/*	$NetBSD: sljitNativeMIPS_32.c,v 1.4 2019/01/20 23:14:16 alnsn Exp $	*/

/*
 *    Stack-less Just-In-Time compiler
 *
 *    Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification, are
 * permitted provided that the following conditions are met:
 *
 *   1. Redistributions of source code must retain the above copyright notice, this list of
 *      conditions and the following disclaimer.
 *
 *   2. Redistributions in binary form must reproduce the above copyright notice, this list
 *      of conditions and the following disclaimer in the documentation and/or other materials
 *      provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/* mips 32-bit arch dependent functions. */

static sljit_s32 load_immediate(struct sljit_compiler *compiler, sljit_s32 dst_ar, sljit_sw imm)
{
	if (!(imm & ~0xffff))
		return push_inst(compiler, ORI | SA(0) | TA(dst_ar) | IMM(imm), dst_ar);

	if (imm < 0 && imm >= SIMM_MIN)
		return push_inst(compiler, ADDIU | SA(0) | TA(dst_ar) | IMM(imm), dst_ar);

	FAIL_IF(push_inst(compiler, LUI | TA(dst_ar) | IMM(imm >> 16), dst_ar));
	return (imm & 0xffff) ? push_inst(compiler, ORI | SA(dst_ar) | TA(dst_ar) | IMM(imm), dst_ar) : SLJIT_SUCCESS;
}

#define EMIT_LOGICAL(op_imm, op_norm) \
	if (flags & SRC2_IMM) { \
		if (op & SLJIT_SET_Z) \
			FAIL_IF(push_inst(compiler, op_imm | S(src1) | TA(EQUAL_FLAG) | IMM(src2), EQUAL_FLAG)); \
		if (!(flags & UNUSED_DEST)) \
			FAIL_IF(push_inst(compiler, op_imm | S(src1) | T(dst) | IMM(src2), DR(dst))); \
	} \
	else { \
		if (op & SLJIT_SET_Z) \
			FAIL_IF(push_inst(compiler, op_norm | S(src1) | T(src2) | DA(EQUAL_FLAG), EQUAL_FLAG)); \
		if (!(flags & UNUSED_DEST)) \
			FAIL_IF(push_inst(compiler, op_norm | S(src1) | T(src2) | D(dst), DR(dst))); \
	}

#define EMIT_SHIFT(op_imm, op_v) \
	if (flags & SRC2_IMM) { \
		if (op & SLJIT_SET_Z) \
			FAIL_IF(push_inst(compiler, op_imm | T(src1) | DA(EQUAL_FLAG) | SH_IMM(src2), EQUAL_FLAG)); \
		if (!(flags & UNUSED_DEST)) \
			FAIL_IF(push_inst(compiler, op_imm | T(src1) | D(dst) | SH_IMM(src2), DR(dst))); \
	} \
	else { \
		if (op & SLJIT_SET_Z) \
			FAIL_IF(push_inst(compiler, op_v | S(src2) | T(src1) | DA(EQUAL_FLAG), EQUAL_FLAG)); \
		if (!(flags & UNUSED_DEST)) \
			FAIL_IF(push_inst(compiler, op_v | S(src2) | T(src1) | D(dst), DR(dst))); \
	}

static SLJIT_INLINE sljit_s32 emit_single_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags,
	sljit_s32 dst, sljit_s32 src1, sljit_sw src2)
{
	sljit_s32 is_overflow, is_carry, is_handled;

	switch (GET_OPCODE(op)) {
	case SLJIT_MOV:
	case SLJIT_MOV_U32:
	case SLJIT_MOV_S32:
	case SLJIT_MOV_P:
		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
		if (dst != src2)
			return push_inst(compiler, ADDU | S(src2) | TA(0) | D(dst), DR(dst));
		return SLJIT_SUCCESS;

	case SLJIT_MOV_U8:
	case SLJIT_MOV_S8:
		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
			if (op == SLJIT_MOV_S8) {
#if (defined SLJIT_MIPS_R1 && SLJIT_MIPS_R1)
				return push_inst(compiler, SEB | T(src2) | D(dst), DR(dst));
#else
				FAIL_IF(push_inst(compiler, SLL | T(src2) | D(dst) | SH_IMM(24), DR(dst)));
				return push_inst(compiler, SRA | T(dst) | D(dst) | SH_IMM(24), DR(dst));
#endif
			}
			return push_inst(compiler, ANDI | S(src2) | T(dst) | IMM(0xff), DR(dst));
		}
		else {
			SLJIT_ASSERT(dst == src2);
		}
		return SLJIT_SUCCESS;

