physical_freestart and * physical_freeend later to reflect what pmap_bootstrap() * wants to see. * * XXX pmap_bootstrap() needs an enema. */ physical_start = bootconfig.dram[0].address; physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); physical_freestart = 0xa0009000UL; physical_freeend = 0xa0200000UL; physmem = (physical_end - physical_start) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM /* Tell the user about the memory */ printf("physmemory: 0x%"PRIxPSIZE" pages at 0x%08lx -> 0x%08lx\n", physmem, physical_start, physical_end - 1); #endif /* * Okay, the kernel starts 2MB in from the bottom of physical * memory. We are going to allocate our bootstrap pages downwards * from there. * * We need to allocate some fixed page tables to get the kernel * going. We allocate one page directory and a number of page * tables and store the physical addresses in the kernel_pt_table * array. * * The kernel page directory must be on a 16K boundary. The page * tables must be on 4K boundaries. What we do is allocate the * page directory on the first 16K boundary that we encounter, and * the page tables on 4K boundaries otherwise. Since we allocate * at least 3 L2 page tables, we are guaranteed to encounter at * least one 16K aligned region. */ #ifdef VERBOSE_INIT_ARM printf("Allocating page tables\n"); #endif free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", physical_freestart, free_pages, free_pages); #endif /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ physical_freeend -= ((np) * PAGE_SIZE); \ if (physical_freeend < physical_freestart) \ panic("initarm: out of memory"); \ (var) = physical_freeend; \ free_pages -= (np); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); loop1 = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) panic("initarm: Failed to align the kernel page directory"); LEDSTEP(); /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ alloc_pages(systempage.pv_pa, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); /* Allocate enough pages for cleaning the Mini-Data cache. */ KASSERT(xscale_minidata_clean_size <= PAGE_SIZE); valloc_pages(minidataclean, 1); #ifdef VERBOSE_INIT_ARM printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); #endif /* * XXX Defer this to later so that we can reclaim the memory * XXX used by the RedBoot page tables. */ alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); /* * Ok we have allocated physical pages for the primary kernel * page tables */ #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); #endif /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, 0x00000000, &kernel_pt_table[KERNEL_PT_SYS]); for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_KERNEL + loop]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif /* Now we fill in the L2 pagetable for the kernel static code/data */ { extern char etext[], _end[]; size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; u_int logical; textsize = (textsize + PGOFSET) & ~PGOFSET; totalsize = (totalsize + PGOFSET) & ~PGOFSET; logical = 0x00200000; /* offset of kernel in RAM */ logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, totalsize - textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); } #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } /* Map the Mini-Data cache clean area. */ xscale_setup_minidata(l1pagetable, minidataclean.pv_va, minidataclean.pv_pa); /* Map the vector page. */ #if 1 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the * cache-clean code there. */ pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); #else pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); #endif /* * map integrated peripherals at same address in l1pagetable * so that we can continue to use console. */ pmap_devmap_bootstrap(l1pagetable, g42xxeb_devmap); /* * Give the XScale global cache clean code an appropriately * sized chunk of unmapped VA space starting at 0xff000000 * (our device mappings end before this address). */ xscale_cache_clean_addr = 0xff000000U; /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* * Update the physical_freestart/physical_freeend/free_pages * variables. */ { extern char _end[]; physical_freestart = physical_start + (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE); physical_freeend = physical_end; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; } /* Switch tables */ #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", physical_freestart, free_pages, free_pages); printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); #endif LEDSTEP(); cpu_setttb(kernel_l1pt.pv_pa, true); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); LEDSTEP(); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init */ uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ #ifdef VERBOSE_INIT_ARM printf("init subsystems: stacks "); #endif set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ #ifdef VERBOSE_INIT_ARM printf("vectors "); #endif data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ #ifdef VERBOSE_INIT_ARM printf("undefined "); #endif undefined_init(); /* Load memory into UVM. */ #ifdef VERBOSE_INIT_ARM printf("page "); #endif uvm_md_init(); uvm_page_physload(atop(physical_freestart), atop(physical_freeend), atop(physical_freestart), atop(physical_freeend), VM_FREELIST_DEFAULT); /* Boot strap pmap telling it where managed kernel virtual memory is */ #ifdef VERBOSE_INIT_ARM printf("pmap "); #endif LEDSTEP(); pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); LEDSTEP(); #ifdef __HAVE_MEMORY_DISK__ md_root_setconf(memory_disk, sizeof memory_disk); #endif #ifdef BOOTHOWTO boothowto |= BOOTHOWTO; #endif { uint8_t sw = pldreg8_read(G42XXEB_DIPSW); if (0 == (sw & (1<<0))) boothowto ^= RB_KDB; if (0 == (sw & (1<<1))) boothowto ^= RB_SINGLE; } LEDSTEP(); #ifdef KGDB if (boothowto & RB_KDB) { kgdb_debug_init = 1; kgdb_connect(1); } #endif #ifdef DDB db_machine_init(); /* Firmware doesn't load symbols. */ ddb_init(0, NULL, NULL); if (boothowto & RB_KDB) Debugger(); #endif pldreg8_write(G42XXEB_LED, 0); /* We return the new stack pointer address */ return kernelstack.pv_va + USPACE_SVC_STACK_TOP; } #if 0 void process_kernel_args(char *args) { boothowto = 0; /* Make a local copy of the bootargs */ strncpy(bootargs, args, MAX_BOOT_STRING); args = bootargs; boot_file = bootargs; /* Skip the kernel image filename */ while (*args != ' ' && *args != 0) ++args; if (*args != 0) *args++ = 0; while (*args == ' ') ++args; boot_args = args; printf("bootfile: %s\n", boot_file); printf("bootargs: %s\n", boot_args); parse_mi_bootargs(boot_args); } #endif #ifdef KGDB #ifndef KGDB_DEVNAME #define KGDB_DEVNAME "ffuart" #endif const char kgdb_devname[] = KGDB_DEVNAME; #if (NCOM > 0) #ifndef KGDB_DEVMODE #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ #endif int comkgdbmode = KGDB_DEVMODE; #endif /* NCOM */ #endif /* KGDB */ void consinit(void) { static int consinit_called = 0; uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN); #if 0 char *console = CONSDEVNAME; #endif if (consinit_called != 0) return; consinit_called = 1; #if NCOM > 0 #ifdef FFUARTCONSOLE #ifdef KGDB if (0 == strcmp(kgdb_devname, "ffuart")){ /* port is reserved for kgdb */ } else #endif if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE, comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) { #if 0 pxa2x0_clkman_config(CKEN_FFUART, 1); #else ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg|CKEN_FFUART); #endif return; } #endif /* FFUARTCONSOLE */ #ifdef BTUARTCONSOLE #ifdef KGDB if (0 == strcmp(kgdb_devname, "btuart")) { /* port is reserved for kgdb */ } else #endif if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE, comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) { ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg|CKEN_BTUART); return; } #endif /* BTUARTCONSOLE */ #endif /* NCOM */ } #ifdef KGDB void kgdb_port_init(void) { #if (NCOM > 0) && defined(COM_PXA2X0) paddr_t paddr = 0; uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN); if (0 == strcmp(kgdb_devname, "ffuart")) { paddr = PXA2X0_FFUART_BASE; ckenreg |= CKEN_FFUART; } else if (0 == strcmp(kgdb_devname, "btuart")) { paddr = PXA2X0_BTUART_BASE; ckenreg |= CKEN_BTUART; } if (paddr && 0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr, kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) { ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg); } #endif } #endif