	case SLJIT_MOV_U16:
	case SLJIT_MOV_S16:
		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
			if (op == SLJIT_MOV_S16) {
#if (defined SLJIT_MIPS_R1 && SLJIT_MIPS_R1)
				return push_inst(compiler, SEH | T(src2) | D(dst), DR(dst));
#else
				FAIL_IF(push_inst(compiler, SLL | T(src2) | D(dst) | SH_IMM(16), DR(dst)));
				return push_inst(compiler, SRA | T(dst) | D(dst) | SH_IMM(16), DR(dst));
#endif
			}
			return push_inst(compiler, ANDI | S(src2) | T(dst) | IMM(0xffff), DR(dst));
		}
		else {
			SLJIT_ASSERT(dst == src2);
		}
		return SLJIT_SUCCESS;

	case SLJIT_NOT:
		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
		if (op & SLJIT_SET_Z)
			FAIL_IF(push_inst(compiler, NOR | S(src2) | T(src2) | DA(EQUAL_FLAG), EQUAL_FLAG));
		if (!(flags & UNUSED_DEST))
			FAIL_IF(push_inst(compiler, NOR | S(src2) | T(src2) | D(dst), DR(dst)));
		return SLJIT_SUCCESS;

	case SLJIT_CLZ:
		SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
#if (defined SLJIT_MIPS_R1 && SLJIT_MIPS_R1)
		if (op & SLJIT_SET_Z)
			FAIL_IF(push_inst(compiler, CLZ | S(src2) | TA(EQUAL_FLAG) | DA(EQUAL_FLAG), EQUAL_FLAG));
		if (!(flags & UNUSED_DEST))
			FAIL_IF(push_inst(compiler, CLZ | S(src2) | T(dst) | D(dst), DR(dst)));
#else
		if (SLJIT_UNLIKELY(flags & UNUSED_DEST)) {
			FAIL_IF(push_inst(compiler, SRL | T(src2) | DA(EQUAL_FLAG) | SH_IMM(31), EQUAL_FLAG));
			return push_inst(compiler, XORI | SA(EQUAL_FLAG) | TA(EQUAL_FLAG) | IMM(1), EQUAL_FLAG);
		}
		/* Nearly all instructions are unmovable in the following sequence. */
		FAIL_IF(push_inst(compiler, ADDU | S(src2) | TA(0) | D(TMP_REG1), DR(TMP_REG1)));
		/* Check zero. */
		FAIL_IF(push_inst(compiler, BEQ | S(TMP_REG1) | TA(0) | IMM(5), UNMOVABLE_INS));
		FAIL_IF(push_inst(compiler, ORI | SA(0) | T(dst) | IMM(32), UNMOVABLE_INS));
		FAIL_IF(push_inst(compiler, ADDIU | SA(0) | T(dst) | IMM(-1), DR(dst)));
		/* Loop for searching the highest bit. */
		FAIL_IF(push_inst(compiler, ADDIU | S(dst) | T(dst) | IMM(1), DR(dst)));
		FAIL_IF(push_inst(compiler, BGEZ | S(TMP_REG1) | IMM(-2), UNMOVABLE_INS));
		FAIL_IF(push_inst(compiler, SLL | T(TMP_REG1) | D(TMP_REG1) | SH_IMM(1), UNMOVABLE_INS));
		if (op & SLJIT_SET_Z)
			return push_inst(compiler, ADDU | S(dst) | TA(0) | DA(EQUAL_FLAG), EQUAL_FLAG);
#endif
		return SLJIT_SUCCESS;

	case SLJIT_ADD:
		is_overflow = GET_FLAG_TYPE(op) == SLJIT_OVERFLOW || GET_FLAG_TYPE(op) == SLJIT_NOT_OVERFLOW;
		is_carry = GET_FLAG_TYPE(op) == GET_FLAG_TYPE(SLJIT_SET_CARRY);

		if (flags & SRC2_IMM) {
			if (is_overflow) {
				if (src2 >= 0)
					FAIL_IF(push_inst(compiler, OR | S(src1) | T(src1) | DA(EQUAL_FLAG), EQUAL_FLAG));
				else
					FAIL_IF(push_inst(compiler, NOR | S(src1) | T(src1) | DA(EQUAL_FLAG), EQUAL_FLAG));
			}
			else if (op & SLJIT_SET_Z)
				FAIL_IF(push_inst(compiler, ADDIU | S(src1) | TA(EQUAL_FLAG) | IMM(src2), EQUAL_FLAG));

			if (is_overflow || is_carry) {
				if (src2 >= 0)
					FAIL_IF(push_inst(compiler, ORI | S(src1) | TA(OTHER_FLAG) | IMM(src2), OTHER_FLAG));
				else {
					FAIL_IF(push_inst(compiler, ADDIU | SA(0) | TA(OTHER_FLAG) | IMM(src2), OTHER_FLAG));
					FAIL_IF(push_inst(compiler, OR | S(src1) | TA(OTHER_FLAG) | DA(OTHER_FLAG), OTHER_FLAG));
				}
			}
			/* dst may be the same as src1 or src2. */
			if (!(flags & UNUSED_DEST) || (op & VARIABLE_FLAG_MASK))
				FAIL_IF(push_inst(compiler, ADDIU | S(src1) | T(dst) | IMM(src2), DR(dst)));
		}
		else {
			if (is_overflow)
				FAIL_IF(push_inst(compiler, XOR | S(src1) | T(src2) | DA(EQUAL_FLAG), EQUAL_FLAG));
			else if (op & SLJIT_SET_Z)
				FAIL_IF(push_inst(compiler, ADDU | S(src1) | T(src2) | DA(EQUAL_FLAG), EQUAL_FLAG));

			if (is_overflow || is_carry)
				FAIL_IF(push_inst(compiler, OR | S(src1) | T(src2) | DA(OTHER_FLAG), OTHER_FLAG));
			/* dst may be the same as src1 or src2. */
			if (!(flags & UNUSED_DEST) || (op & VARIABLE_FLAG_MASK))
				FAIL_IF(push_inst(compiler, ADDU | S(src1) | T(src2) | D(dst), DR(dst)));
		}

		/* a + b >= a | b (otherwise, the carry should be set to 1). */
		if (is_overflow || is_carry)
			FAIL_IF(push_inst(compiler, SLTU | S(dst) | TA(OTHER_FLAG) | DA(OTHER_FLAG), OTHER_FLAG));
		if (!is_overflow)
			return SLJIT_SUCCESS;
		FAIL_IF(push_inst(compiler, SLL | TA(OTHER_FLAG) | D(TMP_REG1) | SH_IMM(31), DR(TMP_REG1)));
		FAIL_IF(push_inst(compiler, XOR | S(TMP_REG1) | TA(EQUAL_FLAG) | DA(EQUAL_FLAG), EQUAL_FLAG));
		FAIL_IF(push_inst(compiler, XOR | S(dst) | TA(EQUAL_FLAG) | DA(OTHER_FLAG), OTHER_FLAG));
		if (op & SLJIT_SET_Z)
			FAIL_IF(push_inst(compiler, ADDU | S(dst) | TA(0) | DA(EQUAL_FLAG), EQUAL_FLAG));
		return push_inst(compiler, SRL | TA(OTHER_FLAG) | DA(OTHER_FLAG) | SH_IMM(31), OTHER_FLAG);

	case SLJIT_ADDC:
		is_carry = GET_FLAG_TYPE(op) == GET_FLAG_TYPE(SLJIT_SET_CARRY);

		if (flags & SRC2_IMM) {
			if (is_carry) {
				if (src2 >= 0)
					FAIL_IF(push_inst(compiler, ORI | S(src1) | TA(EQUAL_FLAG) | IMM(src2), EQUAL_FLAG));
				else {
					FAIL_IF(push_inst(compiler, ADDIU | SA(0) | TA(EQUAL_FLAG) | IMM(src2), EQUAL_FLAG));
					FAIL_IF(push_inst(compiler, OR | S(src1) | TA(EQUAL_FLAG) | DA(EQUAL_FLAG), EQUAL_FLAG));
				}
			}
			FAIL_IF(push_inst(compiler, ADDIU | S(src1) | T(dst) | IMM(src2), DR(dst)));
		} else {
			if (is_carry)
				FAIL_IF(push_inst(compiler, OR | S(src1) | T(src2) | DA(EQUAL_FLAG), EQUAL_FLAG));
			/* dst may be the same as src1 or src2. */
			FAIL_IF(push_inst(compiler, ADDU | S(src1) | T(src2) | D(dst), DR(dst)));
		}
		if (is_carry)
			FAIL_IF(push_inst(compiler, SLTU | S(dst) | TA(EQUAL_FLAG) | DA(EQUAL_FLAG), EQUAL_FLAG));

		FAIL_IF(push_inst(compiler, ADDU | S(dst) | TA(OTHER_FLAG) | D(dst), DR(dst)));
		if (!is_carry)
			return SLJIT_SUCCESS;

		/* Set ULESS_FLAG (dst == 0) && (OTHER_FLAG == 1). */
		FAIL_IF(push_inst(compiler, SLTU | S(dst) | TA(OTHER_FLAG) | DA(OTHER_FLAG), OTHER_FLAG));
		/* Set carry flag. */
		return push_inst(compiler, OR | SA(OTHER_FLAG) | TA(EQUAL_FLAG) | DA(OTHER_FLAG), OTHER_FLAG);

	case SLJIT_SUB:
		if ((flags & SRC2_IMM) && src2 == SIMM_MIN) {
			FAIL_IF(push_inst(compiler, ADDIU | SA(0) | T(TMP_REG2) | IMM(src2), DR(TMP_REG2)));
			src2 = TMP_REG2;
			flags &= ~SRC2_IMM;
		}

		is_handled = 0;

		if (flags & SRC2_IMM) {
			if (GET_FLAG_TYPE(op) == SLJIT_LESS || GET_FLAG_TYPE(op) == SLJIT_GREATER_EQUAL) {
				FAIL_IF(push_inst(compiler, SLTIU | S(src1) | TA(OTHER_FLAG) | IMM(src2), OTHER_FLAG));
				is_handled = 1;
			}
			else if (GET_FLAG_TYPE(op) == SLJIT_SIG_LESS || GET_FLAG_TYPE(op) == SLJIT_SIG_GREATER_EQUAL) {
				FAIL_IF(push_inst(compiler, SLTI | S(src1) | TA(OTHER_FLAG) | IMM(src2), OTHER_FLAG));
				is_handled = 1;
			}
		}

		if (!is_handled && GET_FLAG_TYPE(op) >= SLJIT_LESS && GET_FLAG_TYPE(op) <= SLJIT_SIG_LESS_EQUAL) {
			is_handled = 1;

			if (flags & SRC2_IMM) {
				FAIL_IF(push_inst(compiler, ADDIU | SA(0) | T(TMP_REG2) | IMM(src2), DR(TMP_REG2)));
				src2 = TMP_REG2;
				flags &= ~SRC2_IMM;
			}

			if (GET_FLAG_TYPE(op) == SLJIT_LESS || GET_FLAG_TYPE(op) == SLJIT_GREATER_EQUAL) {
				FAIL_IF(push_inst(compiler, SLTU | S(src1) | T(src2) | DA(OTHER_FLAG), OTHER_FLAG));
			}
			else if (GET_FLAG_TYPE(op) == SLJIT_GREATER || GET_FLAG_TYPE(op) == SLJIT_LESS_EQUAL)
			{
				FAIL_IF(push_inst(compiler, SLTU | S(src2) | T(src1) | DA(OTHER_FLAG), OTHER_FLAG));
			}
			else if (GET_FLAG_TYPE(op) == SLJIT_SIG_LESS || GET_FLAG_TYPE(op) == SLJIT_SIG_GREATER_EQUAL) {
				FAIL_IF(push_inst(compiler, SLT | S(src1) | T(src2) | DA(OTHER_FLAG), OTHER_FLAG));
			}
			else if (GET_FLAG_TYPE(op) == SLJIT_SIG_GREATER || GET_FLAG_TYPE(op) == SLJIT_SIG_LESS_EQUAL)
			{
				FAIL_IF(push_inst(compiler, SLT | S(src2) | T(src1) | DA(OTHER_FLAG), OTHER_FLAG));
			}
		}

		if (is_handled) {
			if (flags & SRC2_IMM) {
				if (op & SLJIT_SET_Z)
					FAIL_IF(push_inst(compiler, ADDIU | S(src1) | TA(EQUAL_FLAG) | IMM(-src2), EQUAL_FLAG));
				if (!(flags & UNUSED_DEST))
					return push_inst(compiler, ADDIU | S(src1) | T(dst) | IMM(-src2), DR(dst));
			}
			else {
				if (op & SLJIT_SET_Z)
					FAIL_IF(push_inst(compiler, SUBU | S(src1) | T(src2) | DA(EQUAL_FLAG), EQUAL_FLAG));
				if (!(flags & UNUSED_DEST))
					return push_inst(compiler, SUBU | S(src1) | T(src2) | D(dst), DR(dst));
			}
			return SLJIT_SUCCESS;
		}

		is_overflow = GET_FLAG_TYPE(op) == SLJIT_OVERFLOW || GET_FLAG_TYPE(op) == SLJIT_NOT_OVERFLOW;
		is_carry = GET_FLAG_TYPE(op) == GET_FLAG_TYPE(SLJIT_SET_CARRY);

		if (flags & SRC2_IMM) {
			if (is_overflow) {
				if (src2 >= 0)
					FAIL_IF(push_inst(compiler, OR | S(src1) | T(src1) | DA(EQUAL_FLAG), EQUAL_FLAG));
				else
					FAIL_IF(push_inst(compiler, NOR | S(src1) | T(src1) | DA(EQUAL_FLAG), EQUAL_FLAG));
			}
			else if (op & SLJIT_SET_Z)
				FAIL_IF(push_inst(compiler, ADDIU | S(src1) | TA(EQUAL_FLAG) | IMM(-src2), EQUAL_FLAG));

			if (is_overflow || is_carry)
				FAIL_IF(push_inst(compiler, SLTIU | S(src1) | TA(OTHER_FLAG) | IMM(src2), OTHER_FLAG));
			/* dst may be the same as src1 or src2. */
			if (!(flags & UNUSED_DEST) || (op & VARIABLE_FLAG_MASK))
				FAIL_IF(push_inst(compiler, ADDIU | S(src1) | T(dst) | IMM(-src2), DR(dst)));
		}
		else {
			if (is_overflow)
				FAIL_IF(push_inst(compiler, XOR | S(src1) | T(src2) | DA(EQUAL_FLAG), EQUAL_FLAG));
			else if (op & SLJIT_SET_Z)
				FAIL_IF(push_inst(compiler, SUBU | S(src1) | T(src2) | DA(EQUAL_FLAG), EQUAL_FLAG));

			if (is_overflow || is_carry)
				FAIL_IF(push_inst(compiler, SLTU | S(src1) | T(src2) | DA(OTHER_FLAG), OTHER_FLAG));
			/* dst may be the same as src1 or src2. */
			if (!(flags & UNUSED_DEST) || (op & VARIABLE_FLAG_MASK))
				FAIL_IF(push_inst(compiler, SUBU | S(src1) | T(src2) | D(dst), DR(dst)));
		}

		if (!is_overflow)
			return SLJIT_SUCCESS;
		FAIL_IF(push_inst(compiler, SLL | TA(OTHER_FLAG) | D(TMP_REG1) | SH_IMM(31), DR(TMP_REG1)));
		FAIL_IF(push_inst(compiler, XOR | S(TMP_REG1) | TA(EQUAL_FLAG) | DA(EQUAL_FLAG), EQUAL_FLAG));
		FAIL_IF(push_inst(compiler, XOR | S(dst) | TA(EQUAL_FLAG) | DA(OTHER_FLAG), OTHER_FLAG));
		if (op & SLJIT_SET_Z)
			FAIL_IF(push_inst(compiler, ADDU | S(dst) | TA(0) | DA(EQUAL_FLAG), EQUAL_FLAG));
		return push_inst(compiler, SRL | TA(OTHER_FLAG) | DA(OTHER_FLAG) | SH_IMM(31), OTHER_FLAG);

	case SLJIT_SUBC:
		if ((flags & SRC2_IMM) && src2 == SIMM_MIN) {
			FAIL_IF(push_inst(compiler, ADDIU | SA(0) | T(TMP_REG2) | IMM(src2), DR(TMP_REG2)));
			src2 = TMP_REG2;
			flags &= ~SRC2_IMM;
		}

		is_carry = GET_FLAG_TYPE(op) == GET_FLAG_TYPE(SLJIT_SET_CARRY);

		if (flags & SRC2_IMM) {
			if (is_carry)
				FAIL_IF(push_inst(compiler, SLTIU | S(src1) | TA(EQUAL_FLAG) | IMM(src2), EQUAL_FLAG));
			/* dst may be the same as src1 or src2. */
			FAIL_IF(push_inst(compiler, ADDIU | S(src1) | T(dst) | IMM(-src2), DR(dst)));
		}
		else {
			if (is_carry)
				FAIL_IF(push_inst(compiler, SLTU | S(src1) | T(src2) | DA(EQUAL_FLAG), EQUAL_FLAG));
			/* dst may be the same as src1 or src2. */
			FAIL_IF(push_inst(compiler, SUBU | S(src1) | T(src2) | D(dst), DR(dst)));
		}

		if (is_carry)
			FAIL_IF(push_inst(compiler, SLTU | S(dst) | TA(OTHER_FLAG) | D(TMP_REG1), DR(TMP_REG1)));

		FAIL_IF(push_inst(compiler, SUBU | S(dst) | TA(OTHER_FLAG) | D(dst), DR(dst)));
		return (is_carry) ? push_inst(compiler, OR | SA(EQUAL_FLAG) | T(TMP_REG1) | DA(OTHER_FLAG), OTHER_FLAG) : SLJIT_SUCCESS;

	case SLJIT_MUL:
		SLJIT_ASSERT(!(flags & SRC2_IMM));

		if (GET_FLAG_TYPE(op) != SLJIT_MUL_OVERFLOW && GET_FLAG_TYPE(op) != SLJIT_MUL_NOT_OVERFLOW) {
#if (defined SLJIT_MIPS_R1 && SLJIT_MIPS_R1)
			return push_inst(compiler, MUL | S(src1) | T(src2) | D(dst), DR(dst));
#else
			FAIL_IF(push_inst(compiler, MULT | S(src1) | T(src2), MOVABLE_INS));
			return push_inst(compiler, MFLO | D(dst), DR(dst));
#endif
		}
		FAIL_IF(push_inst(compiler, MULT | S(src1) | T(src2), MOVABLE_INS));
		FAIL_IF(push_inst(compiler, MFHI | DA(EQUAL_FLAG), EQUAL_FLAG));
		FAIL_IF(push_inst(compiler, MFLO | D(dst), DR(dst)));
		FAIL_IF(push_inst(compiler, SRA | T(dst) | DA(OTHER_FLAG) | SH_IMM(31), OTHER_FLAG));
		return push_inst(compiler, SUBU | SA(EQUAL_FLAG) | TA(OTHER_FLAG) | DA(OTHER_FLAG), OTHER_FLAG);

	case SLJIT_AND:
		EMIT_LOGICAL(ANDI, AND);
		return SLJIT_SUCCESS;

	case SLJIT_OR:
		EMIT_LOGICAL(ORI, OR);
		return SLJIT_SUCCESS;

	case SLJIT_XOR:
		EMIT_LOGICAL(XORI, XOR);
		return SLJIT_SUCCESS;

	case SLJIT_SHL:
		EMIT_SHIFT(SLL, SLLV);
		return SLJIT_SUCCESS;

	case SLJIT_LSHR:
		EMIT_SHIFT(SRL, SRLV);
		return SLJIT_SUCCESS;

	case SLJIT_ASHR:
		EMIT_SHIFT(SRA, SRAV);
		return SLJIT_SUCCESS;
	}

	SLJIT_UNREACHABLE();
	return SLJIT_SUCCESS;
}

static SLJIT_INLINE sljit_s32 emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw init_value)
{
	FAIL_IF(push_inst(compiler, LUI | T(dst) | IMM(init_value >> 16), DR(dst)));
	return push_inst(compiler, ORI | S(dst) | T(dst) | IMM(init_value), DR(dst));
}

SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset)
{
	sljit_ins *inst = (sljit_ins *)addr;

	inst[0] = (inst[0] & 0xffff0000) | ((new_target >> 16) & 0xffff);
	inst[1] = (inst[1] & 0xffff0000) | (new_target & 0xffff);
	inst = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset);
	SLJIT_CACHE_FLUSH(inst, inst + 2);
}

SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset)
{
	sljit_ins *inst = (sljit_ins *)addr;

	inst[0] = (inst[0] & 0xffff0000) | ((new_constant >> 16) & 0xffff);
	inst[1] = (inst[1] & 0xffff0000) | (new_constant & 0xffff);
	inst = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset);
	SLJIT_CACHE_FLUSH(inst, inst + 2);
}